source: trunk/MagicSoft/Mars/mhist/MHMatrix.cc@ 2001

Last change on this file since 2001 was 1992, checked in by tbretz, 22 years ago
*** empty log message ***
File size: 27.2 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz 2002 <mailto:tbretz@astro.uni-wuerzburg.de>
19! Rudy Boeck 2003 <mailto:
20! Wolfgang Wittek2003 <mailto:wittek@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MHMatrix
30//
31// This is a histogram container which holds a matrix with one column per
32// data variable. The data variable can be a complex rule (MDataChain).
33// Each event for wich Fill is called (by MFillH) is added as a new
34// row to the matrix.
35//
36// For example:
37// MHMatrix m;
38// m.AddColumn("MHillas.fSize");
39// m.AddColumn("MMcEvt.fImpact/100");
40// m.AddColumn("HillasSource.fDist*MGeomCam.fConvMm2Deg");
41// MFillH fillm(&m);
42// taskliost.AddToList(&fillm);
43// [...]
44// m.Print();
45//
46/////////////////////////////////////////////////////////////////////////////
47#include "MHMatrix.h"
48
49#include <fstream.h>
50
51#include <TList.h>
52#include <TArrayF.h>
53#include <TArrayD.h>
54#include <TArrayI.h>
55
56#include <TH1.h>
57#include <TCanvas.h>
58#include <TRandom3.h>
59
60#include "MLog.h"
61#include "MLogManip.h"
62
63#include "MFillH.h"
64#include "MEvtLoop.h"
65#include "MParList.h"
66#include "MTaskList.h"
67
68#include "MData.h"
69#include "MDataArray.h"
70#include "MFilter.h"
71
72
73ClassImp(MHMatrix);
74
75const TString MHMatrix::gsDefName = "MHMatrix";
76const TString MHMatrix::gsDefTitle = "Multidimensional Matrix";
77
78// --------------------------------------------------------------------------
79//
80// Default Constructor
81//
82MHMatrix::MHMatrix(const char *name, const char *title)
83 : fNumRow(0), fData(NULL)
84{
85 fName = name ? name : gsDefName.Data();
86 fTitle = title ? title : gsDefTitle.Data();
87}
88
89// --------------------------------------------------------------------------
90//
91// Default Constructor
92//
93MHMatrix::MHMatrix(const TMatrix &m, const char *name, const char *title)
94 : fNumRow(m.GetNrows()), fM(m), fData(NULL)
95{
96 fName = name ? name : gsDefName.Data();
97 fTitle = title ? title : gsDefTitle.Data();
98}
99
100// --------------------------------------------------------------------------
101//
102// Constructor. Initializes the columns of the matrix with the entries
103// from a MDataArray
104//
105MHMatrix::MHMatrix(MDataArray *mat, const char *name, const char *title)
106 : fNumRow(0), fData(mat)
107{
108 fName = name ? name : gsDefName.Data();
109 fTitle = title ? title : gsDefTitle.Data();
110}
111
112// --------------------------------------------------------------------------
113//
114// Destructor. Does not deleted a user given MDataArray, except IsOwner
115// was called.
116//
117MHMatrix::~MHMatrix()
118{
119 if (TestBit(kIsOwner) && fData)
120 delete fData;
121}
122
123// --------------------------------------------------------------------------
124//
125// Add a new column to the matrix. This can only be done before the first
126// event (row) was filled into the matrix. For the syntax of the rule
127// see MDataChain.
128// Returns the index of the new column, -1 in case of failure.
129// (0, 1, 2, ... for the 1st, 2nd, 3rd, ...)
130//
131Int_t MHMatrix::AddColumn(const char *rule)
132{
133 if (fM.IsValid())
134 {
135 *fLog << warn << "Warning - matrix is already in use. Can't add a new column... skipped." << endl;
136 return -1;
137 }
138
139 if (TestBit(kIsLocked))
140 {
141 *fLog << warn << "Warning - matrix is locked. Can't add new column... skipped." << endl;
142 return -1;
143 }
144
145 if (!fData)
146 {
147 fData = new MDataArray;
148 SetBit(kIsOwner);
149 }
150
151 fData->AddEntry(rule);
152 return fData->GetNumEntries()-1;
153}
154
155// --------------------------------------------------------------------------
156//
157void MHMatrix::AddColumns(MDataArray *matrix)
158{
159 if (fM.IsValid())
160 {
161 *fLog << warn << "Warning - matrix is already in use. Can't add new columns... skipped." << endl;
162 return;
163 }
164
165 if (TestBit(kIsLocked))
166 {
167 *fLog << warn << "Warning - matrix is locked. Can't add new columns... skipped." << endl;
168 return;
169 }
170
171 if (fData)
172 *fLog << warn << "Warning - columns already added... replacing." << endl;
173
174 if (fData && TestBit(kIsOwner))
175 {
176 delete fData;
177 ResetBit(kIsOwner);
178 }
179
180 fData = matrix;
181}
182
183// --------------------------------------------------------------------------
184//
185// Checks whether at least one column is available and PreProcesses all
186// data chains.
187//
188Bool_t MHMatrix::SetupFill(const MParList *plist)
189{
190 if (!fData)
191 {
192 *fLog << err << "Error - No Columns initialized... aborting." << endl;
193 return kFALSE;
194 }
195
196 return fData->PreProcess(plist);
197}
198
199// --------------------------------------------------------------------------
200//
201// If the matrix has not enough rows double the number of available rows.
202//
203void MHMatrix::AddRow()
204{
205 fNumRow++;
206
207 if (fM.GetNrows() > fNumRow)
208 return;
209
210 if (!fM.IsValid())
211 {
212 fM.ResizeTo(1, fData->GetNumEntries());
213 return;
214 }
215
216 TMatrix m(fM);
217
218 fM.ResizeTo(fM.GetNrows()*2, fData->GetNumEntries());
219
220 TVector vold(fM.GetNcols());
221 for (int x=0; x<m.GetNrows(); x++)
222 TMatrixRow(fM, x) = vold = TMatrixRow(m, x);
223}
224
225// --------------------------------------------------------------------------
226//
227// Add the values correspoding to the columns to the new row
228//
229Bool_t MHMatrix::Fill(const MParContainer *par, Double_t w)
230{
231 AddRow();
232
233 for (int col=0; col<fData->GetNumEntries(); col++)
234 fM(fNumRow-1, col) = (*fData)(col);
235
236 return kTRUE;
237}
238
239// --------------------------------------------------------------------------
240//
241// Resize the matrix to a number of rows which corresponds to the number of
242// rows which have really been filled with values.
243//
244Bool_t MHMatrix::Finalize()
245{
246 //
247 // It's not a fatal error so we don't need to stop PostProcessing...
248 //
249 if (fData->GetNumEntries()==0 || fNumRow<1)
250 return kTRUE;
251
252 if (fNumRow != fM.GetNrows())
253 {
254 TMatrix m(fM);
255 CopyCrop(fM, m, fNumRow);
256 }
257
258 return kTRUE;
259}
260/*
261// --------------------------------------------------------------------------
262//
263// Draw clone of histogram. So that the object can be deleted
264// and the histogram is still visible in the canvas.
265// The cloned object are deleted together with the canvas if the canvas is
266// destroyed. If you want to handle destroying the canvas you can get a
267// pointer to it from this function
268//
269TObject *MHMatrix::DrawClone(Option_t *opt) const
270{
271 TCanvas &c = *MH::MakeDefCanvas(fHist);
272
273 //
274 // This is necessary to get the expected bahviour of DrawClone
275 //
276 gROOT->SetSelectedPad(NULL);
277
278 fHist->DrawCopy(opt);
279
280 TString str(opt);
281 if (str.Contains("PROFX", TString::kIgnoreCase) && fDimension==2)
282 {
283 TProfile *p = ((TH2*)fHist)->ProfileX();
284 p->Draw("same");
285 p->SetBit(kCanDelete);
286 }
287 if (str.Contains("PROFY", TString::kIgnoreCase) && fDimension==2)
288 {
289 TProfile *p = ((TH2*)fHist)->ProfileY();
290 p->Draw("same");
291 p->SetBit(kCanDelete);
292 }
293
294 c.Modified();
295 c.Update();
296
297 return &c;
298}
299
300// --------------------------------------------------------------------------
301//
302// Creates a new canvas and draws the histogram into it.
303// Be careful: The histogram belongs to this object and won't get deleted
304// together with the canvas.
305//
306void MHMatrix::Draw(Option_t *opt)
307{
308 if (!gPad)
309 MH::MakeDefCanvas(fHist);
310
311 fHist->Draw(opt);
312
313 TString str(opt);
314 if (str.Contains("PROFX", TString::kIgnoreCase) && fDimension==2)
315 {
316 TProfile *p = ((TH2*)fHist)->ProfileX();
317 p->Draw("same");
318 p->SetBit(kCanDelete);
319 }
320 if (str.Contains("PROFY", TString::kIgnoreCase) && fDimension==2)
321 {
322 TProfile *p = ((TH2*)fHist)->ProfileY();
323 p->Draw("same");
324 p->SetBit(kCanDelete);
325 }
326
327 gPad->Modified();
328 gPad->Update();
329}
330*/
331
332// --------------------------------------------------------------------------
333//
334// Prints the meaning of the columns and the contents of the matrix.
335// Becareful, this can take a long time for matrices with many rows.
336// Use the option 'size' to print the size of the matrix.
337// Use the option 'cols' to print the culumns
338// Use the option 'data' to print the contents
339//
340void MHMatrix::Print(Option_t *o) const
341{
342 TString str(o);
343
344 *fLog << all << flush;
345
346 if (str.Contains("size", TString::kIgnoreCase))
347 {
348 *fLog << GetDescriptor() << ": NumColumns=" << fM.GetNcols();
349 *fLog << " NumRows=" << fM.GetNrows() << endl;
350 }
351
352 if (!fData && str.Contains("cols", TString::kIgnoreCase))
353 *fLog << "Sorry, no column information available." << endl;
354
355 if (fData && str.Contains("cols", TString::kIgnoreCase))
356 fData->Print();
357
358 if (str.Contains("data", TString::kIgnoreCase))
359 fM.Print();
360}
361
362// --------------------------------------------------------------------------
363//
364const TMatrix *MHMatrix::InvertPosDef()
365{
366 TMatrix m(fM);
367
368 const Int_t rows = m.GetNrows();
369 const Int_t cols = m.GetNcols();
370
371 for (int x=0; x<cols; x++)
372 {
373 Double_t avg = 0;
374 for (int y=0; y<rows; y++)
375 avg += fM(y, x);
376
377 avg /= rows;
378
379 TMatrixColumn(m, x) += -avg;
380 }
381
382 TMatrix *m2 = new TMatrix(m, TMatrix::kTransposeMult, m);
383
384 Double_t det;
385 m2->Invert(&det);
386 if (det==0)
387 {
388 *fLog << err << "ERROR - MHMatrix::InvertPosDef failed (Matrix is singular)." << endl;
389 delete m2;
390 return NULL;
391 }
392
393 // m2->Print();
394
395 return m2;
396}
397
398// --------------------------------------------------------------------------
399//
400// Calculated the distance of vector evt from the reference sample
401// represented by the covariance metrix m.
402// - If n<0 the kernel method is applied and
403// -log(sum(epx(-d/h))/n) is returned.
404// - For n>0 the n nearest neighbors are summed and
405// sqrt(sum(d)/n) is returned.
406// - if n==0 all distances are summed
407//
408Double_t MHMatrix::CalcDist(const TMatrix &m, const TVector &evt, Int_t num) const
409{
410 if (num==0) // may later be used for another method
411 {
412 TVector d = evt;
413 d *= m;
414 return TMath::Sqrt(d*evt);
415 }
416
417 const Int_t rows = fM.GetNrows();
418 const Int_t cols = fM.GetNcols();
419
420 TArrayD dists(rows);
421
422 //
423 // Calculate: v^T * M * v
424 //
425 for (int i=0; i<rows; i++)
426 {
427 TVector col(cols);
428 col = TMatrixRow(fM, i);
429
430 TVector d = evt;
431 d -= col;
432
433 TVector d2 = d;
434 d2 *= m;
435
436 dists[i] = d2*d; // square of distance
437
438 //
439 // This corrects for numerical uncertanties in cases of very
440 // small distances...
441 //
442 if (dists[i]<0)
443 dists[i]=0;
444 }
445
446 TArrayI idx(rows);
447 TMath::Sort(dists.GetSize(), dists.GetArray(), idx.GetArray(), kFALSE);
448
449 Int_t from = 0;
450 Int_t to = TMath::Abs(num)<rows ? TMath::Abs(num) : rows;
451 //
452 // This is a zero-suppression for the case a test- and trainings
453 // sample is identical. This would result in an unwanted leading
454 // zero in the array. To suppress also numerical uncertanties of
455 // zero we cut at 1e-5. Due to Rudy this should be enough. If
456 // you encounter problems we can also use (eg) 1e-25
457 //
458 if (dists[idx[0]]<1e-5)
459 {
460 from++;
461 to ++;
462 if (to>rows)
463 to = rows;
464 }
465
466 if (num<0)
467 {
468 //
469 // Kernel function sum (window size h set according to literature)
470 //
471 const Double_t h = TMath::Power(rows, -1./(cols+4));
472 const Double_t hwin = h*h*2;
473
474 Double_t res = 0;
475 for (int i=from; i<to; i++)
476 res += TMath::Exp(-dists[idx[i]]/hwin);
477
478 return -TMath::Log(res/(to-from));
479 }
480 else
481 {
482 //
483 // Nearest Neighbor sum
484 //
485 Double_t res = 0;
486 for (int i=from; i<to; i++)
487 res += dists[idx[i]];
488
489 return TMath::Sqrt(res/(to-from));
490 }
491}
492
493// --------------------------------------------------------------------------
494//
495// Calls calc dist. In the case of the first call the covariance matrix
496// fM2 is calculated.
497// - If n<0 it is divided by (nrows-1)/h while h is the kernel factor.
498//
499Double_t MHMatrix::CalcDist(const TVector &evt, Int_t num)
500{
501 if (!fM2.IsValid())
502 {
503 const TMatrix *m = InvertPosDef();
504 if (!m)
505 return -1;
506
507 fM2.ResizeTo(*m);
508 fM2 = *m;
509 fM2 *= fM.GetNrows()-1;
510 delete m;
511 }
512
513 return CalcDist(fM2, evt, num);
514}
515
516// --------------------------------------------------------------------------
517//
518void MHMatrix::Reassign()
519{
520 TMatrix m = fM;
521 fM.ResizeTo(1,1);
522 fM.ResizeTo(m);
523 fM = m;
524}
525
526// --------------------------------------------------------------------------
527//
528// Implementation of SavePrimitive. Used to write the call to a constructor
529// to a macro. In the original root implementation it is used to write
530// gui elements to a macro-file.
531//
532void MHMatrix::StreamPrimitive(ofstream &out) const
533{
534 Bool_t data = fData && !TestBit(kIsOwner);
535
536 if (data)
537 {
538 fData->SavePrimitive(out);
539 out << endl;
540 }
541
542 out << " MHMatrix " << GetUniqueName();
543
544 if (data || fName!=gsDefName || fTitle!=gsDefTitle)
545 {
546 out << "(";
547 if (data)
548 out << "&" << fData->GetUniqueName();
549 if (fName!=gsDefName || fTitle!=gsDefTitle)
550 {
551 if (data)
552 out << ", ";
553 out << "\"" << fName << "\"";
554 if (fTitle!=gsDefTitle)
555 out << ", \"" << fTitle << "\"";
556 }
557 }
558 out << ");" << endl;
559
560 if (fData && TestBit(kIsOwner))
561 for (int i=0; i<fData->GetNumEntries(); i++)
562 out << " " << GetUniqueName() << ".AddColumn(\"" << (*fData)[i].GetRule() << "\");" << endl;
563}
564
565// --------------------------------------------------------------------------
566//
567const TArrayI MHMatrix::GetIndexOfSortedColumn(Int_t ncol, Bool_t desc) const
568{
569 TMatrixColumn col(fM, ncol);
570
571 const Int_t n = fM.GetNrows();
572
573 TArrayF array(n);
574
575 for (int i=0; i<n; i++)
576 array[i] = col(i);
577
578 TArrayI idx(n);
579 TMath::Sort(n, array.GetArray(), idx.GetArray(), desc);
580
581 return idx;
582}
583
584// --------------------------------------------------------------------------
585//
586void MHMatrix::SortMatrixByColumn(Int_t ncol, Bool_t desc)
587{
588 TArrayI idx = GetIndexOfSortedColumn(ncol, desc);
589
590 const Int_t n = fM.GetNrows();
591
592 TMatrix m(n, fM.GetNcols());
593 TVector vold(fM.GetNcols());
594 for (int i=0; i<n; i++)
595 TMatrixRow(m, i) = vold = TMatrixRow(fM, idx[i]);
596
597 fM = m;
598}
599
600// --------------------------------------------------------------------------
601//
602Bool_t MHMatrix::Fill(MParList *plist, MTask *read, MFilter *filter)
603{
604 //
605 // Read data into Matrix
606 //
607 const Bool_t is = plist->IsOwner();
608 plist->SetOwner(kFALSE);
609
610 MTaskList tlist;
611 plist->Replace(&tlist);
612
613 MFillH fillh(this);
614
615 tlist.AddToList(read);
616
617 if (filter)
618 {
619 tlist.AddToList(filter);
620 fillh.SetFilter(filter);
621 }
622
623 tlist.AddToList(&fillh);
624
625 MEvtLoop evtloop;
626 evtloop.SetParList(plist);
627
628 if (!evtloop.Eventloop())
629 return kFALSE;
630
631 plist->Remove(&tlist);
632 plist->SetOwner(is);
633
634 return kTRUE;
635}
636
637// --------------------------------------------------------------------------
638//
639// Return a comma seperated list of all data members used in the matrix.
640// This is mainly used in MTask::AddToBranchList
641//
642TString MHMatrix::GetDataMember() const
643{
644 return fData ? fData->GetDataMember() : TString("");
645}
646
647// --------------------------------------------------------------------------
648//
649//
650void MHMatrix::ReduceNumberOfRows(UInt_t numrows, const TString opt)
651{
652 UInt_t rows = fM.GetNrows();
653
654 if (rows==numrows)
655 {
656 *fLog << warn << "Matrix has already the correct number of rows..." << endl;
657 return;
658 }
659
660 Float_t ratio = (Float_t)numrows/fM.GetNrows();
661
662 if (ratio>=1)
663 {
664 *fLog << warn << "Matrix cannot be enlarged..." << endl;
665 return;
666 }
667
668 Double_t sum = 0;
669
670 UInt_t oldrow = 0;
671 UInt_t newrow = 0;
672
673 TVector vold(fM.GetNcols());
674 while (oldrow<rows)
675 {
676 sum += ratio;
677
678 if (newrow<=(unsigned int)sum)
679 TMatrixRow(fM, newrow++) = vold = TMatrixRow(fM, oldrow);
680
681 oldrow++;
682 }
683}
684
685// ------------------------------------------------------------------------
686//
687// Used in DefRefMatrix to display the result graphically
688//
689void MHMatrix::DrawDefRefInfo(const TH1 &hth, const TH1 &hthd, const TH1 &thsh, Int_t refcolumn)
690{
691 //
692 // Fill a histogram with the distribution after raduction
693 //
694 TH1F hta;
695 hta.SetDirectory(NULL);
696 hta.SetName("hta");
697 hta.SetTitle("Distribution after reduction");
698 SetBinning(&hta, &hth);
699
700 for (Int_t i=0; i<fM.GetNrows(); i++)
701 hta.Fill(fM(i, refcolumn));
702
703 TCanvas *th1 = MakeDefCanvas(this);
704 th1->Divide(2,2);
705
706 th1->cd(1);
707 ((TH1&)hth).DrawCopy(); // real histogram before
708
709 th1->cd(2);
710 ((TH1&)hta).DrawCopy(); // histogram after
711
712 th1->cd(3);
713 ((TH1&)hthd).DrawCopy(); // correction factors
714
715 th1->cd(4);
716 ((TH1&)thsh).DrawCopy(); // target
717}
718
719// ------------------------------------------------------------------------
720//
721// Resizes th etarget matrix to rows*source.GetNcol() and copies
722// the data from the first (n)rows or the source into the target matrix.
723//
724void MHMatrix::CopyCrop(TMatrix &target, const TMatrix &source, Int_t rows)
725{
726 TVector v(source.GetNcols());
727
728 target.ResizeTo(rows, source.GetNcols());
729 for (Int_t ir=0; ir<rows; ir++)
730 TMatrixRow(target, ir) = v = TMatrixRow(source, ir);
731}
732
733// ------------------------------------------------------------------------
734//
735// Define the reference matrix
736// refcolumn number of the column (starting at 0) containing the variable,
737// for which a target distribution may be given;
738// thsh histogram containing the target distribution of the variable
739// nmaxevts maximum number of events in the reference matrix
740// rest a TMatrix conatining the resulting (not choosen)
741// columns of the primary matrix. Maybe NULL if you
742// are not interested in this
743//
744Bool_t MHMatrix::DefRefMatrix(const UInt_t refcolumn, const TH1F &thsh,
745 Int_t nmaxevts, TMatrix *rest)
746{
747 if (!fM.IsValid())
748 {
749 *fLog << err << dbginf << "Matrix not initialized" << endl;
750 return kFALSE;
751 }
752
753 if (thsh.GetMinimum()<0)
754 {
755 *fLog << err << dbginf << "Renormalization not possible: Target Distribution has values < 0" << endl;
756 return kFALSE;
757 }
758
759 if (nmaxevts>fM.GetNrows())
760 {
761 *fLog << dbginf << "Maximum no.of events exceeds no.of events" << endl;
762 *fLog << dbginf << " set Maximum no.of events = no.of events" << endl;
763 nmaxevts = fM.GetNrows();
764 }
765
766 if (nmaxevts<0)
767 {
768 *fLog << err << dbginf << "Number of maximum events < 0" << endl;
769 return kFALSE;
770 }
771
772 if (nmaxevts==0)
773 nmaxevts = fM.GetNrows();
774
775 //
776 // refcol is the column number starting at 0; it is >= 0
777 //
778 // number of the column (count from 0) containing
779 // the variable for which the target distribution is given
780 //
781
782 //
783 // Calculate normalization factors
784 //
785 const int nbins = thsh.GetNbinsX();
786 const double frombin = thsh.GetBinLowEdge(1);
787 const double tobin = thsh.GetBinLowEdge(nbins+1);
788 const double dbin = thsh.GetBinWidth(1);
789 const Int_t nrows = fM.GetNrows();
790 const Int_t ncols = fM.GetNcols();
791
792 //
793 // set up the real histogram (distribution before)
794 //
795 TH1F hth("th", "Distribution before reduction", nbins, frombin, tobin);
796 hth.SetDirectory(NULL);
797 for (Int_t j=0; j<nrows; j++)
798 hth.Fill(fM(j, refcolumn));
799
800 TH1F hthd("thd", "Correction factors", nbins, frombin, tobin);
801 hthd.SetDirectory(NULL);
802 hthd.Divide((TH1F*)&thsh, &hth, 1, 1);
803
804 if (hthd.GetMaximum() <= 0)
805 {
806 *fLog << err << dbginf << "Maximum ratio is LE zero" << endl;
807 return kFALSE;
808 }
809
810 //
811 // ===== obtain correction factors (normalization factors)
812 //
813 hthd.Scale(1/hthd.GetMaximum());
814
815 //
816 // get random access
817 //
818 TArrayI ind(nrows);
819 GetRandomArrayI(ind);
820
821 //
822 // define new matrix
823 //
824 Int_t evtcount1 = -1;
825 Int_t evtcount2 = 0;
826
827 TMatrix mnewtmp(nrows, ncols);
828 TMatrix mrest(nrows, ncols);
829
830 TArrayF cumulweight(nrows); // keep track for each bin how many events
831
832 //
833 // Project values in reference column into [0,1]
834 //
835 TVector v(fM.GetNrows());
836 v = TMatrixColumn(fM, refcolumn);
837 v += -frombin;
838 v *= 1/dbin;
839
840 //
841 // select events (distribution after renormalization)
842 //
843 Int_t ir;
844 TVector vold(fM.GetNcols());
845 for (ir=0; ir<nrows; ir++)
846 {
847 const Int_t indref = (Int_t)v(ind[ir]);
848
849 cumulweight[indref] += hthd.GetBinContent(indref+1);
850 if (cumulweight[indref]<=0.5)
851 {
852 TMatrixRow(mrest, evtcount2++) = vold = TMatrixRow(fM, ind[ir]);
853 continue;
854 }
855
856 cumulweight[indref] -= 1.;
857 if (++evtcount1 >= nmaxevts)
858 break;
859
860 TMatrixRow(mnewtmp, evtcount1) = vold = TMatrixRow(fM, ind[ir]);
861 }
862
863 for (/*empty*/; ir<nrows; ir++)
864 TMatrixRow(mrest, evtcount2++) = vold = TMatrixRow(fM, ind[ir]);
865
866 //
867 // reduce size
868 //
869 // matrix fM having the requested distribution
870 // and the requested number of rows;
871 // this is the matrix to be used in the g/h separation
872 //
873 CopyCrop(fM, mnewtmp, evtcount1);
874 fNumRow = evtcount1;
875
876 if (evtcount1 < nmaxevts)
877 *fLog << warn << "The reference sample contains less events (" << evtcount1 << ") than required (" << nmaxevts << ")" << endl;
878
879 if (TestBit(kEnableGraphicalOutput))
880 DrawDefRefInfo(hth, hthd, thsh, refcolumn);
881
882 if (!rest)
883 return kTRUE;
884
885 CopyCrop(*rest, mrest, evtcount2);
886
887 return kTRUE;
888}
889
890// ------------------------------------------------------------------------
891//
892// Returns a array containing randomly sorted indices
893//
894void MHMatrix::GetRandomArrayI(TArrayI &ind) const
895{
896 const Int_t rows = ind.GetSize();
897
898 TArrayF ranx(rows);
899
900 TRandom3 rnd(0);
901 for (Int_t i=0; i<rows; i++)
902 ranx[i] = rnd.Rndm(i);
903
904 TMath::Sort(rows, ranx.GetArray(), ind.GetArray(), kTRUE);
905}
906
907// ------------------------------------------------------------------------
908//
909// Define the reference matrix
910// nmaxevts maximum number of events in the reference matrix
911// rest a TMatrix conatining the resulting (not choosen)
912// columns of the primary matrix. Maybe NULL if you
913// are not interested in this
914//
915// the target distribution will be set
916// equal to the real distribution; the events in the reference
917// matrix will then be simply a random selection of the events
918// in the original matrix.
919//
920Bool_t MHMatrix::DefRefMatrix(Int_t nmaxevts, TMatrix *rest)
921{
922 if (!fM.IsValid())
923 {
924 *fLog << err << dbginf << "Matrix not initialized" << endl;
925 return kFALSE;
926 }
927
928 if (nmaxevts>fM.GetNrows())
929 {
930 *fLog << dbginf << "Maximum no.of events exceeds no.of events" << endl;
931 *fLog << dbginf << " set Maximum no.of events = no.of events" << endl;
932 nmaxevts = fM.GetNrows();
933 }
934
935 if (nmaxevts<0)
936 {
937 *fLog << err << dbginf << "Number of maximum events < 0" << endl;
938 return kFALSE;
939 }
940
941 if (nmaxevts==0)
942 nmaxevts = fM.GetNrows();
943
944 const Int_t nrows = fM.GetNrows();
945 const Int_t ncols = fM.GetNcols();
946
947 //
948 // get random access
949 //
950 TArrayI ind(nrows);
951 GetRandomArrayI(ind);
952
953 //
954 // define new matrix
955 //
956 Int_t evtcount1 = 0;
957 Int_t evtcount2 = 0;
958
959 TMatrix mnewtmp(nrows, ncols);
960 TMatrix mrest(nrows, ncols);
961
962 //
963 // select events (distribution after renormalization)
964 //
965 TVector vold(fM.GetNcols());
966 for (Int_t ir=0; ir<nmaxevts; ir++)
967 TMatrixRow(mnewtmp, evtcount1++) = vold = TMatrixRow(fM, ind[ir]);
968
969 for (Int_t ir=nmaxevts; ir<nrows; ir++)
970 TMatrixRow(mrest, evtcount2++) = vold = TMatrixRow(fM, ind[ir]);
971
972 //
973 // reduce size
974 //
975 // matrix fM having the requested distribution
976 // and the requested number of rows;
977 // this is the matrix to be used in the g/h separation
978 //
979 CopyCrop(fM, mnewtmp, evtcount1);
980 fNumRow = evtcount1;
981
982 if (evtcount1 < nmaxevts)
983 *fLog << warn << "The reference sample contains less events (" << evtcount1 << ") than required (" << nmaxevts << ")" << endl;
984
985 if (!rest)
986 return kTRUE;
987
988 CopyCrop(*rest, mrest, evtcount2);
989
990 return kTRUE;
991}
992
993// --------------------------------------------------------------------------
994//
995// overload TOject member function read
996// in order to reset the name of the object read
997//
998Int_t MHMatrix::Read(const char *name)
999{
1000 Int_t ret = TObject::Read(name);
1001 SetName(name);
1002
1003 return ret;
1004}
1005
1006// --------------------------------------------------------------------------
1007//
1008// Read the setup from a TEnv:
1009// Column0, Column1, Column2, ..., Column10, ..., Column100, ...
1010//
1011// Searching stops if the first key isn't found in the TEnv. Empty
1012// columns are not allowed
1013//
1014// eg.
1015// MHMatrix.Column0: cos(MMcEvt.fTelescopeTheta)
1016// MHMatrix.Column1: MHillasSrc.fAlpha
1017//
1018Bool_t MHMatrix::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
1019{
1020 if (fM.IsValid())
1021 {
1022 *fLog << err << "ERROR - matrix is already in use. Can't add a new column from TEnv... skipped." << endl;
1023 return kERROR;
1024 }
1025
1026 if (TestBit(kIsLocked))
1027 {
1028 *fLog << err << "ERROR - matrix is locked. Can't add new column from TEnv... skipped." << endl;
1029 return kERROR;
1030 }
1031
1032 //
1033 // Search (beginning with 0) all keys
1034 //
1035 int i=0;
1036 while (1)
1037 {
1038 TString idx = "Column";
1039 idx += i;
1040
1041 // Output if print set to kTRUE
1042 if (!IsEnvDefined(env, prefix, idx, print))
1043 break;
1044
1045 // Try to get the file name
1046 TString name = GetEnvValue(env, prefix, idx, "");
1047 if (name.IsNull())
1048 {
1049 *fLog << warn << prefix+"."+idx << " empty." << endl;
1050 continue;
1051 }
1052
1053 if (i==0)
1054 if (fData)
1055 {
1056 *fLog << inf << "Removing all existing columns in " << GetDescriptor() << endl;
1057 fData->Delete();
1058 }
1059 else
1060 {
1061 fData = new MDataArray;
1062 SetBit(kIsOwner);
1063 }
1064
1065 fData->AddEntry(name);
1066 i++;
1067 }
1068
1069 return i!=0;
1070}
Note: See TracBrowser for help on using the repository browser.