1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 2002 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | ! Rudy Boeck 2003 <mailto:
|
---|
20 | ! Wolfgang Wittek2003 <mailto:wittek@mppmu.mpg.de>
|
---|
21 | !
|
---|
22 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
23 | !
|
---|
24 | !
|
---|
25 | \* ======================================================================== */
|
---|
26 |
|
---|
27 | /////////////////////////////////////////////////////////////////////////////
|
---|
28 | //
|
---|
29 | // MHMatrix
|
---|
30 | //
|
---|
31 | // This is a histogram container which holds a matrix with one column per
|
---|
32 | // data variable. The data variable can be a complex rule (MDataChain).
|
---|
33 | // Each event for wich Fill is called (by MFillH) is added as a new
|
---|
34 | // row to the matrix.
|
---|
35 | //
|
---|
36 | // For example:
|
---|
37 | // MHMatrix m;
|
---|
38 | // m.AddColumn("MHillas.fSize");
|
---|
39 | // m.AddColumn("MMcEvt.fImpact/100");
|
---|
40 | // m.AddColumn("HillasSource.fDist*MGeomCam.fConvMm2Deg");
|
---|
41 | // MFillH fillm(&m);
|
---|
42 | // taskliost.AddToList(&fillm);
|
---|
43 | // [...]
|
---|
44 | // m.Print();
|
---|
45 | //
|
---|
46 | /////////////////////////////////////////////////////////////////////////////
|
---|
47 | #include "MHMatrix.h"
|
---|
48 |
|
---|
49 | #include <fstream.h>
|
---|
50 |
|
---|
51 | #include <TList.h>
|
---|
52 | #include <TArrayF.h>
|
---|
53 | #include <TArrayD.h>
|
---|
54 | #include <TArrayI.h>
|
---|
55 |
|
---|
56 | #include <TH1.h>
|
---|
57 | #include <TCanvas.h>
|
---|
58 | #include <TRandom3.h>
|
---|
59 |
|
---|
60 | #include "MLog.h"
|
---|
61 | #include "MLogManip.h"
|
---|
62 |
|
---|
63 | #include "MFillH.h"
|
---|
64 | #include "MEvtLoop.h"
|
---|
65 | #include "MParList.h"
|
---|
66 | #include "MTaskList.h"
|
---|
67 |
|
---|
68 | #include "MData.h"
|
---|
69 | #include "MDataArray.h"
|
---|
70 | #include "MF.h"
|
---|
71 |
|
---|
72 |
|
---|
73 | ClassImp(MHMatrix);
|
---|
74 |
|
---|
75 | const TString MHMatrix::gsDefName = "MHMatrix";
|
---|
76 | const TString MHMatrix::gsDefTitle = "Multidimensional Matrix";
|
---|
77 |
|
---|
78 | // --------------------------------------------------------------------------
|
---|
79 | //
|
---|
80 | // Default Constructor
|
---|
81 | //
|
---|
82 | MHMatrix::MHMatrix(const char *name, const char *title)
|
---|
83 | : fNumRow(0), fData(NULL)
|
---|
84 | {
|
---|
85 | fName = name ? name : gsDefName.Data();
|
---|
86 | fTitle = title ? title : gsDefTitle.Data();
|
---|
87 | }
|
---|
88 |
|
---|
89 | // --------------------------------------------------------------------------
|
---|
90 | //
|
---|
91 | // Default Constructor
|
---|
92 | //
|
---|
93 | MHMatrix::MHMatrix(const TMatrix &m, const char *name, const char *title)
|
---|
94 | : fNumRow(m.GetNrows()), fM(m), fData(NULL)
|
---|
95 | {
|
---|
96 | fName = name ? name : gsDefName.Data();
|
---|
97 | fTitle = title ? title : gsDefTitle.Data();
|
---|
98 | }
|
---|
99 |
|
---|
100 | // --------------------------------------------------------------------------
|
---|
101 | //
|
---|
102 | // Constructor. Initializes the columns of the matrix with the entries
|
---|
103 | // from a MDataArray
|
---|
104 | //
|
---|
105 | MHMatrix::MHMatrix(MDataArray *mat, const char *name, const char *title)
|
---|
106 | : fNumRow(0), fData(mat)
|
---|
107 | {
|
---|
108 | fName = name ? name : gsDefName.Data();
|
---|
109 | fTitle = title ? title : gsDefTitle.Data();
|
---|
110 | }
|
---|
111 |
|
---|
112 | // --------------------------------------------------------------------------
|
---|
113 | //
|
---|
114 | // Destructor. Does not deleted a user given MDataArray, except IsOwner
|
---|
115 | // was called.
|
---|
116 | //
|
---|
117 | MHMatrix::~MHMatrix()
|
---|
118 | {
|
---|
119 | if (TestBit(kIsOwner) && fData)
|
---|
120 | delete fData;
|
---|
121 | }
|
---|
122 |
|
---|
123 | // --------------------------------------------------------------------------
|
---|
124 | //
|
---|
125 | // Add a new column to the matrix. This can only be done before the first
|
---|
126 | // event (row) was filled into the matrix. For the syntax of the rule
|
---|
127 | // see MDataChain.
|
---|
128 | // Returns the index of the new column, -1 in case of failure.
|
---|
129 | // (0, 1, 2, ... for the 1st, 2nd, 3rd, ...)
|
---|
130 | //
|
---|
131 | Int_t MHMatrix::AddColumn(const char *rule)
|
---|
132 | {
|
---|
133 | if (fM.IsValid())
|
---|
134 | {
|
---|
135 | *fLog << warn << "Warning - matrix is already in use. Can't add a new column... skipped." << endl;
|
---|
136 | return -1;
|
---|
137 | }
|
---|
138 |
|
---|
139 | if (TestBit(kIsLocked))
|
---|
140 | {
|
---|
141 | *fLog << warn << "Warning - matrix is locked. Can't add new column... skipped." << endl;
|
---|
142 | return -1;
|
---|
143 | }
|
---|
144 |
|
---|
145 | if (!fData)
|
---|
146 | {
|
---|
147 | fData = new MDataArray;
|
---|
148 | SetBit(kIsOwner);
|
---|
149 | }
|
---|
150 |
|
---|
151 | fData->AddEntry(rule);
|
---|
152 | return fData->GetNumEntries()-1;
|
---|
153 | }
|
---|
154 |
|
---|
155 | // --------------------------------------------------------------------------
|
---|
156 | //
|
---|
157 | void MHMatrix::AddColumns(MDataArray *matrix)
|
---|
158 | {
|
---|
159 | if (fM.IsValid())
|
---|
160 | {
|
---|
161 | *fLog << warn << "Warning - matrix is already in use. Can't add new columns... skipped." << endl;
|
---|
162 | return;
|
---|
163 | }
|
---|
164 |
|
---|
165 | if (TestBit(kIsLocked))
|
---|
166 | {
|
---|
167 | *fLog << warn << "Warning - matrix is locked. Can't add new columns... skipped." << endl;
|
---|
168 | return;
|
---|
169 | }
|
---|
170 |
|
---|
171 | if (fData)
|
---|
172 | *fLog << warn << "Warning - columns already added... replacing." << endl;
|
---|
173 |
|
---|
174 | if (fData && TestBit(kIsOwner))
|
---|
175 | {
|
---|
176 | delete fData;
|
---|
177 | ResetBit(kIsOwner);
|
---|
178 | }
|
---|
179 |
|
---|
180 | fData = matrix;
|
---|
181 | }
|
---|
182 |
|
---|
183 | // --------------------------------------------------------------------------
|
---|
184 | //
|
---|
185 | // Checks whether at least one column is available and PreProcesses all
|
---|
186 | // data chains.
|
---|
187 | //
|
---|
188 | Bool_t MHMatrix::SetupFill(const MParList *plist)
|
---|
189 | {
|
---|
190 | if (!fData)
|
---|
191 | {
|
---|
192 | *fLog << err << "Error - No Columns initialized... aborting." << endl;
|
---|
193 | return kFALSE;
|
---|
194 | }
|
---|
195 |
|
---|
196 | return fData->PreProcess(plist);
|
---|
197 | }
|
---|
198 |
|
---|
199 | // --------------------------------------------------------------------------
|
---|
200 | //
|
---|
201 | // If the matrix has not enough rows double the number of available rows.
|
---|
202 | //
|
---|
203 | void MHMatrix::AddRow()
|
---|
204 | {
|
---|
205 | fNumRow++;
|
---|
206 |
|
---|
207 | if (fM.GetNrows() > fNumRow)
|
---|
208 | return;
|
---|
209 |
|
---|
210 | if (!fM.IsValid())
|
---|
211 | {
|
---|
212 | fM.ResizeTo(1, fData->GetNumEntries());
|
---|
213 | return;
|
---|
214 | }
|
---|
215 |
|
---|
216 | TMatrix m(fM);
|
---|
217 |
|
---|
218 | fM.ResizeTo(fM.GetNrows()*2, fData->GetNumEntries());
|
---|
219 |
|
---|
220 | TVector vold(fM.GetNcols());
|
---|
221 | for (int x=0; x<m.GetNrows(); x++)
|
---|
222 | TMatrixRow(fM, x) = vold = TMatrixRow(m, x);
|
---|
223 | }
|
---|
224 |
|
---|
225 | // --------------------------------------------------------------------------
|
---|
226 | //
|
---|
227 | // Add the values correspoding to the columns to the new row
|
---|
228 | //
|
---|
229 | Bool_t MHMatrix::Fill(const MParContainer *par)
|
---|
230 | {
|
---|
231 | AddRow();
|
---|
232 |
|
---|
233 | for (int col=0; col<fData->GetNumEntries(); col++)
|
---|
234 | fM(fNumRow-1, col) = (*fData)(col);
|
---|
235 |
|
---|
236 | return kTRUE;
|
---|
237 | }
|
---|
238 |
|
---|
239 | // --------------------------------------------------------------------------
|
---|
240 | //
|
---|
241 | // Resize the matrix to a number of rows which corresponds to the number of
|
---|
242 | // rows which have really been filled with values.
|
---|
243 | //
|
---|
244 | Bool_t MHMatrix::Finalize()
|
---|
245 | {
|
---|
246 | //
|
---|
247 | // It's not a fatal error so we don't need to stop PostProcessing...
|
---|
248 | //
|
---|
249 | if (fData->GetNumEntries()==0 || fNumRow<1)
|
---|
250 | return kTRUE;
|
---|
251 |
|
---|
252 | if (fNumRow != fM.GetNrows())
|
---|
253 | {
|
---|
254 | TMatrix m(fM);
|
---|
255 | CopyCrop(fM, m, fNumRow);
|
---|
256 | }
|
---|
257 |
|
---|
258 | return kTRUE;
|
---|
259 | }
|
---|
260 | /*
|
---|
261 | // --------------------------------------------------------------------------
|
---|
262 | //
|
---|
263 | // Draw clone of histogram. So that the object can be deleted
|
---|
264 | // and the histogram is still visible in the canvas.
|
---|
265 | // The cloned object are deleted together with the canvas if the canvas is
|
---|
266 | // destroyed. If you want to handle destroying the canvas you can get a
|
---|
267 | // pointer to it from this function
|
---|
268 | //
|
---|
269 | TObject *MHMatrix::DrawClone(Option_t *opt) const
|
---|
270 | {
|
---|
271 | TCanvas &c = *MH::MakeDefCanvas(fHist);
|
---|
272 |
|
---|
273 | //
|
---|
274 | // This is necessary to get the expected bahviour of DrawClone
|
---|
275 | //
|
---|
276 | gROOT->SetSelectedPad(NULL);
|
---|
277 |
|
---|
278 | fHist->DrawCopy(opt);
|
---|
279 |
|
---|
280 | TString str(opt);
|
---|
281 | if (str.Contains("PROFX", TString::kIgnoreCase) && fDimension==2)
|
---|
282 | {
|
---|
283 | TProfile *p = ((TH2*)fHist)->ProfileX();
|
---|
284 | p->Draw("same");
|
---|
285 | p->SetBit(kCanDelete);
|
---|
286 | }
|
---|
287 | if (str.Contains("PROFY", TString::kIgnoreCase) && fDimension==2)
|
---|
288 | {
|
---|
289 | TProfile *p = ((TH2*)fHist)->ProfileY();
|
---|
290 | p->Draw("same");
|
---|
291 | p->SetBit(kCanDelete);
|
---|
292 | }
|
---|
293 |
|
---|
294 | c.Modified();
|
---|
295 | c.Update();
|
---|
296 |
|
---|
297 | return &c;
|
---|
298 | }
|
---|
299 |
|
---|
300 | // --------------------------------------------------------------------------
|
---|
301 | //
|
---|
302 | // Creates a new canvas and draws the histogram into it.
|
---|
303 | // Be careful: The histogram belongs to this object and won't get deleted
|
---|
304 | // together with the canvas.
|
---|
305 | //
|
---|
306 | void MHMatrix::Draw(Option_t *opt)
|
---|
307 | {
|
---|
308 | if (!gPad)
|
---|
309 | MH::MakeDefCanvas(fHist);
|
---|
310 |
|
---|
311 | fHist->Draw(opt);
|
---|
312 |
|
---|
313 | TString str(opt);
|
---|
314 | if (str.Contains("PROFX", TString::kIgnoreCase) && fDimension==2)
|
---|
315 | {
|
---|
316 | TProfile *p = ((TH2*)fHist)->ProfileX();
|
---|
317 | p->Draw("same");
|
---|
318 | p->SetBit(kCanDelete);
|
---|
319 | }
|
---|
320 | if (str.Contains("PROFY", TString::kIgnoreCase) && fDimension==2)
|
---|
321 | {
|
---|
322 | TProfile *p = ((TH2*)fHist)->ProfileY();
|
---|
323 | p->Draw("same");
|
---|
324 | p->SetBit(kCanDelete);
|
---|
325 | }
|
---|
326 |
|
---|
327 | gPad->Modified();
|
---|
328 | gPad->Update();
|
---|
329 | }
|
---|
330 | */
|
---|
331 |
|
---|
332 | // --------------------------------------------------------------------------
|
---|
333 | //
|
---|
334 | // Prints the meaning of the columns and the contents of the matrix.
|
---|
335 | // Becareful, this can take a long time for matrices with many rows.
|
---|
336 | // Use the option 'size' to print the size of the matrix.
|
---|
337 | // Use the option 'cols' to print the culumns
|
---|
338 | // Use the option 'data' to print the contents
|
---|
339 | //
|
---|
340 | void MHMatrix::Print(Option_t *o) const
|
---|
341 | {
|
---|
342 | TString str(o);
|
---|
343 |
|
---|
344 | *fLog << all << flush;
|
---|
345 |
|
---|
346 | if (str.Contains("size", TString::kIgnoreCase))
|
---|
347 | {
|
---|
348 | *fLog << GetDescriptor() << ": NumColumns=" << fM.GetNcols();
|
---|
349 | *fLog << " NumRows=" << fM.GetNrows() << endl;
|
---|
350 | }
|
---|
351 |
|
---|
352 | if (!fData && str.Contains("cols", TString::kIgnoreCase))
|
---|
353 | *fLog << "Sorry, no column information available." << endl;
|
---|
354 |
|
---|
355 | if (fData && str.Contains("cols", TString::kIgnoreCase))
|
---|
356 | fData->Print();
|
---|
357 |
|
---|
358 | if (str.Contains("data", TString::kIgnoreCase))
|
---|
359 | fM.Print();
|
---|
360 | }
|
---|
361 |
|
---|
362 | // --------------------------------------------------------------------------
|
---|
363 | //
|
---|
364 | const TMatrix *MHMatrix::InvertPosDef()
|
---|
365 | {
|
---|
366 | TMatrix m(fM);
|
---|
367 |
|
---|
368 | const Int_t rows = m.GetNrows();
|
---|
369 | const Int_t cols = m.GetNcols();
|
---|
370 |
|
---|
371 | for (int x=0; x<cols; x++)
|
---|
372 | {
|
---|
373 | Double_t avg = 0;
|
---|
374 | for (int y=0; y<rows; y++)
|
---|
375 | avg += fM(y, x);
|
---|
376 |
|
---|
377 | avg /= rows;
|
---|
378 |
|
---|
379 | TMatrixColumn(m, x) += -avg;
|
---|
380 | }
|
---|
381 |
|
---|
382 | TMatrix *m2 = new TMatrix(m, TMatrix::kTransposeMult, m);
|
---|
383 |
|
---|
384 | Double_t det;
|
---|
385 | m2->Invert(&det);
|
---|
386 | if (det==0)
|
---|
387 | {
|
---|
388 | *fLog << err << "ERROR - MHMatrix::InvertPosDef failed (Matrix is singular)." << endl;
|
---|
389 | delete m2;
|
---|
390 | return NULL;
|
---|
391 | }
|
---|
392 |
|
---|
393 | // m2->Print();
|
---|
394 |
|
---|
395 | return m2;
|
---|
396 | }
|
---|
397 |
|
---|
398 | // --------------------------------------------------------------------------
|
---|
399 | //
|
---|
400 | // Calculated the distance of vector evt from the reference sample
|
---|
401 | // represented by the covariance metrix m.
|
---|
402 | // - If n<0 the kernel method is applied and
|
---|
403 | // -log(sum(epx(-d/h))/n) is returned.
|
---|
404 | // - For n>0 the n nearest neighbors are summed and
|
---|
405 | // sqrt(sum(d)/n) is returned.
|
---|
406 | // - if n==0 all distances are summed
|
---|
407 | //
|
---|
408 | Double_t MHMatrix::CalcDist(const TMatrix &m, const TVector &evt, Int_t num) const
|
---|
409 | {
|
---|
410 | if (num==0) // may later be used for another method
|
---|
411 | {
|
---|
412 | TVector d = evt;
|
---|
413 | d *= m;
|
---|
414 | return TMath::Sqrt(d*evt);
|
---|
415 | }
|
---|
416 |
|
---|
417 | const Int_t rows = fM.GetNrows();
|
---|
418 | const Int_t cols = fM.GetNcols();
|
---|
419 |
|
---|
420 | TArrayD dists(rows);
|
---|
421 |
|
---|
422 | //
|
---|
423 | // Calculate: v^T * M * v
|
---|
424 | //
|
---|
425 | for (int i=0; i<rows; i++)
|
---|
426 | {
|
---|
427 | TVector col(cols);
|
---|
428 | col = TMatrixRow(fM, i);
|
---|
429 |
|
---|
430 | TVector d = evt;
|
---|
431 | d -= col;
|
---|
432 |
|
---|
433 | TVector d2 = d;
|
---|
434 | d2 *= m;
|
---|
435 |
|
---|
436 | dists[i] = d2*d; // square of distance
|
---|
437 |
|
---|
438 | //
|
---|
439 | // This corrects for numerical uncertanties in cases of very
|
---|
440 | // small distances...
|
---|
441 | //
|
---|
442 | if (dists[i]<0)
|
---|
443 | dists[i]=0;
|
---|
444 | }
|
---|
445 |
|
---|
446 | TArrayI idx(rows);
|
---|
447 | TMath::Sort(dists.GetSize(), dists.GetArray(), idx.GetArray(), kFALSE);
|
---|
448 |
|
---|
449 | Int_t from = 0;
|
---|
450 | Int_t to = TMath::Abs(num)<rows ? TMath::Abs(num) : rows;
|
---|
451 | //
|
---|
452 | // This is a zero-suppression for the case a test- and trainings
|
---|
453 | // sample is identical. This would result in an unwanted leading
|
---|
454 | // zero in the array. To suppress also numerical uncertanties of
|
---|
455 | // zero we cut at 1e-5. Due to Rudy this should be enough. If
|
---|
456 | // you encounter problems we can also use (eg) 1e-25
|
---|
457 | //
|
---|
458 | if (dists[idx[0]]<1e-5)
|
---|
459 | {
|
---|
460 | from++;
|
---|
461 | to ++;
|
---|
462 | if (to>rows)
|
---|
463 | to = rows;
|
---|
464 | }
|
---|
465 |
|
---|
466 | if (num<0)
|
---|
467 | {
|
---|
468 | //
|
---|
469 | // Kernel function sum (window size h set according to literature)
|
---|
470 | //
|
---|
471 | const Double_t h = TMath::Power(rows, -1./(cols+4));
|
---|
472 | const Double_t hwin = h*h*2;
|
---|
473 |
|
---|
474 | Double_t res = 0;
|
---|
475 | for (int i=from; i<to; i++)
|
---|
476 | res += TMath::Exp(-dists[idx[i]]/hwin);
|
---|
477 |
|
---|
478 | return -TMath::Log(res/(to-from));
|
---|
479 | }
|
---|
480 | else
|
---|
481 | {
|
---|
482 | //
|
---|
483 | // Nearest Neighbor sum
|
---|
484 | //
|
---|
485 | Double_t res = 0;
|
---|
486 | for (int i=from; i<to; i++)
|
---|
487 | res += dists[idx[i]];
|
---|
488 |
|
---|
489 | return TMath::Sqrt(res/(to-from));
|
---|
490 | }
|
---|
491 | }
|
---|
492 |
|
---|
493 | // --------------------------------------------------------------------------
|
---|
494 | //
|
---|
495 | // Calls calc dist. In the case of the first call the covariance matrix
|
---|
496 | // fM2 is calculated.
|
---|
497 | // - If n<0 it is divided by (nrows-1)/h while h is the kernel factor.
|
---|
498 | //
|
---|
499 | Double_t MHMatrix::CalcDist(const TVector &evt, Int_t num)
|
---|
500 | {
|
---|
501 | if (!fM2.IsValid())
|
---|
502 | {
|
---|
503 | const TMatrix *m = InvertPosDef();
|
---|
504 | if (!m)
|
---|
505 | return -1;
|
---|
506 |
|
---|
507 | fM2.ResizeTo(*m);
|
---|
508 | fM2 = *m;
|
---|
509 | fM2 *= fM.GetNrows()-1;
|
---|
510 | delete m;
|
---|
511 | }
|
---|
512 |
|
---|
513 | return CalcDist(fM2, evt, num);
|
---|
514 | }
|
---|
515 |
|
---|
516 | // --------------------------------------------------------------------------
|
---|
517 | //
|
---|
518 | void MHMatrix::Reassign()
|
---|
519 | {
|
---|
520 | TMatrix m = fM;
|
---|
521 | fM.ResizeTo(1,1);
|
---|
522 | fM.ResizeTo(m);
|
---|
523 | fM = m;
|
---|
524 | }
|
---|
525 |
|
---|
526 | // --------------------------------------------------------------------------
|
---|
527 | //
|
---|
528 | // Implementation of SavePrimitive. Used to write the call to a constructor
|
---|
529 | // to a macro. In the original root implementation it is used to write
|
---|
530 | // gui elements to a macro-file.
|
---|
531 | //
|
---|
532 | void MHMatrix::StreamPrimitive(ofstream &out) const
|
---|
533 | {
|
---|
534 | Bool_t data = fData && !TestBit(kIsOwner);
|
---|
535 |
|
---|
536 | if (data)
|
---|
537 | {
|
---|
538 | fData->SavePrimitive(out);
|
---|
539 | out << endl;
|
---|
540 | }
|
---|
541 |
|
---|
542 | out << " MHMatrix " << GetUniqueName();
|
---|
543 |
|
---|
544 | if (data || fName!=gsDefName || fTitle!=gsDefTitle)
|
---|
545 | {
|
---|
546 | out << "(";
|
---|
547 | if (data)
|
---|
548 | out << "&" << fData->GetUniqueName();
|
---|
549 | if (fName!=gsDefName || fTitle!=gsDefTitle)
|
---|
550 | {
|
---|
551 | if (data)
|
---|
552 | out << ", ";
|
---|
553 | out << "\"" << fName << "\"";
|
---|
554 | if (fTitle!=gsDefTitle)
|
---|
555 | out << ", \"" << fTitle << "\"";
|
---|
556 | }
|
---|
557 | }
|
---|
558 | out << ");" << endl;
|
---|
559 |
|
---|
560 | if (fData && TestBit(kIsOwner))
|
---|
561 | for (int i=0; i<fData->GetNumEntries(); i++)
|
---|
562 | out << " " << GetUniqueName() << ".AddColumn(\"" << (*fData)[i].GetRule() << "\");" << endl;
|
---|
563 | }
|
---|
564 |
|
---|
565 | // --------------------------------------------------------------------------
|
---|
566 | //
|
---|
567 | const TArrayI MHMatrix::GetIndexOfSortedColumn(Int_t ncol, Bool_t desc) const
|
---|
568 | {
|
---|
569 | TMatrixColumn col(fM, ncol);
|
---|
570 |
|
---|
571 | const Int_t n = fM.GetNrows();
|
---|
572 |
|
---|
573 | TArrayF array(n);
|
---|
574 |
|
---|
575 | for (int i=0; i<n; i++)
|
---|
576 | array[i] = col(i);
|
---|
577 |
|
---|
578 | TArrayI idx(n);
|
---|
579 | TMath::Sort(n, array.GetArray(), idx.GetArray(), desc);
|
---|
580 |
|
---|
581 | return idx;
|
---|
582 | }
|
---|
583 |
|
---|
584 | // --------------------------------------------------------------------------
|
---|
585 | //
|
---|
586 | void MHMatrix::SortMatrixByColumn(Int_t ncol, Bool_t desc)
|
---|
587 | {
|
---|
588 | TArrayI idx = GetIndexOfSortedColumn(ncol, desc);
|
---|
589 |
|
---|
590 | const Int_t n = fM.GetNrows();
|
---|
591 |
|
---|
592 | TMatrix m(n, fM.GetNcols());
|
---|
593 | TVector vold(fM.GetNcols());
|
---|
594 | for (int i=0; i<n; i++)
|
---|
595 | TMatrixRow(m, i) = vold = TMatrixRow(fM, idx[i]);
|
---|
596 |
|
---|
597 | fM = m;
|
---|
598 | }
|
---|
599 |
|
---|
600 | // --------------------------------------------------------------------------
|
---|
601 | //
|
---|
602 | Bool_t MHMatrix::Fill(MParList *plist, MTask *read, MF *filter)
|
---|
603 | {
|
---|
604 | //
|
---|
605 | // Read data into Matrix
|
---|
606 | //
|
---|
607 | const Bool_t is = plist->IsOwner();
|
---|
608 | plist->SetOwner(kFALSE);
|
---|
609 |
|
---|
610 | MTaskList tlist;
|
---|
611 | plist->Replace(&tlist);
|
---|
612 |
|
---|
613 | MFillH fillh(this);
|
---|
614 |
|
---|
615 | tlist.AddToList(read);
|
---|
616 |
|
---|
617 | if (filter)
|
---|
618 | {
|
---|
619 | tlist.AddToList(filter);
|
---|
620 | fillh.SetFilter(filter);
|
---|
621 | }
|
---|
622 |
|
---|
623 | tlist.AddToList(&fillh);
|
---|
624 |
|
---|
625 | MEvtLoop evtloop;
|
---|
626 | evtloop.SetParList(plist);
|
---|
627 |
|
---|
628 | if (!evtloop.Eventloop())
|
---|
629 | return kFALSE;
|
---|
630 |
|
---|
631 | plist->Remove(&tlist);
|
---|
632 | plist->SetOwner(is);
|
---|
633 |
|
---|
634 | return kTRUE;
|
---|
635 | }
|
---|
636 |
|
---|
637 | // --------------------------------------------------------------------------
|
---|
638 | //
|
---|
639 | // Return a comma seperated list of all data members used in the matrix.
|
---|
640 | // This is mainly used in MTask::AddToBranchList
|
---|
641 | //
|
---|
642 | TString MHMatrix::GetDataMember() const
|
---|
643 | {
|
---|
644 | return fData ? fData->GetDataMember() : TString("");
|
---|
645 | }
|
---|
646 |
|
---|
647 | // --------------------------------------------------------------------------
|
---|
648 | //
|
---|
649 | //
|
---|
650 | void MHMatrix::ReduceNumberOfRows(UInt_t numrows, const TString opt)
|
---|
651 | {
|
---|
652 | UInt_t rows = fM.GetNrows();
|
---|
653 |
|
---|
654 | if (rows==numrows)
|
---|
655 | {
|
---|
656 | *fLog << warn << "Matrix has already the correct number of rows..." << endl;
|
---|
657 | return;
|
---|
658 | }
|
---|
659 |
|
---|
660 | Float_t ratio = (Float_t)numrows/fM.GetNrows();
|
---|
661 |
|
---|
662 | if (ratio>=1)
|
---|
663 | {
|
---|
664 | *fLog << warn << "Matrix cannot be enlarged..." << endl;
|
---|
665 | return;
|
---|
666 | }
|
---|
667 |
|
---|
668 | Double_t sum = 0;
|
---|
669 |
|
---|
670 | UInt_t oldrow = 0;
|
---|
671 | UInt_t newrow = 0;
|
---|
672 |
|
---|
673 | TVector vold(fM.GetNcols());
|
---|
674 | while (oldrow<rows)
|
---|
675 | {
|
---|
676 | sum += ratio;
|
---|
677 |
|
---|
678 | if (newrow<=(unsigned int)sum)
|
---|
679 | TMatrixRow(fM, newrow++) = vold = TMatrixRow(fM, oldrow);
|
---|
680 |
|
---|
681 | oldrow++;
|
---|
682 | }
|
---|
683 | }
|
---|
684 |
|
---|
685 | // ------------------------------------------------------------------------
|
---|
686 | //
|
---|
687 | // Used in DefRefMatrix to display the result graphically
|
---|
688 | //
|
---|
689 | void MHMatrix::DrawDefRefInfo(const TH1 &hth, const TH1 &hthd, const TH1 &thsh, Int_t refcolumn)
|
---|
690 | {
|
---|
691 | //
|
---|
692 | // Fill a histogram with the distribution after raduction
|
---|
693 | //
|
---|
694 | TH1F hta;
|
---|
695 | hta.SetName("hta");
|
---|
696 | hta.SetTitle("Distribution after reduction");
|
---|
697 | SetBinning(&hta, &hth);
|
---|
698 |
|
---|
699 | for (Int_t i=0; i<fM.GetNrows(); i++)
|
---|
700 | hta.Fill(fM(i, refcolumn));
|
---|
701 |
|
---|
702 | TCanvas *th1 = MakeDefCanvas(this);
|
---|
703 | th1->Divide(2,2);
|
---|
704 |
|
---|
705 | th1->cd(1);
|
---|
706 | ((TH1&)hth).DrawCopy(); // real histogram before
|
---|
707 |
|
---|
708 | th1->cd(2);
|
---|
709 | ((TH1&)hta).DrawCopy(); // histogram after
|
---|
710 |
|
---|
711 | th1->cd(3);
|
---|
712 | ((TH1&)hthd).DrawCopy(); // correction factors
|
---|
713 |
|
---|
714 | th1->cd(4);
|
---|
715 | ((TH1&)thsh).DrawCopy(); // target
|
---|
716 | }
|
---|
717 |
|
---|
718 | // ------------------------------------------------------------------------
|
---|
719 | //
|
---|
720 | // Resizes th etarget matrix to rows*source.GetNcol() and copies
|
---|
721 | // the data from the first (n)rows or the source into the target matrix.
|
---|
722 | //
|
---|
723 | void MHMatrix::CopyCrop(TMatrix &target, const TMatrix &source, Int_t rows)
|
---|
724 | {
|
---|
725 | TVector v(source.GetNcols());
|
---|
726 |
|
---|
727 | target.ResizeTo(rows, source.GetNcols());
|
---|
728 | for (Int_t ir=0; ir<rows; ir++)
|
---|
729 | TMatrixRow(target, ir) = v = TMatrixRow(source, ir);
|
---|
730 | }
|
---|
731 |
|
---|
732 | // ------------------------------------------------------------------------
|
---|
733 | //
|
---|
734 | // Define the reference matrix
|
---|
735 | // refcolumn number of the column (starting at 0) containing the variable,
|
---|
736 | // for which a target distribution may be given;
|
---|
737 | // thsh histogram containing the target distribution of the variable
|
---|
738 | // nmaxevts maximum number of events in the reference matrix
|
---|
739 | // rest a TMatrix conatining the resulting (not choosen)
|
---|
740 | // columns of the primary matrix. Maybe NULL if you
|
---|
741 | // are not interested in this
|
---|
742 | //
|
---|
743 | Bool_t MHMatrix::DefRefMatrix(const UInt_t refcolumn, const TH1F &thsh,
|
---|
744 | Int_t nmaxevts, TMatrix *rest)
|
---|
745 | {
|
---|
746 | if (!fM.IsValid())
|
---|
747 | {
|
---|
748 | *fLog << err << dbginf << "Matrix not initialized" << endl;
|
---|
749 | return kFALSE;
|
---|
750 | }
|
---|
751 |
|
---|
752 | if (thsh.GetMinimum()<0)
|
---|
753 | {
|
---|
754 | *fLog << err << dbginf << "Renormalization not possible: Target Distribution has values < 0" << endl;
|
---|
755 | return kFALSE;
|
---|
756 | }
|
---|
757 |
|
---|
758 | if (nmaxevts>fM.GetNrows())
|
---|
759 | {
|
---|
760 | *fLog << dbginf << "Maximum no.of events exceeds no.of events" << endl;
|
---|
761 | *fLog << dbginf << " set Maximum no.of events = no.of events" << endl;
|
---|
762 | nmaxevts = fM.GetNrows();
|
---|
763 | }
|
---|
764 |
|
---|
765 | if (nmaxevts<0)
|
---|
766 | {
|
---|
767 | *fLog << err << dbginf << "Number of maximum events < 0" << endl;
|
---|
768 | return kFALSE;
|
---|
769 | }
|
---|
770 |
|
---|
771 | if (nmaxevts==0)
|
---|
772 | nmaxevts = fM.GetNrows();
|
---|
773 |
|
---|
774 | //
|
---|
775 | // refcol is the column number starting at 0; it is >= 0
|
---|
776 | //
|
---|
777 | // number of the column (count from 0) containing
|
---|
778 | // the variable for which the target distribution is given
|
---|
779 | //
|
---|
780 |
|
---|
781 | //
|
---|
782 | // Calculate normalization factors
|
---|
783 | //
|
---|
784 | const int nbins = thsh.GetNbinsX();
|
---|
785 | const double frombin = thsh.GetBinLowEdge(1);
|
---|
786 | const double tobin = thsh.GetBinLowEdge(nbins+1);
|
---|
787 | const double dbin = thsh.GetBinWidth(1);
|
---|
788 | const Int_t nrows = fM.GetNrows();
|
---|
789 | const Int_t ncols = fM.GetNcols();
|
---|
790 |
|
---|
791 | //
|
---|
792 | // set up the real histogram (distribution before)
|
---|
793 | //
|
---|
794 | TH1F hth("th", "Distribution before reduction", nbins, frombin, tobin);
|
---|
795 | for (Int_t j=0; j<nrows; j++)
|
---|
796 | hth.Fill(fM(j, refcolumn));
|
---|
797 |
|
---|
798 | TH1F hthd("thd", "Correction factors", nbins, frombin, tobin);
|
---|
799 | hthd.Divide((TH1F*)&thsh, &hth, 1, 1);
|
---|
800 |
|
---|
801 | if (hthd.GetMaximum() <= 0)
|
---|
802 | {
|
---|
803 | *fLog << err << dbginf << "Maximum ratio is LE zero" << endl;
|
---|
804 | return kFALSE;
|
---|
805 | }
|
---|
806 |
|
---|
807 | //
|
---|
808 | // ===== obtain correction factors (normalization factors)
|
---|
809 | //
|
---|
810 | hthd.Scale(1/hthd.GetMaximum());
|
---|
811 |
|
---|
812 | //
|
---|
813 | // get random access
|
---|
814 | //
|
---|
815 | TArrayI ind(nrows);
|
---|
816 | GetRandomArrayI(ind);
|
---|
817 |
|
---|
818 | //
|
---|
819 | // define new matrix
|
---|
820 | //
|
---|
821 | Int_t evtcount1 = -1;
|
---|
822 | Int_t evtcount2 = 0;
|
---|
823 |
|
---|
824 | TMatrix mnewtmp(nrows, ncols);
|
---|
825 | TMatrix mrest(nrows, ncols);
|
---|
826 |
|
---|
827 | TArrayF cumulweight(nrows); // keep track for each bin how many events
|
---|
828 |
|
---|
829 | //
|
---|
830 | // Project values in reference column into [0,1]
|
---|
831 | //
|
---|
832 | TVector v(fM.GetNrows());
|
---|
833 | v = TMatrixColumn(fM, refcolumn);
|
---|
834 | v += -frombin;
|
---|
835 | v *= 1/dbin;
|
---|
836 |
|
---|
837 | //
|
---|
838 | // select events (distribution after renormalization)
|
---|
839 | //
|
---|
840 | Int_t ir;
|
---|
841 | TVector vold(fM.GetNcols());
|
---|
842 | for (ir=0; ir<nrows; ir++)
|
---|
843 | {
|
---|
844 | const Int_t indref = (Int_t)v(ind[ir]);
|
---|
845 |
|
---|
846 | cumulweight[indref] += hthd.GetBinContent(indref+1);
|
---|
847 | if (cumulweight[indref]<=0.5)
|
---|
848 | {
|
---|
849 | TMatrixRow(mrest, evtcount2++) = vold = TMatrixRow(fM, ind[ir]);
|
---|
850 | continue;
|
---|
851 | }
|
---|
852 |
|
---|
853 | cumulweight[indref] -= 1.;
|
---|
854 | if (++evtcount1 >= nmaxevts)
|
---|
855 | break;
|
---|
856 |
|
---|
857 | TMatrixRow(mnewtmp, evtcount1) = vold = TMatrixRow(fM, ind[ir]);
|
---|
858 | }
|
---|
859 |
|
---|
860 | for (/*empty*/; ir<nrows; ir++)
|
---|
861 | TMatrixRow(mrest, evtcount2++) = vold = TMatrixRow(fM, ind[ir]);
|
---|
862 |
|
---|
863 | //
|
---|
864 | // reduce size
|
---|
865 | //
|
---|
866 | // matrix fM having the requested distribution
|
---|
867 | // and the requested number of rows;
|
---|
868 | // this is the matrix to be used in the g/h separation
|
---|
869 | //
|
---|
870 | CopyCrop(fM, mnewtmp, evtcount1);
|
---|
871 | fNumRow = evtcount1;
|
---|
872 |
|
---|
873 | if (evtcount1 < nmaxevts)
|
---|
874 | *fLog << warn << "The reference sample contains less events (" << evtcount1 << ") than required (" << nmaxevts << ")" << endl;
|
---|
875 |
|
---|
876 | if (TestBit(kEnableGraphicalOutput))
|
---|
877 | DrawDefRefInfo(hth, hthd, thsh, refcolumn);
|
---|
878 |
|
---|
879 | if (!rest)
|
---|
880 | return kTRUE;
|
---|
881 |
|
---|
882 | CopyCrop(*rest, mrest, evtcount2);
|
---|
883 |
|
---|
884 | return kTRUE;
|
---|
885 | }
|
---|
886 |
|
---|
887 | // ------------------------------------------------------------------------
|
---|
888 | //
|
---|
889 | // Returns a array containing randomly sorted indices
|
---|
890 | //
|
---|
891 | void MHMatrix::GetRandomArrayI(TArrayI &ind) const
|
---|
892 | {
|
---|
893 | const Int_t rows = ind.GetSize();
|
---|
894 |
|
---|
895 | TArrayF ranx(rows);
|
---|
896 |
|
---|
897 | TRandom3 rnd(0);
|
---|
898 | for (Int_t i=0; i<rows; i++)
|
---|
899 | ranx[i] = rnd.Rndm(i);
|
---|
900 |
|
---|
901 | TMath::Sort(rows, ranx.GetArray(), ind.GetArray(), kTRUE);
|
---|
902 | }
|
---|
903 |
|
---|
904 | // ------------------------------------------------------------------------
|
---|
905 | //
|
---|
906 | // Define the reference matrix
|
---|
907 | // nmaxevts maximum number of events in the reference matrix
|
---|
908 | // rest a TMatrix conatining the resulting (not choosen)
|
---|
909 | // columns of the primary matrix. Maybe NULL if you
|
---|
910 | // are not interested in this
|
---|
911 | //
|
---|
912 | // the target distribution will be set
|
---|
913 | // equal to the real distribution; the events in the reference
|
---|
914 | // matrix will then be simply a random selection of the events
|
---|
915 | // in the original matrix.
|
---|
916 | //
|
---|
917 | Bool_t MHMatrix::DefRefMatrix(Int_t nmaxevts, TMatrix *rest)
|
---|
918 | {
|
---|
919 | if (!fM.IsValid())
|
---|
920 | {
|
---|
921 | *fLog << err << dbginf << "Matrix not initialized" << endl;
|
---|
922 | return kFALSE;
|
---|
923 | }
|
---|
924 |
|
---|
925 | if (nmaxevts>fM.GetNrows())
|
---|
926 | {
|
---|
927 | *fLog << dbginf << "Maximum no.of events exceeds no.of events" << endl;
|
---|
928 | *fLog << dbginf << " set Maximum no.of events = no.of events" << endl;
|
---|
929 | nmaxevts = fM.GetNrows();
|
---|
930 | }
|
---|
931 |
|
---|
932 | if (nmaxevts<0)
|
---|
933 | {
|
---|
934 | *fLog << err << dbginf << "Number of maximum events < 0" << endl;
|
---|
935 | return kFALSE;
|
---|
936 | }
|
---|
937 |
|
---|
938 | if (nmaxevts==0)
|
---|
939 | nmaxevts = fM.GetNrows();
|
---|
940 |
|
---|
941 | const Int_t nrows = fM.GetNrows();
|
---|
942 | const Int_t ncols = fM.GetNcols();
|
---|
943 |
|
---|
944 | //
|
---|
945 | // get random access
|
---|
946 | //
|
---|
947 | TArrayI ind(nrows);
|
---|
948 | GetRandomArrayI(ind);
|
---|
949 |
|
---|
950 | //
|
---|
951 | // define new matrix
|
---|
952 | //
|
---|
953 | Int_t evtcount1 = 0;
|
---|
954 | Int_t evtcount2 = 0;
|
---|
955 |
|
---|
956 | TMatrix mnewtmp(nrows, ncols);
|
---|
957 | TMatrix mrest(nrows, ncols);
|
---|
958 |
|
---|
959 | //
|
---|
960 | // select events (distribution after renormalization)
|
---|
961 | //
|
---|
962 | TVector vold(fM.GetNcols());
|
---|
963 | for (Int_t ir=0; ir<nmaxevts; ir++)
|
---|
964 | TMatrixRow(mnewtmp, evtcount1++) = vold = TMatrixRow(fM, ind[ir]);
|
---|
965 |
|
---|
966 | for (Int_t ir=nmaxevts; ir<nrows; ir++)
|
---|
967 | TMatrixRow(mrest, evtcount2++) = vold = TMatrixRow(fM, ind[ir]);
|
---|
968 |
|
---|
969 | //
|
---|
970 | // reduce size
|
---|
971 | //
|
---|
972 | // matrix fM having the requested distribution
|
---|
973 | // and the requested number of rows;
|
---|
974 | // this is the matrix to be used in the g/h separation
|
---|
975 | //
|
---|
976 | CopyCrop(fM, mnewtmp, evtcount1);
|
---|
977 | fNumRow = evtcount1;
|
---|
978 |
|
---|
979 | if (evtcount1 < nmaxevts)
|
---|
980 | *fLog << warn << "The reference sample contains less events (" << evtcount1 << ") than required (" << nmaxevts << ")" << endl;
|
---|
981 |
|
---|
982 | if (!rest)
|
---|
983 | return kTRUE;
|
---|
984 |
|
---|
985 | CopyCrop(*rest, mrest, evtcount2);
|
---|
986 |
|
---|
987 | return kTRUE;
|
---|
988 | }
|
---|
989 |
|
---|
990 | // --------------------------------------------------------------------------
|
---|
991 | //
|
---|
992 | // overload TOject member function read
|
---|
993 | // in order to reset the name of the object read
|
---|
994 | //
|
---|
995 | Int_t MHMatrix::Read(const char *name)
|
---|
996 | {
|
---|
997 | Int_t ret = TObject::Read(name);
|
---|
998 | SetName(name);
|
---|
999 |
|
---|
1000 | return ret;
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 | // --------------------------------------------------------------------------
|
---|