1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 2002 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | ! Rudy Boeck 2003 <mailto:
|
---|
20 | ! Wolfgang Wittek2003 <mailto:wittek@mppmu.mpg.de>
|
---|
21 | !
|
---|
22 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
23 | !
|
---|
24 | !
|
---|
25 | \* ======================================================================== */
|
---|
26 |
|
---|
27 | /////////////////////////////////////////////////////////////////////////////
|
---|
28 | //
|
---|
29 | // MHMatrix
|
---|
30 | //
|
---|
31 | // This is a histogram container which holds a matrix with one column per
|
---|
32 | // data variable. The data variable can be a complex rule (MDataChain).
|
---|
33 | // Each event for wich Fill is called (by MFillH) is added as a new
|
---|
34 | // row to the matrix.
|
---|
35 | //
|
---|
36 | // For example:
|
---|
37 | // MHMatrix m;
|
---|
38 | // m.AddColumn("MHillas.fSize");
|
---|
39 | // m.AddColumn("MMcEvt.fImpact/100");
|
---|
40 | // m.AddColumn("HillasSource.fDist*MGeomCam.fConvMm2Deg");
|
---|
41 | // MFillH fillm(&m);
|
---|
42 | // taskliost.AddToList(&fillm);
|
---|
43 | // [...]
|
---|
44 | // m.Print();
|
---|
45 | //
|
---|
46 | /////////////////////////////////////////////////////////////////////////////
|
---|
47 | #include "MHMatrix.h"
|
---|
48 |
|
---|
49 | #include <fstream.h>
|
---|
50 |
|
---|
51 | #include <TList.h>
|
---|
52 | #include <TArrayF.h>
|
---|
53 | #include <TArrayD.h>
|
---|
54 | #include <TArrayI.h>
|
---|
55 |
|
---|
56 | #include <TH1.h>
|
---|
57 | #include <TCanvas.h>
|
---|
58 | #include <TRandom3.h>
|
---|
59 |
|
---|
60 | #include "MLog.h"
|
---|
61 | #include "MLogManip.h"
|
---|
62 |
|
---|
63 | #include "MFillH.h"
|
---|
64 | #include "MEvtLoop.h"
|
---|
65 | #include "MParList.h"
|
---|
66 | #include "MTaskList.h"
|
---|
67 |
|
---|
68 | #include "MData.h"
|
---|
69 | #include "MDataArray.h"
|
---|
70 | #include "MF.h"
|
---|
71 |
|
---|
72 |
|
---|
73 | ClassImp(MHMatrix);
|
---|
74 |
|
---|
75 | const TString MHMatrix::gsDefName = "MHMatrix";
|
---|
76 | const TString MHMatrix::gsDefTitle = "Multidimensional Matrix";
|
---|
77 |
|
---|
78 | // --------------------------------------------------------------------------
|
---|
79 | //
|
---|
80 | // Default Constructor
|
---|
81 | //
|
---|
82 | MHMatrix::MHMatrix(const char *name, const char *title)
|
---|
83 | : fNumRow(0), fData(NULL)
|
---|
84 | {
|
---|
85 | fName = name ? name : gsDefName.Data();
|
---|
86 | fTitle = title ? title : gsDefTitle.Data();
|
---|
87 | }
|
---|
88 |
|
---|
89 | // --------------------------------------------------------------------------
|
---|
90 | //
|
---|
91 | // Default Constructor
|
---|
92 | //
|
---|
93 | MHMatrix::MHMatrix(const TMatrix &m, const char *name, const char *title)
|
---|
94 | : fNumRow(m.GetNrows()), fM(m), fData(NULL)
|
---|
95 | {
|
---|
96 | fName = name ? name : gsDefName.Data();
|
---|
97 | fTitle = title ? title : gsDefTitle.Data();
|
---|
98 | }
|
---|
99 |
|
---|
100 | // --------------------------------------------------------------------------
|
---|
101 | //
|
---|
102 | // Constructor. Initializes the columns of the matrix with the entries
|
---|
103 | // from a MDataArray
|
---|
104 | //
|
---|
105 | MHMatrix::MHMatrix(MDataArray *mat, const char *name, const char *title)
|
---|
106 | : fNumRow(0), fData(mat)
|
---|
107 | {
|
---|
108 | fName = name ? name : gsDefName.Data();
|
---|
109 | fTitle = title ? title : gsDefTitle.Data();
|
---|
110 | }
|
---|
111 |
|
---|
112 | // --------------------------------------------------------------------------
|
---|
113 | //
|
---|
114 | // Destructor. Does not deleted a user given MDataArray, except IsOwner
|
---|
115 | // was called.
|
---|
116 | //
|
---|
117 | MHMatrix::~MHMatrix()
|
---|
118 | {
|
---|
119 | if (TestBit(kIsOwner) && fData)
|
---|
120 | delete fData;
|
---|
121 | }
|
---|
122 |
|
---|
123 | // --------------------------------------------------------------------------
|
---|
124 | //
|
---|
125 | // Add a new column to the matrix. This can only be done before the first
|
---|
126 | // event (row) was filled into the matrix. For the syntax of the rule
|
---|
127 | // see MDataChain.
|
---|
128 | // Returns the index of the new column, -1 in case of failure.
|
---|
129 | // (0, 1, 2, ... for the 1st, 2nd, 3rd, ...)
|
---|
130 | //
|
---|
131 | Int_t MHMatrix::AddColumn(const char *rule)
|
---|
132 | {
|
---|
133 | if (fM.IsValid())
|
---|
134 | {
|
---|
135 | *fLog << warn << "Warning - matrix is already in use. Can't add a new column... skipped." << endl;
|
---|
136 | return -1;
|
---|
137 | }
|
---|
138 |
|
---|
139 | if (TestBit(kIsLocked))
|
---|
140 | {
|
---|
141 | *fLog << warn << "Warning - matrix is locked. Can't add new column... skipped." << endl;
|
---|
142 | return -1;
|
---|
143 | }
|
---|
144 |
|
---|
145 | if (!fData)
|
---|
146 | {
|
---|
147 | fData = new MDataArray;
|
---|
148 | SetBit(kIsOwner);
|
---|
149 | }
|
---|
150 |
|
---|
151 | fData->AddEntry(rule);
|
---|
152 | return fData->GetNumEntries()-1;
|
---|
153 | }
|
---|
154 |
|
---|
155 | // --------------------------------------------------------------------------
|
---|
156 | //
|
---|
157 | void MHMatrix::AddColumns(MDataArray *matrix)
|
---|
158 | {
|
---|
159 | if (fM.IsValid())
|
---|
160 | {
|
---|
161 | *fLog << warn << "Warning - matrix is already in use. Can't add new columns... skipped." << endl;
|
---|
162 | return;
|
---|
163 | }
|
---|
164 |
|
---|
165 | if (TestBit(kIsLocked))
|
---|
166 | {
|
---|
167 | *fLog << warn << "Warning - matrix is locked. Can't add new columns... skipped." << endl;
|
---|
168 | return;
|
---|
169 | }
|
---|
170 |
|
---|
171 | if (fData)
|
---|
172 | *fLog << warn << "Warning - columns already added... replacing." << endl;
|
---|
173 |
|
---|
174 | if (fData && TestBit(kIsOwner))
|
---|
175 | {
|
---|
176 | delete fData;
|
---|
177 | ResetBit(kIsOwner);
|
---|
178 | }
|
---|
179 |
|
---|
180 | fData = matrix;
|
---|
181 | }
|
---|
182 |
|
---|
183 | // --------------------------------------------------------------------------
|
---|
184 | //
|
---|
185 | // Checks whether at least one column is available and PreProcesses all
|
---|
186 | // data chains.
|
---|
187 | //
|
---|
188 | Bool_t MHMatrix::SetupFill(const MParList *plist)
|
---|
189 | {
|
---|
190 | if (!fData)
|
---|
191 | {
|
---|
192 | *fLog << err << "Error - No Columns initialized... aborting." << endl;
|
---|
193 | return kFALSE;
|
---|
194 | }
|
---|
195 |
|
---|
196 | return fData->PreProcess(plist);
|
---|
197 | }
|
---|
198 |
|
---|
199 | // --------------------------------------------------------------------------
|
---|
200 | //
|
---|
201 | // If the matrix has not enough rows double the number of available rows.
|
---|
202 | //
|
---|
203 | void MHMatrix::AddRow()
|
---|
204 | {
|
---|
205 | fNumRow++;
|
---|
206 |
|
---|
207 | if (fM.GetNrows() > fNumRow)
|
---|
208 | return;
|
---|
209 |
|
---|
210 | if (!fM.IsValid())
|
---|
211 | {
|
---|
212 | fM.ResizeTo(1, fData->GetNumEntries());
|
---|
213 | return;
|
---|
214 | }
|
---|
215 |
|
---|
216 | TMatrix m(fM);
|
---|
217 |
|
---|
218 | fM.ResizeTo(fM.GetNrows()*2, fData->GetNumEntries());
|
---|
219 |
|
---|
220 | TVector vold(fM.GetNcols());
|
---|
221 | for (int x=0; x<m.GetNrows(); x++)
|
---|
222 | TMatrixRow(fM, x) = vold = TMatrixRow(m, x);
|
---|
223 | }
|
---|
224 |
|
---|
225 | // --------------------------------------------------------------------------
|
---|
226 | //
|
---|
227 | // Add the values correspoding to the columns to the new row
|
---|
228 | //
|
---|
229 | Bool_t MHMatrix::Fill(const MParContainer *par)
|
---|
230 | {
|
---|
231 | AddRow();
|
---|
232 |
|
---|
233 | for (int col=0; col<fData->GetNumEntries(); col++)
|
---|
234 | fM(fNumRow-1, col) = (*fData)(col);
|
---|
235 |
|
---|
236 | return kTRUE;
|
---|
237 | }
|
---|
238 |
|
---|
239 | // --------------------------------------------------------------------------
|
---|
240 | //
|
---|
241 | // Resize the matrix to a number of rows which corresponds to the number of
|
---|
242 | // rows which have really been filled with values.
|
---|
243 | //
|
---|
244 | Bool_t MHMatrix::Finalize()
|
---|
245 | {
|
---|
246 | //
|
---|
247 | // It's not a fatal error so we don't need to stop PostProcessing...
|
---|
248 | //
|
---|
249 | if (fData->GetNumEntries()==0 || fNumRow<1)
|
---|
250 | return kTRUE;
|
---|
251 |
|
---|
252 | TMatrix m(fM);
|
---|
253 |
|
---|
254 | fM.ResizeTo(fNumRow, fData->GetNumEntries());
|
---|
255 |
|
---|
256 | TVector vold(fM.GetNcols());
|
---|
257 | for (int x=0; x<fM.GetNrows(); x++)
|
---|
258 | TMatrixRow(fM, x) = vold = TMatrixRow(m, x);
|
---|
259 |
|
---|
260 | return kTRUE;
|
---|
261 | }
|
---|
262 | /*
|
---|
263 | // --------------------------------------------------------------------------
|
---|
264 | //
|
---|
265 | // Draw clone of histogram. So that the object can be deleted
|
---|
266 | // and the histogram is still visible in the canvas.
|
---|
267 | // The cloned object are deleted together with the canvas if the canvas is
|
---|
268 | // destroyed. If you want to handle destroying the canvas you can get a
|
---|
269 | // pointer to it from this function
|
---|
270 | //
|
---|
271 | TObject *MHMatrix::DrawClone(Option_t *opt) const
|
---|
272 | {
|
---|
273 | TCanvas &c = *MH::MakeDefCanvas(fHist);
|
---|
274 |
|
---|
275 | //
|
---|
276 | // This is necessary to get the expected bahviour of DrawClone
|
---|
277 | //
|
---|
278 | gROOT->SetSelectedPad(NULL);
|
---|
279 |
|
---|
280 | fHist->DrawCopy(opt);
|
---|
281 |
|
---|
282 | TString str(opt);
|
---|
283 | if (str.Contains("PROFX", TString::kIgnoreCase) && fDimension==2)
|
---|
284 | {
|
---|
285 | TProfile *p = ((TH2*)fHist)->ProfileX();
|
---|
286 | p->Draw("same");
|
---|
287 | p->SetBit(kCanDelete);
|
---|
288 | }
|
---|
289 | if (str.Contains("PROFY", TString::kIgnoreCase) && fDimension==2)
|
---|
290 | {
|
---|
291 | TProfile *p = ((TH2*)fHist)->ProfileY();
|
---|
292 | p->Draw("same");
|
---|
293 | p->SetBit(kCanDelete);
|
---|
294 | }
|
---|
295 |
|
---|
296 | c.Modified();
|
---|
297 | c.Update();
|
---|
298 |
|
---|
299 | return &c;
|
---|
300 | }
|
---|
301 |
|
---|
302 | // --------------------------------------------------------------------------
|
---|
303 | //
|
---|
304 | // Creates a new canvas and draws the histogram into it.
|
---|
305 | // Be careful: The histogram belongs to this object and won't get deleted
|
---|
306 | // together with the canvas.
|
---|
307 | //
|
---|
308 | void MHMatrix::Draw(Option_t *opt)
|
---|
309 | {
|
---|
310 | if (!gPad)
|
---|
311 | MH::MakeDefCanvas(fHist);
|
---|
312 |
|
---|
313 | fHist->Draw(opt);
|
---|
314 |
|
---|
315 | TString str(opt);
|
---|
316 | if (str.Contains("PROFX", TString::kIgnoreCase) && fDimension==2)
|
---|
317 | {
|
---|
318 | TProfile *p = ((TH2*)fHist)->ProfileX();
|
---|
319 | p->Draw("same");
|
---|
320 | p->SetBit(kCanDelete);
|
---|
321 | }
|
---|
322 | if (str.Contains("PROFY", TString::kIgnoreCase) && fDimension==2)
|
---|
323 | {
|
---|
324 | TProfile *p = ((TH2*)fHist)->ProfileY();
|
---|
325 | p->Draw("same");
|
---|
326 | p->SetBit(kCanDelete);
|
---|
327 | }
|
---|
328 |
|
---|
329 | gPad->Modified();
|
---|
330 | gPad->Update();
|
---|
331 | }
|
---|
332 | */
|
---|
333 |
|
---|
334 | // --------------------------------------------------------------------------
|
---|
335 | //
|
---|
336 | // Prints the meaning of the columns and the contents of the matrix.
|
---|
337 | // Becareful, this can take a long time for matrices with many rows.
|
---|
338 | // Use the option 'size' to print the size of the matrix.
|
---|
339 | // Use the option 'cols' to print the culumns
|
---|
340 | // Use the option 'data' to print the contents
|
---|
341 | //
|
---|
342 | void MHMatrix::Print(Option_t *o) const
|
---|
343 | {
|
---|
344 | TString str(o);
|
---|
345 |
|
---|
346 | *fLog << all << flush;
|
---|
347 |
|
---|
348 | if (str.Contains("size", TString::kIgnoreCase))
|
---|
349 | {
|
---|
350 | *fLog << GetDescriptor() << ": NumColumns=" << fM.GetNcols();
|
---|
351 | *fLog << " NumRows=" << fM.GetNrows() << endl;
|
---|
352 | }
|
---|
353 |
|
---|
354 | if (!fData && str.Contains("cols", TString::kIgnoreCase))
|
---|
355 | *fLog << "Sorry, no column information available." << endl;
|
---|
356 |
|
---|
357 | if (fData && str.Contains("cols", TString::kIgnoreCase))
|
---|
358 | fData->Print();
|
---|
359 |
|
---|
360 | if (str.Contains("data", TString::kIgnoreCase))
|
---|
361 | fM.Print();
|
---|
362 | }
|
---|
363 |
|
---|
364 | // --------------------------------------------------------------------------
|
---|
365 | //
|
---|
366 | const TMatrix *MHMatrix::InvertPosDef()
|
---|
367 | {
|
---|
368 | TMatrix m(fM);
|
---|
369 |
|
---|
370 | const Int_t rows = m.GetNrows();
|
---|
371 | const Int_t cols = m.GetNcols();
|
---|
372 |
|
---|
373 | for (int x=0; x<cols; x++)
|
---|
374 | {
|
---|
375 | Double_t avg = 0;
|
---|
376 | for (int y=0; y<rows; y++)
|
---|
377 | avg += fM(y, x);
|
---|
378 |
|
---|
379 | avg /= rows;
|
---|
380 |
|
---|
381 | TMatrixColumn(m, x) += -avg;
|
---|
382 | }
|
---|
383 |
|
---|
384 | TMatrix *m2 = new TMatrix(m, TMatrix::kTransposeMult, m);
|
---|
385 |
|
---|
386 | Double_t det;
|
---|
387 | m2->Invert(&det);
|
---|
388 | if (det==0)
|
---|
389 | {
|
---|
390 | *fLog << err << "ERROR - MHMatrix::InvertPosDef failed (Matrix is singular)." << endl;
|
---|
391 | delete m2;
|
---|
392 | return NULL;
|
---|
393 | }
|
---|
394 |
|
---|
395 | // m2->Print();
|
---|
396 |
|
---|
397 | return m2;
|
---|
398 | }
|
---|
399 |
|
---|
400 | // --------------------------------------------------------------------------
|
---|
401 | //
|
---|
402 | // Calculated the distance of vector evt from the reference sample
|
---|
403 | // represented by the covariance metrix m.
|
---|
404 | // - If n<0 the kernel method is applied and
|
---|
405 | // -log(sum(epx(-d/h))/n) is returned.
|
---|
406 | // - For n>0 the n nearest neighbors are summed and
|
---|
407 | // sqrt(sum(d)/n) is returned.
|
---|
408 | // - if n==0 all distances are summed
|
---|
409 | //
|
---|
410 | Double_t MHMatrix::CalcDist(const TMatrix &m, const TVector &evt, Int_t num) const
|
---|
411 | {
|
---|
412 | if (num==0) // may later be used for another method
|
---|
413 | {
|
---|
414 | TVector d = evt;
|
---|
415 | d *= m;
|
---|
416 | return TMath::Sqrt(d*evt);
|
---|
417 | }
|
---|
418 |
|
---|
419 | const Int_t rows = fM.GetNrows();
|
---|
420 | const Int_t cols = fM.GetNcols();
|
---|
421 |
|
---|
422 | TArrayD dists(rows);
|
---|
423 |
|
---|
424 | //
|
---|
425 | // Calculate: v^T * M * v
|
---|
426 | //
|
---|
427 | for (int i=0; i<rows; i++)
|
---|
428 | {
|
---|
429 | TVector col(cols);
|
---|
430 | col = TMatrixRow(fM, i);
|
---|
431 |
|
---|
432 | TVector d = evt;
|
---|
433 | d -= col;
|
---|
434 |
|
---|
435 | TVector d2 = d;
|
---|
436 | d2 *= m;
|
---|
437 |
|
---|
438 | dists[i] = d2*d; // square of distance
|
---|
439 |
|
---|
440 | //
|
---|
441 | // This corrects for numerical uncertanties in cases of very
|
---|
442 | // small distances...
|
---|
443 | //
|
---|
444 | if (dists[i]<0)
|
---|
445 | dists[i]=0;
|
---|
446 | }
|
---|
447 |
|
---|
448 | TArrayI idx(rows);
|
---|
449 | TMath::Sort(dists.GetSize(), dists.GetArray(), idx.GetArray(), kFALSE);
|
---|
450 |
|
---|
451 | Int_t from = 0;
|
---|
452 | Int_t to = TMath::Abs(num)<rows ? TMath::Abs(num) : rows;
|
---|
453 | //
|
---|
454 | // This is a zero-suppression for the case a test- and trainings
|
---|
455 | // sample is identical. This would result in an unwanted leading
|
---|
456 | // zero in the array. To suppress also numerical uncertanties of
|
---|
457 | // zero we cut at 1e-5. Due to Rudy this should be enough. If
|
---|
458 | // you encounter problems we can also use (eg) 1e-25
|
---|
459 | //
|
---|
460 | if (dists[idx[0]]<1e-5)
|
---|
461 | {
|
---|
462 | from++;
|
---|
463 | to ++;
|
---|
464 | if (to>rows)
|
---|
465 | to = rows;
|
---|
466 | }
|
---|
467 |
|
---|
468 | if (num<0)
|
---|
469 | {
|
---|
470 | //
|
---|
471 | // Kernel function sum (window size h set according to literature)
|
---|
472 | //
|
---|
473 | const Double_t h = TMath::Power(rows, -1./(cols+4));
|
---|
474 | const Double_t hwin = h*h*2;
|
---|
475 |
|
---|
476 | Double_t res = 0;
|
---|
477 | for (int i=from; i<to; i++)
|
---|
478 | res += TMath::Exp(-dists[idx[i]]/hwin);
|
---|
479 |
|
---|
480 | return -TMath::Log(res/(to-from));
|
---|
481 | }
|
---|
482 | else
|
---|
483 | {
|
---|
484 | //
|
---|
485 | // Nearest Neighbor sum
|
---|
486 | //
|
---|
487 | Double_t res = 0;
|
---|
488 | for (int i=from; i<to; i++)
|
---|
489 | res += dists[idx[i]];
|
---|
490 |
|
---|
491 | return TMath::Sqrt(res/(to-from));
|
---|
492 | }
|
---|
493 | }
|
---|
494 |
|
---|
495 | // --------------------------------------------------------------------------
|
---|
496 | //
|
---|
497 | // Calls calc dist. In the case of the first call the covariance matrix
|
---|
498 | // fM2 is calculated.
|
---|
499 | // - If n<0 it is divided by (nrows-1)/h while h is the kernel factor.
|
---|
500 | //
|
---|
501 | Double_t MHMatrix::CalcDist(const TVector &evt, Int_t num)
|
---|
502 | {
|
---|
503 | if (!fM2.IsValid())
|
---|
504 | {
|
---|
505 | const TMatrix *m = InvertPosDef();
|
---|
506 | if (!m)
|
---|
507 | return -1;
|
---|
508 |
|
---|
509 | fM2.ResizeTo(*m);
|
---|
510 | fM2 = *m;
|
---|
511 | fM2 *= fM.GetNrows()-1;
|
---|
512 | delete m;
|
---|
513 | }
|
---|
514 |
|
---|
515 | return CalcDist(fM2, evt, num);
|
---|
516 | }
|
---|
517 |
|
---|
518 | // --------------------------------------------------------------------------
|
---|
519 | //
|
---|
520 | void MHMatrix::Reassign()
|
---|
521 | {
|
---|
522 | TMatrix m = fM;
|
---|
523 | fM.ResizeTo(1,1);
|
---|
524 | fM.ResizeTo(m);
|
---|
525 | fM = m;
|
---|
526 | }
|
---|
527 |
|
---|
528 | // --------------------------------------------------------------------------
|
---|
529 | //
|
---|
530 | // Implementation of SavePrimitive. Used to write the call to a constructor
|
---|
531 | // to a macro. In the original root implementation it is used to write
|
---|
532 | // gui elements to a macro-file.
|
---|
533 | //
|
---|
534 | void MHMatrix::StreamPrimitive(ofstream &out) const
|
---|
535 | {
|
---|
536 | Bool_t data = fData && !TestBit(kIsOwner);
|
---|
537 |
|
---|
538 | if (data)
|
---|
539 | {
|
---|
540 | fData->SavePrimitive(out);
|
---|
541 | out << endl;
|
---|
542 | }
|
---|
543 |
|
---|
544 | out << " MHMatrix " << GetUniqueName();
|
---|
545 |
|
---|
546 | if (data || fName!=gsDefName || fTitle!=gsDefTitle)
|
---|
547 | {
|
---|
548 | out << "(";
|
---|
549 | if (data)
|
---|
550 | out << "&" << fData->GetUniqueName();
|
---|
551 | if (fName!=gsDefName || fTitle!=gsDefTitle)
|
---|
552 | {
|
---|
553 | if (data)
|
---|
554 | out << ", ";
|
---|
555 | out << "\"" << fName << "\"";
|
---|
556 | if (fTitle!=gsDefTitle)
|
---|
557 | out << ", \"" << fTitle << "\"";
|
---|
558 | }
|
---|
559 | }
|
---|
560 | out << ");" << endl;
|
---|
561 |
|
---|
562 | if (fData && TestBit(kIsOwner))
|
---|
563 | for (int i=0; i<fData->GetNumEntries(); i++)
|
---|
564 | out << " " << GetUniqueName() << ".AddColumn(\"" << (*fData)[i].GetRule() << "\");" << endl;
|
---|
565 | }
|
---|
566 |
|
---|
567 | // --------------------------------------------------------------------------
|
---|
568 | //
|
---|
569 | const TArrayI MHMatrix::GetIndexOfSortedColumn(Int_t ncol, Bool_t desc) const
|
---|
570 | {
|
---|
571 | TMatrixColumn col(fM, ncol);
|
---|
572 |
|
---|
573 | const Int_t n = fM.GetNrows();
|
---|
574 |
|
---|
575 | TArrayF array(n);
|
---|
576 |
|
---|
577 | for (int i=0; i<n; i++)
|
---|
578 | array[i] = col(i);
|
---|
579 |
|
---|
580 | TArrayI idx(n);
|
---|
581 | TMath::Sort(n, array.GetArray(), idx.GetArray(), desc);
|
---|
582 |
|
---|
583 | return idx;
|
---|
584 | }
|
---|
585 |
|
---|
586 | // --------------------------------------------------------------------------
|
---|
587 | //
|
---|
588 | void MHMatrix::SortMatrixByColumn(Int_t ncol, Bool_t desc)
|
---|
589 | {
|
---|
590 | TArrayI idx = GetIndexOfSortedColumn(ncol, desc);
|
---|
591 |
|
---|
592 | const Int_t n = fM.GetNrows();
|
---|
593 |
|
---|
594 | TMatrix m(n, fM.GetNcols());
|
---|
595 | TVector vold(fM.GetNcols());
|
---|
596 | for (int i=0; i<n; i++)
|
---|
597 | TMatrixRow(m, i) = vold = TMatrixRow(fM, idx[i]);
|
---|
598 |
|
---|
599 | fM = m;
|
---|
600 | }
|
---|
601 |
|
---|
602 | // --------------------------------------------------------------------------
|
---|
603 | //
|
---|
604 | Bool_t MHMatrix::Fill(MParList *plist, MTask *read, MF *filter)
|
---|
605 | {
|
---|
606 | //
|
---|
607 | // Read data into Matrix
|
---|
608 | //
|
---|
609 | const Bool_t is = plist->IsOwner();
|
---|
610 | plist->SetOwner(kFALSE);
|
---|
611 |
|
---|
612 | MTaskList tlist;
|
---|
613 | plist->Replace(&tlist);
|
---|
614 |
|
---|
615 | MFillH fillh(this);
|
---|
616 |
|
---|
617 | tlist.AddToList(read);
|
---|
618 |
|
---|
619 | if (filter)
|
---|
620 | {
|
---|
621 | tlist.AddToList(filter);
|
---|
622 | fillh.SetFilter(filter);
|
---|
623 | }
|
---|
624 |
|
---|
625 | tlist.AddToList(&fillh);
|
---|
626 |
|
---|
627 | MEvtLoop evtloop;
|
---|
628 | evtloop.SetParList(plist);
|
---|
629 |
|
---|
630 | if (!evtloop.Eventloop())
|
---|
631 | return kFALSE;
|
---|
632 |
|
---|
633 | plist->Remove(&tlist);
|
---|
634 | plist->SetOwner(is);
|
---|
635 |
|
---|
636 | return kTRUE;
|
---|
637 | }
|
---|
638 |
|
---|
639 | // --------------------------------------------------------------------------
|
---|
640 | //
|
---|
641 | // Return a comma seperated list of all data members used in the matrix.
|
---|
642 | // This is mainly used in MTask::AddToBranchList
|
---|
643 | //
|
---|
644 | TString MHMatrix::GetDataMember() const
|
---|
645 | {
|
---|
646 | return fData ? fData->GetDataMember() : TString("");
|
---|
647 | }
|
---|
648 |
|
---|
649 | // --------------------------------------------------------------------------
|
---|
650 | //
|
---|
651 | //
|
---|
652 | void MHMatrix::ReduceNumberOfRows(UInt_t numrows, const TString opt)
|
---|
653 | {
|
---|
654 | UInt_t rows = fM.GetNrows();
|
---|
655 |
|
---|
656 | if (rows==numrows)
|
---|
657 | {
|
---|
658 | *fLog << warn << "Matrix has already the correct number of rows..." << endl;
|
---|
659 | return;
|
---|
660 | }
|
---|
661 |
|
---|
662 | Float_t ratio = (Float_t)numrows/fM.GetNrows();
|
---|
663 |
|
---|
664 | if (ratio>=1)
|
---|
665 | {
|
---|
666 | *fLog << warn << "Matrix cannot be enlarged..." << endl;
|
---|
667 | return;
|
---|
668 | }
|
---|
669 |
|
---|
670 | Double_t sum = 0;
|
---|
671 |
|
---|
672 | UInt_t oldrow = 0;
|
---|
673 | UInt_t newrow = 0;
|
---|
674 |
|
---|
675 | TVector vold(fM.GetNcols());
|
---|
676 | while (oldrow<rows)
|
---|
677 | {
|
---|
678 | sum += ratio;
|
---|
679 |
|
---|
680 | if (newrow<=(unsigned int)sum)
|
---|
681 | TMatrixRow(fM, newrow++) = vold = TMatrixRow(fM, oldrow);
|
---|
682 |
|
---|
683 | oldrow++;
|
---|
684 | }
|
---|
685 | }
|
---|
686 |
|
---|
687 | // ------------------------------------------------------------------------
|
---|
688 | //
|
---|
689 | // Define the reference matrix
|
---|
690 | // refcolumn number of the column (starting at 1)containing the variable,
|
---|
691 | // for which a target distribution may be given;
|
---|
692 | // if refcolumn is negative the target distribution will be set
|
---|
693 | // equal to the real distribution; the events in the reference
|
---|
694 | // matrix will then be simply a random selection of the events
|
---|
695 | // in the original matrix.
|
---|
696 | // thsh histogram containing the target distribution of the variable
|
---|
697 | // nmaxevts maximum number of events in the reference matrix
|
---|
698 | // rest a TMatrix conatining the resulting (not choosen)
|
---|
699 | // columns of the primary matrix. Maybe NULL if you
|
---|
700 | // are not interested in this
|
---|
701 | //
|
---|
702 | Bool_t MHMatrix::DefRefMatrix(const UInt_t refcolumn, const TH1F &thsh,
|
---|
703 | Int_t nmaxevts, TMatrix *rest)
|
---|
704 | {
|
---|
705 | if (!fM.IsValid())
|
---|
706 | {
|
---|
707 | *fLog << err << dbginf << "Matrix not initialized" << endl;
|
---|
708 | return kFALSE;
|
---|
709 | }
|
---|
710 |
|
---|
711 | if (refcolumn==0)
|
---|
712 | {
|
---|
713 | *fLog << err << dbginf << "Reference column 0 unknown." << endl;
|
---|
714 | return kFALSE;
|
---|
715 | }
|
---|
716 |
|
---|
717 | if (thsh.GetMinimum()<0)
|
---|
718 | {
|
---|
719 | *fLog << err << dbginf << "Renormalization not possible: Target Distribution has values < 0" << endl;
|
---|
720 | return kFALSE;
|
---|
721 | }
|
---|
722 |
|
---|
723 | if (nmaxevts>fM.GetNrows())
|
---|
724 | {
|
---|
725 | *fLog << err << dbginf << "Number of maximum events exceeds number of events" << endl;
|
---|
726 | return kFALSE;
|
---|
727 | }
|
---|
728 |
|
---|
729 | if (nmaxevts<0)
|
---|
730 | {
|
---|
731 | *fLog << err << dbginf << "Number of maximum events < 0" << endl;
|
---|
732 | return kFALSE;
|
---|
733 | }
|
---|
734 |
|
---|
735 | if (nmaxevts==0)
|
---|
736 | nmaxevts = fM.GetNrows();
|
---|
737 |
|
---|
738 | //
|
---|
739 | // if refcolumn < 0 : select reference events randomly
|
---|
740 | // i.e. set the normaliztion factotrs equal to 1.0
|
---|
741 | // refcol is the column number starting at 0; it is >= 0
|
---|
742 | //
|
---|
743 | // number of the column (count from 0) containing
|
---|
744 | // the variable for which the target distribution is given
|
---|
745 | //
|
---|
746 |
|
---|
747 | //
|
---|
748 | // Calculate normalization factors
|
---|
749 | //
|
---|
750 | const int nbins = thsh.GetNbinsX();
|
---|
751 | const double frombin = thsh.GetBinLowEdge(1);
|
---|
752 | const double tobin = thsh.GetBinLowEdge(nbins+1);
|
---|
753 | const double dbin = thsh.GetBinWidth(1);
|
---|
754 | const Int_t nrows = fM.GetNrows();
|
---|
755 | const Int_t ncols = fM.GetNcols();
|
---|
756 |
|
---|
757 | //
|
---|
758 | // set up the real histogram (distribution before)
|
---|
759 | //
|
---|
760 | TH1F hth("th", "data at input", nbins, frombin, tobin);
|
---|
761 | for (Int_t j=0; j<nrows; j++)
|
---|
762 | hth.Fill(fM(j, refcolumn-1));
|
---|
763 |
|
---|
764 | hth.DrawCopy();
|
---|
765 |
|
---|
766 | TH1F hthd("thd", "correction factors", nbins, frombin, tobin);
|
---|
767 | hthd.Divide((TH1F*)&thsh, &hth, 1, 1);
|
---|
768 |
|
---|
769 | if (hthd.GetMaximum() <= 0)
|
---|
770 | {
|
---|
771 | *fLog << err << dbginf << "Maximum ratio is LE zero" << endl;
|
---|
772 | return kFALSE;
|
---|
773 | }
|
---|
774 |
|
---|
775 | //
|
---|
776 | // ===== obtain correction factors (normalization factors)
|
---|
777 | //
|
---|
778 | hthd.Scale(1/hthd.GetMaximum());
|
---|
779 |
|
---|
780 | //
|
---|
781 | // get random access
|
---|
782 | //
|
---|
783 | TArrayF ranx(nrows);
|
---|
784 |
|
---|
785 | TRandom3 rnd(0);
|
---|
786 | for (Int_t i=0; i<nrows; i++)
|
---|
787 | ranx[i] = rnd.Rndm(i);
|
---|
788 |
|
---|
789 | TArrayI ind(nrows);
|
---|
790 | TMath::Sort(nrows, ranx.GetArray(), ind.GetArray(), kTRUE);
|
---|
791 |
|
---|
792 | //
|
---|
793 | // define new matrix
|
---|
794 | //
|
---|
795 | Int_t evtcount1 = -1;
|
---|
796 | Int_t evtcount2 = 0;
|
---|
797 |
|
---|
798 | TMatrix mnewtmp(nrows, ncols);
|
---|
799 | TMatrix mrest(nrows, ncols);
|
---|
800 |
|
---|
801 | TArrayF cumulweight(nrows); // keep track for each bin how many events
|
---|
802 |
|
---|
803 | //
|
---|
804 | // Project values in reference column into [0,1]
|
---|
805 | //
|
---|
806 | TVector v(fM.GetNrows());
|
---|
807 | v = TMatrixColumn(fM, refcolumn-1);
|
---|
808 | v += -frombin;
|
---|
809 | v *= 1/dbin;
|
---|
810 |
|
---|
811 | //
|
---|
812 | // select events (distribution after renormalization)
|
---|
813 | //
|
---|
814 | Int_t ir;
|
---|
815 | TVector vold(fM.GetNcols());
|
---|
816 | for (ir=0; ir<nrows; ir++)
|
---|
817 | {
|
---|
818 | const Int_t indref = (Int_t)v(ind[ir]);
|
---|
819 |
|
---|
820 | cumulweight[indref] += hthd.GetBinContent(indref+1);
|
---|
821 | if (cumulweight[indref]<=0.5)
|
---|
822 | {
|
---|
823 | TMatrixRow(mrest, evtcount2++) = vold = TMatrixRow(fM, ind[ir]);
|
---|
824 | continue;
|
---|
825 | }
|
---|
826 |
|
---|
827 | cumulweight[indref] -= 1.;
|
---|
828 | if (++evtcount1 >= nmaxevts)
|
---|
829 | break;
|
---|
830 |
|
---|
831 | TMatrixRow(mnewtmp, evtcount1) = vold = TMatrixRow(fM, ind[ir]);
|
---|
832 | }
|
---|
833 |
|
---|
834 | for (/*empty*/; ir<nrows; ir++)
|
---|
835 | TMatrixRow(mrest, evtcount2++) = vold = TMatrixRow(fM, ind[ir]);
|
---|
836 |
|
---|
837 | //
|
---|
838 | // reduce size
|
---|
839 | //
|
---|
840 | // matrix fM having the requested distribution
|
---|
841 | // and the requested number of rows;
|
---|
842 | // this is the matrix to be used in the g/h separation
|
---|
843 | //
|
---|
844 | fM.ResizeTo(evtcount1, ncols);
|
---|
845 | fNumRow = evtcount1;
|
---|
846 | for (ir=0; ir<evtcount1; ir++)
|
---|
847 | TMatrixRow(fM, ir) = vold = TMatrixRow(mnewtmp, ir);
|
---|
848 |
|
---|
849 | if (evtcount1 < nmaxevts)
|
---|
850 | *fLog << warn << "The reference sample contains less events (" << evtcount1 << ") than required (" << nmaxevts << ")" << endl;
|
---|
851 |
|
---|
852 | if (!rest)
|
---|
853 | return kTRUE;
|
---|
854 |
|
---|
855 | rest->ResizeTo(evtcount2, ncols);
|
---|
856 | for (ir=0; ir<evtcount1; ir++)
|
---|
857 | {
|
---|
858 | TVector vold(fM.GetNcols());
|
---|
859 | TMatrixRow(*rest, ir) = vold = TMatrixRow(mrest, ir);
|
---|
860 | }
|
---|
861 |
|
---|
862 | return kTRUE;
|
---|
863 | }
|
---|
864 |
|
---|
865 | // ------------------------------------------------------------------------
|
---|
866 | //
|
---|
867 | // Define the reference matrix
|
---|
868 | // refcolumn number of the column (starting at 1)containing the variable,
|
---|
869 | // for which a target distribution may be given;
|
---|
870 | // if refcolumn is negative the target distribution will be set
|
---|
871 | // equal to the real distribution; the events in the reference
|
---|
872 | // matrix will then be simply a random selection of the events
|
---|
873 | // in the original matrix.
|
---|
874 | // thsh histogram containing the target distribution of the variable
|
---|
875 | // nmaxevts maximum number of events in the reference matrix
|
---|
876 | // rest a TMatrix conatining the resulting (not choosen)
|
---|
877 | // columns of the primary matrix. Maybe NULL if you
|
---|
878 | // are not interested in this
|
---|
879 | //
|
---|
880 | Bool_t MHMatrix::DefRefMatrix(Int_t nmaxevts, TMatrix *rest)
|
---|
881 | {
|
---|
882 | if (!fM.IsValid())
|
---|
883 | {
|
---|
884 | *fLog << err << dbginf << "Matrix not initialized" << endl;
|
---|
885 | return kFALSE;
|
---|
886 | }
|
---|
887 |
|
---|
888 | if (nmaxevts>fM.GetNrows())
|
---|
889 | {
|
---|
890 | *fLog << err << dbginf << "Number of maximum events exceeds number of events" << endl;
|
---|
891 | return kFALSE;
|
---|
892 | }
|
---|
893 |
|
---|
894 | if (nmaxevts<0)
|
---|
895 | {
|
---|
896 | *fLog << err << dbginf << "Number of maximum events < 0" << endl;
|
---|
897 | return kFALSE;
|
---|
898 | }
|
---|
899 |
|
---|
900 | if (nmaxevts==0)
|
---|
901 | nmaxevts = fM.GetNrows();
|
---|
902 |
|
---|
903 | const Int_t nrows = fM.GetNrows();
|
---|
904 | const Int_t ncols = fM.GetNcols();
|
---|
905 |
|
---|
906 | //
|
---|
907 | // get random access
|
---|
908 | //
|
---|
909 | TArrayF ranx(nrows);
|
---|
910 |
|
---|
911 | TRandom3 rnd(0);
|
---|
912 | for (Int_t i=0; i<nrows; i++)
|
---|
913 | ranx[i] = rnd.Rndm(i);
|
---|
914 |
|
---|
915 | TArrayI ind(nrows);
|
---|
916 | TMath::Sort(nrows, ranx.GetArray(), ind.GetArray(), kTRUE);
|
---|
917 |
|
---|
918 | //
|
---|
919 | // define new matrix
|
---|
920 | //
|
---|
921 | Int_t evtcount1 = 0;
|
---|
922 | Int_t evtcount2 = 0;
|
---|
923 |
|
---|
924 | TMatrix mnewtmp(nrows, ncols);
|
---|
925 | TMatrix mrest(nrows, ncols);
|
---|
926 |
|
---|
927 | //
|
---|
928 | // select events (distribution after renormalization)
|
---|
929 | //
|
---|
930 | TVector vold(fM.GetNcols());
|
---|
931 | for (Int_t ir=0; ir<nmaxevts; ir++)
|
---|
932 | TMatrixRow(mnewtmp, evtcount1++) = vold = TMatrixRow(fM, ind[ir]);
|
---|
933 |
|
---|
934 | for (Int_t ir=nmaxevts; ir<nrows; ir++)
|
---|
935 | TMatrixRow(mrest, evtcount2++) = vold = TMatrixRow(fM, ind[ir]);
|
---|
936 |
|
---|
937 | //
|
---|
938 | // reduce size
|
---|
939 | //
|
---|
940 | // matrix fM having the requested distribution
|
---|
941 | // and the requested number of rows;
|
---|
942 | // this is the matrix to be used in the g/h separation
|
---|
943 | //
|
---|
944 | fM.ResizeTo(evtcount1, ncols);
|
---|
945 | fNumRow = evtcount1;
|
---|
946 | for (Int_t ir=0; ir<evtcount1; ir++)
|
---|
947 | {
|
---|
948 | TVector vold(fM.GetNcols());
|
---|
949 | TMatrixRow(fM, ir) = vold = TMatrixRow(mnewtmp, ir);
|
---|
950 | }
|
---|
951 |
|
---|
952 | if (evtcount1 < nmaxevts)
|
---|
953 | *fLog << warn << "The reference sample contains less events (" << evtcount1 << ") than required (" << nmaxevts << ")" << endl;
|
---|
954 |
|
---|
955 | if (!rest)
|
---|
956 | return kTRUE;
|
---|
957 |
|
---|
958 | rest->ResizeTo(evtcount2, ncols);
|
---|
959 | for (Int_t ir=0; ir<evtcount1; ir++)
|
---|
960 | {
|
---|
961 | TVector vold(fM.GetNcols());
|
---|
962 | TMatrixRow(*rest, ir) = vold = TMatrixRow(mrest, ir);
|
---|
963 | }
|
---|
964 |
|
---|
965 | return kTRUE;
|
---|
966 |
|
---|
967 | /*
|
---|
968 | TMatrix mnew(evtcount, nconl);
|
---|
969 | for (Int_t ir=0; ir<evtcount; ir++)
|
---|
970 | for (Int_t ic=0; ic<fNcols; ic++)
|
---|
971 | fM(ir,ic) = mnewtmp(ir,ic);
|
---|
972 |
|
---|
973 | //
|
---|
974 | // test: print new matrix (part)
|
---|
975 | //
|
---|
976 | *fLog << "DefRefMatrix: Event matrix (output) :" << endl;
|
---|
977 | *fLog << "DefRefMatrix: Nrows, Ncols = " << mnew.GetNrows();
|
---|
978 | *fLog << " " << mnew.GetNcols() << endl;
|
---|
979 |
|
---|
980 | for (Int_t ir=0;ir<10; ir++)
|
---|
981 | {
|
---|
982 | *fLog <<ir <<" ";
|
---|
983 | for (Int_t ic=0; ic<mnew.GetNcols(); ic++)
|
---|
984 | cout<<Mnew(ir,ic)<<" ";
|
---|
985 | *fLog <<endl;
|
---|
986 | }
|
---|
987 | */
|
---|
988 |
|
---|
989 | /*
|
---|
990 | // test print new bin contents
|
---|
991 | *fLog << "MHMatrix::DefRefMatrix; new histogram: " << endl;
|
---|
992 | for (Int_t j=1; j<=fnbins; j++)
|
---|
993 | {
|
---|
994 | float a = fHthaft->GetBinContent(j);
|
---|
995 | *fLog << j << " "<< a << " ";
|
---|
996 | }
|
---|
997 | *fLog <<endl;
|
---|
998 | */
|
---|
999 |
|
---|
1000 | /*
|
---|
1001 | //---------------------------------------------------------
|
---|
1002 | // ==== plot four histograms
|
---|
1003 | TCanvas *th1 = new TCanvas (fName, fName, 1);
|
---|
1004 | th1->Divide(2,2);
|
---|
1005 |
|
---|
1006 | th1->cd(1);
|
---|
1007 | ((TH1F*)fHthsh)->DrawCopy(); // target
|
---|
1008 |
|
---|
1009 | th1->cd(2);
|
---|
1010 | ((TH1F*)fHth)->DrawCopy(); // real histogram before
|
---|
1011 |
|
---|
1012 | th1->cd(3);
|
---|
1013 | ((TH1F*)fHthd)->DrawCopy(); // correction factors
|
---|
1014 |
|
---|
1015 | th1->cd(4);
|
---|
1016 | ((TH1F*)fHthaft)->DrawCopy(); // histogram after
|
---|
1017 |
|
---|
1018 | //---------------------------------------------------------
|
---|
1019 | */
|
---|
1020 | //return kTRUE;
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | // --------------------------------------------------------------------------
|
---|
1024 | //
|
---|
1025 | // overload TOject member function read
|
---|
1026 | // in order to reset the name of the object read
|
---|
1027 | //
|
---|
1028 | Int_t MHMatrix::Read(const char *name)
|
---|
1029 | {
|
---|
1030 | Int_t ret = TObject::Read(name);
|
---|
1031 | SetName(name);
|
---|
1032 |
|
---|
1033 | return ret;
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | // --------------------------------------------------------------------------
|
---|