| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Wolfgang Wittek 5/2002 <mailto:wittek@mppmu.mpg.de> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2000-2002 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | //                                                                          // | 
|---|
| 27 | //  MHFlux                                                                 // | 
|---|
| 28 | //                                                                          // | 
|---|
| 29 | //  calculates absolute photon fluxes                                       // | 
|---|
| 30 | //             from the distributions of the estimated energy               // | 
|---|
| 31 | //                      for the different bins in some variable 'Var'       // | 
|---|
| 32 | //                      (Var = Theta or time)                               // | 
|---|
| 33 | //                                                                          // | 
|---|
| 34 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 35 |  | 
|---|
| 36 | #include "MHFlux.h" | 
|---|
| 37 |  | 
|---|
| 38 | #include <TStyle.h> | 
|---|
| 39 |  | 
|---|
| 40 | #include <TF1.h> | 
|---|
| 41 | #include <TH2.h> | 
|---|
| 42 | #include <TProfile.h> | 
|---|
| 43 |  | 
|---|
| 44 | #include <TCanvas.h> | 
|---|
| 45 |  | 
|---|
| 46 | #include "MTime.h" | 
|---|
| 47 |  | 
|---|
| 48 | #include "MBinning.h" | 
|---|
| 49 | #include "MParList.h" | 
|---|
| 50 |  | 
|---|
| 51 | #include "MLog.h" | 
|---|
| 52 | #include "MLogManip.h" | 
|---|
| 53 |  | 
|---|
| 54 | #include "MHThetabarTheta.h" | 
|---|
| 55 | #include "MHEffOnTime.h" | 
|---|
| 56 | #include "MHGamma.h" | 
|---|
| 57 |  | 
|---|
| 58 | ClassImp(MHFlux); | 
|---|
| 59 |  | 
|---|
| 60 | using namespace std; | 
|---|
| 61 |  | 
|---|
| 62 | MHFlux::MHFlux(const MHGamma &hist, const TString varname, const TString unit) | 
|---|
| 63 | : fHOrig(), fHUnfold(), fHFlux() | 
|---|
| 64 | { | 
|---|
| 65 | const TH2D &h2d = *hist.GetProject(); | 
|---|
| 66 |  | 
|---|
| 67 | if (varname.IsNull() || unit.IsNull()) | 
|---|
| 68 | *fLog << warn << dbginf << "varname or unit not defined" << endl; | 
|---|
| 69 |  | 
|---|
| 70 | fVarname = varname; | 
|---|
| 71 | fUnit    = unit; | 
|---|
| 72 |  | 
|---|
| 73 | // char txt[100]; | 
|---|
| 74 |  | 
|---|
| 75 | // original distribution of E-est for different bins | 
|---|
| 76 | //                       of the variable (Theta or time) | 
|---|
| 77 | // sprintf(txt, "gammas vs. E-est and %s",varname); | 
|---|
| 78 |  | 
|---|
| 79 | ((TH2D&)h2d).Copy(fHOrig); | 
|---|
| 80 |  | 
|---|
| 81 | fHOrig.SetName("E_est"); | 
|---|
| 82 | fHOrig.SetTitle(TString("No.of gammas vs. E-est and ")+fVarname); | 
|---|
| 83 |  | 
|---|
| 84 | fHOrig.SetDirectory(NULL); | 
|---|
| 85 | fHOrig.SetXTitle("E_{est} [GeV]"); | 
|---|
| 86 | fHOrig.SetYTitle(fVarname+fUnit); | 
|---|
| 87 | //fHOrig.Sumw2(); | 
|---|
| 88 |  | 
|---|
| 89 | SetBinning((TH2*)&fHOrig, (TH2*)&h2d); | 
|---|
| 90 |  | 
|---|
| 91 | fHOrig.Copy(fHUnfold); | 
|---|
| 92 |  | 
|---|
| 93 | // unfolded distribution of E-unfold for different bins | 
|---|
| 94 | //                       of the variable (Theta or time) | 
|---|
| 95 | // sprintf(txt, "gammas vs. E-unfold and %s",varname); | 
|---|
| 96 | fHUnfold.SetName("E-unfolded"); | 
|---|
| 97 | fHUnfold.SetTitle(TString("No.of gammas vs. E-unfold and ")+fVarname); | 
|---|
| 98 |  | 
|---|
| 99 | fHUnfold.SetDirectory(NULL); | 
|---|
| 100 | fHUnfold.SetXTitle("E_{unfold} [GeV]"); | 
|---|
| 101 | fHUnfold.SetYTitle(fVarname+fUnit); | 
|---|
| 102 | //fHUnfold.Sumw2(); | 
|---|
| 103 |  | 
|---|
| 104 | SetBinning((TH2*)&fHUnfold, (TH2*)&fHOrig); | 
|---|
| 105 |  | 
|---|
| 106 |  | 
|---|
| 107 | // absolute photon flux vs. E-unfold | 
|---|
| 108 | //          for different bins of the variable (Theta or time) | 
|---|
| 109 | // | 
|---|
| 110 | // sprintf(txt, "gamma flux [1/(s m2 GeV) vs. E-unfold and %s",varname); | 
|---|
| 111 | fHFlux.SetName("photon flux"); | 
|---|
| 112 | fHFlux.SetTitle(TString("Gamma flux [1/(s m^2 GeV) vs. E-unfold and ")+fVarname); | 
|---|
| 113 |  | 
|---|
| 114 | fHFlux.SetDirectory(NULL); | 
|---|
| 115 | fHFlux.SetXTitle("E_{unfold} [GeV]"); | 
|---|
| 116 | fHFlux.SetYTitle(fVarname+fUnit); | 
|---|
| 117 | fHFlux.Sumw2(); | 
|---|
| 118 |  | 
|---|
| 119 | SetBinning((TH2*)&fHFlux, (TH2*)&fHUnfold); | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | // -------------------------------------------------------------------------- | 
|---|
| 123 | // | 
|---|
| 124 | // Default Constructor. It sets the variable name (Theta or time) | 
|---|
| 125 | //                      and the units for the variable | 
|---|
| 126 | // | 
|---|
| 127 | MHFlux::MHFlux(const TH2D &h2d, const TString varname, const TString unit) | 
|---|
| 128 | : fHOrig(), fHUnfold(), fHFlux() | 
|---|
| 129 | { | 
|---|
| 130 | if (varname.IsNull() || unit.IsNull()) | 
|---|
| 131 | *fLog << warn << dbginf << "varname or unit not defined" << endl; | 
|---|
| 132 |  | 
|---|
| 133 | fVarname = varname; | 
|---|
| 134 | fUnit    = unit; | 
|---|
| 135 |  | 
|---|
| 136 | // char txt[100]; | 
|---|
| 137 |  | 
|---|
| 138 | // original distribution of E-est for different bins | 
|---|
| 139 | //                       of the variable (Theta or time) | 
|---|
| 140 | // sprintf(txt, "gammas vs. E-est and %s",varname); | 
|---|
| 141 |  | 
|---|
| 142 | ((TH2D&)h2d).Copy(fHOrig); | 
|---|
| 143 |  | 
|---|
| 144 | fHOrig.SetName("E_est"); | 
|---|
| 145 | fHOrig.SetTitle(TString("No.of gammas vs. E-est and ")+fVarname); | 
|---|
| 146 |  | 
|---|
| 147 | fHOrig.SetDirectory(NULL); | 
|---|
| 148 | fHOrig.SetXTitle("E_{est} [GeV]"); | 
|---|
| 149 | fHOrig.SetYTitle(fVarname+fUnit); | 
|---|
| 150 | //fHOrig.Sumw2(); | 
|---|
| 151 |  | 
|---|
| 152 | // copy fHOrig into fHUnfold in case no unfolding is done | 
|---|
| 153 | fHOrig.Copy(fHUnfold); | 
|---|
| 154 |  | 
|---|
| 155 | SetBinning((TH2*)&fHOrig, (TH2*)&h2d); | 
|---|
| 156 |  | 
|---|
| 157 |  | 
|---|
| 158 | // unfolded distribution of E-unfold for different bins | 
|---|
| 159 | //                       of the variable (Theta or time) | 
|---|
| 160 | // sprintf(txt, "gammas vs. E-unfold and %s",varname); | 
|---|
| 161 | fHUnfold.SetName("E-unfolded"); | 
|---|
| 162 | fHUnfold.SetTitle(TString("No.of gammas vs. E-unfold and ")+fVarname); | 
|---|
| 163 |  | 
|---|
| 164 | fHUnfold.SetDirectory(NULL); | 
|---|
| 165 | fHUnfold.SetXTitle("E_{unfold} [GeV]"); | 
|---|
| 166 | fHUnfold.SetYTitle(fVarname+fUnit); | 
|---|
| 167 | //fHUnfold.Sumw2(); | 
|---|
| 168 |  | 
|---|
| 169 | SetBinning((TH2*)&fHUnfold, (TH2*)&fHOrig); | 
|---|
| 170 |  | 
|---|
| 171 |  | 
|---|
| 172 | // absolute photon flux vs. E-unfold | 
|---|
| 173 | //          for different bins of the variable (Theta or time) | 
|---|
| 174 | // | 
|---|
| 175 | // sprintf(txt, "gamma flux [1/(s m2 GeV) vs. E-unfold and %s",varname); | 
|---|
| 176 | fHFlux.SetName("photon flux"); | 
|---|
| 177 | fHFlux.SetTitle(TString("Gamma flux [1/(s m^{2} GeV)] vs. E-unfold and ")+fVarname); | 
|---|
| 178 |  | 
|---|
| 179 | fHFlux.SetDirectory(NULL); | 
|---|
| 180 | fHFlux.SetXTitle("E_{unfold} [GeV]"); | 
|---|
| 181 | fHFlux.SetYTitle(fVarname+fUnit); | 
|---|
| 182 | fHFlux.Sumw2(); | 
|---|
| 183 |  | 
|---|
| 184 | SetBinning((TH2*)&fHFlux, (TH2*)&fHUnfold); | 
|---|
| 185 | } | 
|---|
| 186 |  | 
|---|
| 187 | // ------------------------------------------------------------------------- | 
|---|
| 188 | // | 
|---|
| 189 | // Unfold the distribution in E-est | 
|---|
| 190 | // | 
|---|
| 191 | void MHFlux::Unfold() | 
|---|
| 192 | { | 
|---|
| 193 | } | 
|---|
| 194 |  | 
|---|
| 195 | void MHFlux::CalcFlux(const MHEffOnTime &teff, const MHThetabarTheta &thetabar, | 
|---|
| 196 | const TH2D *aeff) | 
|---|
| 197 | { | 
|---|
| 198 | CalcFlux(teff.GetHist(), thetabar.GetHist(), aeff); | 
|---|
| 199 | } | 
|---|
| 200 |  | 
|---|
| 201 | Double_t MHFlux::ParabInterpolLog(const TAxis &axe, Int_t j, | 
|---|
| 202 | Double_t y[], Double_t Ebar) const | 
|---|
| 203 | { | 
|---|
| 204 | const double t1 = log10(axe.GetBinLowEdge(j-1)) + log10(axe.GetBinUpEdge(j-1)); | 
|---|
| 205 | const double t2 = log10(axe.GetBinLowEdge(j))   + log10(axe.GetBinUpEdge(j)); | 
|---|
| 206 | const double t3 = log10(axe.GetBinLowEdge(j+1)) + log10(axe.GetBinUpEdge(j+1)); | 
|---|
| 207 |  | 
|---|
| 208 | const Double_t lebar = log10(Ebar); | 
|---|
| 209 |  | 
|---|
| 210 | return Parab(t1/2, t2/2, t3/2, y[j-2], y[j-1], y[j], lebar); | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | // -------------------------------------------------------------------- | 
|---|
| 214 | // | 
|---|
| 215 | //  determine bins for interpolation (k3 is the middle one) in bar. | 
|---|
| 216 | //  k0 denotes the bin from which the error is copied | 
|---|
| 217 | // | 
|---|
| 218 | void MHFlux::FindBins(const TAxis &axe, const Double_t bar, Int_t &k3, Int_t &k0) const | 
|---|
| 219 | { | 
|---|
| 220 | const Int_t n = axe.GetNbins(); | 
|---|
| 221 |  | 
|---|
| 222 | k3 = axe.FindFixBin(bar); | 
|---|
| 223 | k0 = k3; | 
|---|
| 224 |  | 
|---|
| 225 | if (k3<2) | 
|---|
| 226 | { | 
|---|
| 227 | k3 = 2; | 
|---|
| 228 | if (bar<axe.GetBinLowEdge(2)) | 
|---|
| 229 | k0 = 1; | 
|---|
| 230 | } | 
|---|
| 231 |  | 
|---|
| 232 | if (k3>n-1) | 
|---|
| 233 | { | 
|---|
| 234 | k3 = n-1; | 
|---|
| 235 | if (bar>axe.GetBinLowEdge(n)) | 
|---|
| 236 | k0 = n; | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|
| 239 | if (bar>=axe.GetBinLowEdge(1) && bar<=axe.GetBinUpEdge(n)) | 
|---|
| 240 | return; | 
|---|
| 241 |  | 
|---|
| 242 | *fLog << dbginf << "extrapolation: bar = " << bar; | 
|---|
| 243 | *fLog << ", min =" << axe.GetBinLowEdge(1); | 
|---|
| 244 | *fLog << ", max =" << axe.GetBinUpEdge(n) << endl; | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | Double_t MHFlux::ParabInterpolCos(const TAxis &axe, const TH2D *aeff, Int_t j, Int_t k3, Double_t val) const | 
|---|
| 248 | { | 
|---|
| 249 | const double t1 = cos( axe.GetBinCenter (k3-1) ); | 
|---|
| 250 | const double t2 = cos( axe.GetBinCenter (k3)   ); | 
|---|
| 251 | const double t3 = cos( axe.GetBinCenter (k3+1) ); | 
|---|
| 252 |  | 
|---|
| 253 | const double a1 = aeff->GetBinContent(j, k3-1); | 
|---|
| 254 | const double a2 = aeff->GetBinContent(j, k3); | 
|---|
| 255 | const double a3 = aeff->GetBinContent(j, k3+1); | 
|---|
| 256 |  | 
|---|
| 257 | return Parab(t1, t2, t3, a1, a2, a3, val); | 
|---|
| 258 | } | 
|---|
| 259 |  | 
|---|
| 260 | // ------------------------------------------------------------------------- | 
|---|
| 261 | // | 
|---|
| 262 | // Calculate photon flux by dividing the distribution in Eunf (fHUnfold) by | 
|---|
| 263 | //                       the width of the energy interval     (deltaE) | 
|---|
| 264 | //                       the effective ontime                 (*teff) | 
|---|
| 265 | //                       and the effective collection area    (*aeff) | 
|---|
| 266 | // | 
|---|
| 267 | void MHFlux::CalcFlux(const TH1D *teff, const TProfile *thetabar, | 
|---|
| 268 | const TH2D *aeff) | 
|---|
| 269 | { | 
|---|
| 270 | // | 
|---|
| 271 | // Note that fHUnfold  has bins in Eunf and Var | 
|---|
| 272 | //           *teff     has bins in Var  (the same bins in Var as fHUnfold) | 
|---|
| 273 | //           *thetabar has bins in Var  (the same bins in Var as fHUnfold) | 
|---|
| 274 | //           *aeff     has bins in Etru and Theta | 
|---|
| 275 | //                     (where in general the binning in Etru is different | 
|---|
| 276 | //                      from the binning in Eunf) | 
|---|
| 277 | // The variable Var may be 'time' or 'Theta' | 
|---|
| 278 |  | 
|---|
| 279 | const TAxis &axex = *((TH2*)aeff)->GetXaxis(); | 
|---|
| 280 | const TAxis &axey = *((TH2*)aeff)->GetYaxis(); | 
|---|
| 281 |  | 
|---|
| 282 | if (axex.GetNbins()<3) | 
|---|
| 283 | { | 
|---|
| 284 | *fLog << err << "ERROR - Number of Energy bins <3 not implemented!" << endl; | 
|---|
| 285 | return; | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 | if (axey.GetNbins()<3) | 
|---|
| 289 | *fLog << warn << "WARNING - Less than 3 theta-bins not supported very well!" << endl; | 
|---|
| 290 |  | 
|---|
| 291 | // | 
|---|
| 292 | // calculate effective collection area | 
|---|
| 293 | //    for the Eunf and Var bins of the histogram fHUnfold | 
|---|
| 294 | //    from the histogram *aeff, which has bins in Etru and Theta | 
|---|
| 295 | // the result is the histogram fHAeff | 
|---|
| 296 | // | 
|---|
| 297 | TH2D fHAeff; | 
|---|
| 298 | SetBinning((TH2*)&fHAeff, (TH2*)&fHUnfold); | 
|---|
| 299 | fHAeff.Sumw2(); | 
|---|
| 300 |  | 
|---|
| 301 | // | 
|---|
| 302 | // ------ start loops ------ | 
|---|
| 303 | // | 
|---|
| 304 | const Int_t nEtru = aeff->GetNbinsX(); | 
|---|
| 305 |  | 
|---|
| 306 | Double_t *aeffbar  = new Double_t[nEtru]; | 
|---|
| 307 | Double_t *daeffbar = new Double_t[nEtru]; | 
|---|
| 308 |  | 
|---|
| 309 | const Int_t nVar = fHFlux.GetNbinsY(); | 
|---|
| 310 | for (int n=1; n<=nVar; n++) | 
|---|
| 311 | { | 
|---|
| 312 | const Double_t tbar = thetabar->GetBinContent(n); | 
|---|
| 313 | const Double_t costbar = cos(tbar/kRad2Deg); | 
|---|
| 314 |  | 
|---|
| 315 | // determine bins for interpolation (k3, k0) | 
|---|
| 316 | Int_t kv, ke; | 
|---|
| 317 | FindBins(axey, tbar, kv, ke); | 
|---|
| 318 |  | 
|---|
| 319 | // | 
|---|
| 320 | // calculate effective collection area at Theta = Thetabar | 
|---|
| 321 | // by quadratic interpolation in cos(Theta); | 
|---|
| 322 | // do this for each bin of Etru | 
|---|
| 323 | // | 
|---|
| 324 | for (int j=1; j<=nEtru; j++) | 
|---|
| 325 | { | 
|---|
| 326 | if (axey.GetNbins()<3) | 
|---|
| 327 | { | 
|---|
| 328 | // FIXME: Other interpolation? | 
|---|
| 329 | aeffbar[j-1]  = aeff->GetBinContent(j, n); | 
|---|
| 330 | daeffbar[j-1] = aeff->GetBinError(j, n); | 
|---|
| 331 | } | 
|---|
| 332 | else | 
|---|
| 333 | { | 
|---|
| 334 | aeffbar[j-1]  = ParabInterpolCos(axey, aeff, j, kv, costbar); | 
|---|
| 335 | daeffbar[j-1] = aeff->GetBinError(j, ke); | 
|---|
| 336 | } | 
|---|
| 337 | } | 
|---|
| 338 |  | 
|---|
| 339 | // | 
|---|
| 340 | // calculate effective collection area at (E = Ebar, Theta = Thetabar) | 
|---|
| 341 | // by quadratic interpolation in log10(Etru) | 
|---|
| 342 | // do this for each bin of Eunf | 
|---|
| 343 | // | 
|---|
| 344 | CalcEffCol(axex, fHAeff, n, aeffbar, daeffbar); | 
|---|
| 345 | } | 
|---|
| 346 |  | 
|---|
| 347 | delete aeffbar; | 
|---|
| 348 | delete daeffbar; | 
|---|
| 349 |  | 
|---|
| 350 | // | 
|---|
| 351 | // now calculate the absolute gamma flux | 
|---|
| 352 | // | 
|---|
| 353 | CalcAbsGammaFlux(*teff, fHAeff); | 
|---|
| 354 | } | 
|---|
| 355 |  | 
|---|
| 356 | // -------------------------------------------------------------------- | 
|---|
| 357 | // | 
|---|
| 358 | //  calculate effective collection area at (E = Ebar, Theta = Thetabar) | 
|---|
| 359 | //  by quadratic interpolation in log10(Etru) | 
|---|
| 360 | //  do this for each bin of Eunf | 
|---|
| 361 | // | 
|---|
| 362 | void MHFlux::CalcEffCol(const TAxis &axex, TH2D &fHAeff, Int_t n, Double_t aeffbar[], Double_t daeffbar[]) | 
|---|
| 363 | { | 
|---|
| 364 | const Int_t nEunf = fHFlux.GetNbinsX(); | 
|---|
| 365 |  | 
|---|
| 366 | const TAxis &unfx = *fHUnfold.GetXaxis(); | 
|---|
| 367 |  | 
|---|
| 368 | for (int m=1; m<=nEunf; m++) | 
|---|
| 369 | { | 
|---|
| 370 | const Double_t Ebar = GetBinCenterLog(unfx, m); | 
|---|
| 371 |  | 
|---|
| 372 | Int_t j0, j3; | 
|---|
| 373 | FindBins(axex, Ebar, j3, j0); | 
|---|
| 374 |  | 
|---|
| 375 | const Double_t v = ParabInterpolLog(axex, j3, aeffbar, Ebar); | 
|---|
| 376 |  | 
|---|
| 377 | fHAeff.SetBinContent(m,n, v); | 
|---|
| 378 | fHAeff.SetBinError(m,n, daeffbar[j0-1]); | 
|---|
| 379 | } | 
|---|
| 380 | } | 
|---|
| 381 |  | 
|---|
| 382 | // -------------------------------------------------------------------- | 
|---|
| 383 | // | 
|---|
| 384 | //  calculate the absolute gamma flux | 
|---|
| 385 | // | 
|---|
| 386 | void MHFlux::CalcAbsGammaFlux(const TH1D &teff, const TH2D &fHAeff) | 
|---|
| 387 | { | 
|---|
| 388 | const Int_t nEunf = fHFlux.GetNbinsX(); | 
|---|
| 389 | const Int_t nVar  = fHFlux.GetNbinsY(); | 
|---|
| 390 |  | 
|---|
| 391 | for (int m=1; m<=nEunf; m++) | 
|---|
| 392 | { | 
|---|
| 393 | const Double_t DeltaE = fHFlux.GetXaxis()->GetBinWidth(m); | 
|---|
| 394 |  | 
|---|
| 395 | for (int n=1; n<=nVar; n++) | 
|---|
| 396 | { | 
|---|
| 397 | const Double_t Ngam  = fHUnfold.GetBinContent(m,n); | 
|---|
| 398 | const Double_t Aeff  = fHAeff.GetBinContent(m,n); | 
|---|
| 399 | const Double_t Effon = teff.GetBinContent(n); | 
|---|
| 400 |  | 
|---|
| 401 | const Double_t c1 = fHUnfold.GetBinError(m,n)/Ngam; | 
|---|
| 402 | const Double_t c2 = teff.GetBinError(n)      /Effon; | 
|---|
| 403 | const Double_t c3 = fHAeff.GetBinError(m,n)  /Aeff; | 
|---|
| 404 |  | 
|---|
| 405 | const Double_t cont  = Ngam / (DeltaE * Effon * Aeff); | 
|---|
| 406 | const Double_t dcont = sqrt(c1*c1 + c2*c2 + c3*c3); | 
|---|
| 407 |  | 
|---|
| 408 | // | 
|---|
| 409 | // Out of Range | 
|---|
| 410 | // | 
|---|
| 411 | const Bool_t oor = Ngam<=0 || DeltaE<=0 || Effon<=0 || Aeff<=0; | 
|---|
| 412 |  | 
|---|
| 413 | if (oor) | 
|---|
| 414 | *fLog << warn << "MHFlux::CalcAbsGammaFlux(" << m << "," << n << ") "; | 
|---|
| 415 |  | 
|---|
| 416 | if (Ngam<=0) | 
|---|
| 417 | *fLog << " Ngam=0"; | 
|---|
| 418 | if (DeltaE<=0) | 
|---|
| 419 | *fLog << " DeltaE=0"; | 
|---|
| 420 | if (Effon<=0) | 
|---|
| 421 | *fLog << " Effon=0"; | 
|---|
| 422 | if (Aeff<=0) | 
|---|
| 423 | *fLog << " Aeff=0"; | 
|---|
| 424 |  | 
|---|
| 425 | if (oor) | 
|---|
| 426 | *fLog << endl; | 
|---|
| 427 |  | 
|---|
| 428 | fHFlux.SetBinContent(m,n, oor ? 1e-20 : cont); | 
|---|
| 429 | fHFlux.SetBinError(m,n,   oor ? 1e-20 : dcont*cont); | 
|---|
| 430 | } | 
|---|
| 431 | } | 
|---|
| 432 | } | 
|---|
| 433 |  | 
|---|
| 434 | // -------------------------------------------------------------------- | 
|---|
| 435 | // | 
|---|
| 436 | // draw the differential photon flux vs. E-unf | 
|---|
| 437 | // for the individual bins of the variable Var | 
|---|
| 438 | // | 
|---|
| 439 | void MHFlux::DrawFluxProjectionX(Option_t *opt) const | 
|---|
| 440 | { | 
|---|
| 441 | const Int_t nVar = fHFlux.GetNbinsY(); | 
|---|
| 442 |  | 
|---|
| 443 | for (int n=1; n<=nVar; n++) | 
|---|
| 444 | { | 
|---|
| 445 | TString strg0("Flux-"); | 
|---|
| 446 |  | 
|---|
| 447 | TH1D &h = *((TH2D)fHFlux).ProjectionX(strg0+fVarname, n, n, "E"); | 
|---|
| 448 |  | 
|---|
| 449 | TString strg1 = "Photon flux vs. E_{unfold} for "; | 
|---|
| 450 | TString strg2 = fVarname+"-bin #"; | 
|---|
| 451 | strg2 += n; | 
|---|
| 452 |  | 
|---|
| 453 | new TCanvas(strg2, strg1+strg2); | 
|---|
| 454 | gPad->SetLogx(); | 
|---|
| 455 | gPad->SetLogy(); | 
|---|
| 456 |  | 
|---|
| 457 | TString name = fVarname+"bin_"; | 
|---|
| 458 | name += n; | 
|---|
| 459 |  | 
|---|
| 460 | h.SetName(name); | 
|---|
| 461 | h.SetTitle(strg1+strg2); | 
|---|
| 462 | h.SetXTitle("E_{unfold} [GeV]"); | 
|---|
| 463 | h.SetYTitle("photons / (s m^{2} GeV)"); | 
|---|
| 464 | h.GetXaxis()->SetLabelOffset(-0.025); | 
|---|
| 465 | h.GetXaxis()->SetTitleOffset(1.1); | 
|---|
| 466 | h.GetXaxis()->SetNdivisions(1); | 
|---|
| 467 | h.GetYaxis()->SetTitleOffset(1.25); | 
|---|
| 468 | h.DrawCopy(); | 
|---|
| 469 | } | 
|---|
| 470 | } | 
|---|
| 471 |  | 
|---|
| 472 | void MHFlux::DrawOrigProjectionX(Option_t *opt) const | 
|---|
| 473 | { | 
|---|
| 474 | const Int_t nVar = fHOrig.GetNbinsY(); | 
|---|
| 475 |  | 
|---|
| 476 | for (int n=1; n<=nVar; n++) | 
|---|
| 477 | { | 
|---|
| 478 | TString strg0 = "Orig-"; | 
|---|
| 479 | strg0 += fVarname; | 
|---|
| 480 | strg0 += "_"; | 
|---|
| 481 | strg0 += n; | 
|---|
| 482 |  | 
|---|
| 483 | TH1D &h = *((TH2D)fHOrig).ProjectionX(strg0, n, n, "E"); | 
|---|
| 484 |  | 
|---|
| 485 | TString strg1("No.of photons vs. E-est for "); | 
|---|
| 486 | strg1 += fVarname+"-bin "; | 
|---|
| 487 | strg1 += n; | 
|---|
| 488 |  | 
|---|
| 489 | new TCanvas(strg0, strg1); | 
|---|
| 490 |  | 
|---|
| 491 | gPad->SetLogx(); | 
|---|
| 492 | gPad->SetLogy(); | 
|---|
| 493 |  | 
|---|
| 494 | h.SetName(strg0); | 
|---|
| 495 | h.SetTitle(strg1); | 
|---|
| 496 | h.SetXTitle("E_{est} [GeV]"); | 
|---|
| 497 | h.GetXaxis()->SetLabelOffset(-0.025); | 
|---|
| 498 | h.GetXaxis()->SetTitleOffset(1.1); | 
|---|
| 499 | h.GetXaxis()->SetNdivisions(1); | 
|---|
| 500 | h.SetYTitle("No.of photons"); | 
|---|
| 501 | h.DrawCopy(); | 
|---|
| 502 | } | 
|---|
| 503 | } | 
|---|
| 504 |  | 
|---|
| 505 | // ------------------------------------------------------------------------- | 
|---|
| 506 | // | 
|---|
| 507 | //  Draw the histograms | 
|---|
| 508 | // | 
|---|
| 509 | void MHFlux::Draw(Option_t *opt) | 
|---|
| 510 | { | 
|---|
| 511 | TVirtualPad *pad = gPad ? gPad : MakeDefCanvas(this); | 
|---|
| 512 | pad->SetBorderMode(0); | 
|---|
| 513 |  | 
|---|
| 514 | AppendPad(""); | 
|---|
| 515 |  | 
|---|
| 516 | pad->Divide(2,2); | 
|---|
| 517 |  | 
|---|
| 518 | pad->cd(1); | 
|---|
| 519 | gPad->SetBorderMode(0); | 
|---|
| 520 | fHOrig.Draw(opt); | 
|---|
| 521 |  | 
|---|
| 522 | pad->cd(2); | 
|---|
| 523 | gPad->SetBorderMode(0); | 
|---|
| 524 | fHUnfold.Draw(opt); | 
|---|
| 525 |  | 
|---|
| 526 | pad->cd(3); | 
|---|
| 527 | gPad->SetBorderMode(0); | 
|---|
| 528 | fHFlux.Draw(opt); | 
|---|
| 529 |  | 
|---|
| 530 | pad->Modified(); | 
|---|
| 531 | pad->Update(); | 
|---|
| 532 | } | 
|---|
| 533 |  | 
|---|
| 534 | Double_t MHFlux::Parab(Double_t x1, Double_t x2, Double_t x3, | 
|---|
| 535 | Double_t y1, Double_t y2, Double_t y3, | 
|---|
| 536 | Double_t val) | 
|---|
| 537 | { | 
|---|
| 538 | Double_t c0, c1, c2; | 
|---|
| 539 | Parab(x1, x2, x3, y1, y2, y3, &c0, &c1, &c2); | 
|---|
| 540 | return c0 + c1*val + c2*val*val; | 
|---|
| 541 | } | 
|---|
| 542 |  | 
|---|
| 543 | // ------------------------------------------------------------------------- | 
|---|
| 544 | // | 
|---|
| 545 | // Quadratic interpolation | 
|---|
| 546 | // | 
|---|
| 547 | // *** calculate the parameters of a parabula | 
|---|
| 548 | //                      y = a + b*x + c*x**2 = F(x) | 
|---|
| 549 | //     such that       yi = F(xi)       for (i=1,3) | 
|---|
| 550 | // | 
|---|
| 551 | Bool_t MHFlux::Parab(Double_t x1, Double_t x2, Double_t x3, | 
|---|
| 552 | Double_t y1, Double_t y2, Double_t y3, | 
|---|
| 553 | Double_t *a, Double_t *b, Double_t *c) | 
|---|
| 554 | { | 
|---|
| 555 | const double det = | 
|---|
| 556 | + x2*x3*x3 + x1*x2*x2 + x3*x1*x1 | 
|---|
| 557 | - x2*x1*x1 - x3*x2*x2 - x1*x3*x3; | 
|---|
| 558 |  | 
|---|
| 559 | if (det==0) | 
|---|
| 560 | { | 
|---|
| 561 | *a = 0; | 
|---|
| 562 | *b = 0; | 
|---|
| 563 | *c = 0; | 
|---|
| 564 | return kFALSE; | 
|---|
| 565 | } | 
|---|
| 566 |  | 
|---|
| 567 | const double det1 = 1.0/det; | 
|---|
| 568 |  | 
|---|
| 569 | const double ai11 = x2*x3*x3 - x3*x2*x2; | 
|---|
| 570 | const double ai12 = x3*x1*x1 - x1*x3*x3; | 
|---|
| 571 | const double ai13 = x1*x2*x2 - x2*x1*x1; | 
|---|
| 572 |  | 
|---|
| 573 | const double ai21 = x2*x2 - x3*x3; | 
|---|
| 574 | const double ai22 = x3*x3 - x1*x1; | 
|---|
| 575 | const double ai23 = x1*x1 - x2*x2; | 
|---|
| 576 |  | 
|---|
| 577 | const double ai31 = x3 - x2; | 
|---|
| 578 | const double ai32 = x1 - x3; | 
|---|
| 579 | const double ai33 = x2 - x1; | 
|---|
| 580 |  | 
|---|
| 581 | *a = (ai11*y1 + ai12*y2 + ai13*y3) * det1; | 
|---|
| 582 | *b = (ai21*y1 + ai22*y2 + ai23*y3) * det1; | 
|---|
| 583 | *c = (ai31*y1 + ai32*y2 + ai33*y3) * det1; | 
|---|
| 584 |  | 
|---|
| 585 | return kTRUE; | 
|---|
| 586 | } | 
|---|