1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): A. Moralejo 3/2003 <mailto:moralejo@pd.infn.it>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // MHMcCT1CollectionArea //
|
---|
28 | // //
|
---|
29 | //////////////////////////////////////////////////////////////////////////////
|
---|
30 |
|
---|
31 | #include "MHMcCT1CollectionArea.h"
|
---|
32 |
|
---|
33 | #include <TH2.h>
|
---|
34 | #include <TCanvas.h>
|
---|
35 |
|
---|
36 | #include "MH.h"
|
---|
37 | #include "MBinning.h"
|
---|
38 |
|
---|
39 | ClassImp(MHMcCT1CollectionArea);
|
---|
40 |
|
---|
41 | // --------------------------------------------------------------------------
|
---|
42 | //
|
---|
43 | // Creates the three necessary histograms:
|
---|
44 | // - selected showers (input)
|
---|
45 | // - all showers (input)
|
---|
46 | // - collection area (result)
|
---|
47 | //
|
---|
48 | MHMcCT1CollectionArea::MHMcCT1CollectionArea(const char *name, const char *title, Int_t nbins, Axis_t minEnergy, Axis_t maxEnergy)
|
---|
49 | {
|
---|
50 | //
|
---|
51 | // nbins, minEnergy, maxEnergy defaults:
|
---|
52 | // we set the energy range from 100 Gev to 30000 GeV (in log, 3.5 orders
|
---|
53 | // of magnitude) and for each order we take 10 subdivisions --> 35 xbins
|
---|
54 | // we set the theta range from 12.5 to 48 deg, with 6 bins (the latter
|
---|
55 | // choice has been done to make the bin centers as close as possible to
|
---|
56 | // the actual zenith angles in the CT1 MC sample).
|
---|
57 | //
|
---|
58 |
|
---|
59 | fName = name ? name : "MHMcCT1CollectionArea";
|
---|
60 | fTitle = title ? title : "Collection Area vs. log10 Energy";
|
---|
61 |
|
---|
62 | fHistAll = new TH2D;
|
---|
63 | fHistSel = new TH2D;
|
---|
64 | fHistCol = new TH2D;
|
---|
65 |
|
---|
66 | SetBins(nbins, minEnergy, maxEnergy);
|
---|
67 |
|
---|
68 | fHistCol->SetName(fName);
|
---|
69 | fHistAll->SetName("AllEvents");
|
---|
70 | fHistSel->SetName("SelectedEvents");
|
---|
71 |
|
---|
72 | fHistCol->SetTitle(fTitle);
|
---|
73 | fHistAll->SetTitle("All showers - Theta vs log10 Energy distribution");
|
---|
74 | fHistSel->SetTitle("Selected showers - Theta vs log10 Energy distribution");
|
---|
75 |
|
---|
76 | fHistAll->SetDirectory(NULL);
|
---|
77 | fHistSel->SetDirectory(NULL);
|
---|
78 | fHistCol->SetDirectory(NULL);
|
---|
79 |
|
---|
80 | fHistAll->SetXTitle("log10 E [GeV]");
|
---|
81 | fHistAll->SetYTitle("theta [deg]");
|
---|
82 | fHistAll->SetZTitle("N");
|
---|
83 |
|
---|
84 | fHistSel->SetXTitle("log10 E [GeV]");
|
---|
85 | fHistSel->SetYTitle("theta [deg]");
|
---|
86 | fHistSel->SetZTitle("N");
|
---|
87 |
|
---|
88 | fHistCol->SetXTitle("log10 E [GeV]");
|
---|
89 | fHistCol->SetYTitle("theta [deg]");
|
---|
90 | fHistCol->SetZTitle("A [m^{2}]");
|
---|
91 | }
|
---|
92 |
|
---|
93 | // --------------------------------------------------------------------------
|
---|
94 | //
|
---|
95 | // Set binning of histograms. Binning of energy axis can be changed, that
|
---|
96 | // of theta axis is always the same (to match the CT1 MC sample theta dist):
|
---|
97 | //
|
---|
98 | void MHMcCT1CollectionArea::SetBins(Int_t nbins, Axis_t minEnergy, Axis_t maxEnergy)
|
---|
99 | {
|
---|
100 | MBinning binsx;
|
---|
101 | binsx.SetEdges(nbins, minEnergy, maxEnergy);
|
---|
102 |
|
---|
103 | MBinning binsy;
|
---|
104 | const Double_t yedge[7] = {12.5, 17.5, 23.5, 29.5, 35.5, 42., 48.};
|
---|
105 | const TArrayD yed(7,yedge);
|
---|
106 | binsy.SetEdges(yed);
|
---|
107 |
|
---|
108 | MH::SetBinning(fHistAll, &binsx, &binsy);
|
---|
109 | MH::SetBinning(fHistSel, &binsx, &binsy);
|
---|
110 | MH::SetBinning(fHistCol, &binsx, &binsy);
|
---|
111 | }
|
---|
112 |
|
---|
113 |
|
---|
114 | // --------------------------------------------------------------------------
|
---|
115 | //
|
---|
116 | // Delete the three histograms
|
---|
117 | //
|
---|
118 | MHMcCT1CollectionArea::~MHMcCT1CollectionArea()
|
---|
119 | {
|
---|
120 | delete fHistAll;
|
---|
121 | delete fHistSel;
|
---|
122 | delete fHistCol;
|
---|
123 | }
|
---|
124 |
|
---|
125 | // --------------------------------------------------------------------------
|
---|
126 | //
|
---|
127 | // Fill data into the histogram which contains the selected showers
|
---|
128 | //
|
---|
129 | void MHMcCT1CollectionArea::FillSel(Double_t energy, Double_t theta)
|
---|
130 | {
|
---|
131 | fHistSel->Fill(log10(energy), theta);
|
---|
132 | }
|
---|
133 |
|
---|
134 | // --------------------------------------------------------------------------
|
---|
135 | //
|
---|
136 | // Draw the histogram with all showers
|
---|
137 | //
|
---|
138 | void MHMcCT1CollectionArea::DrawAll(Option_t* option)
|
---|
139 | {
|
---|
140 | if (!gPad)
|
---|
141 | MH::MakeDefCanvas(fHistAll);
|
---|
142 |
|
---|
143 | fHistAll->Draw(option);
|
---|
144 |
|
---|
145 | gPad->Modified();
|
---|
146 | gPad->Update();
|
---|
147 | }
|
---|
148 |
|
---|
149 | // --------------------------------------------------------------------------
|
---|
150 | //
|
---|
151 | // Draw the histogram with the selected showers only.
|
---|
152 | //
|
---|
153 | void MHMcCT1CollectionArea::DrawSel(Option_t* option)
|
---|
154 | {
|
---|
155 | if (!gPad)
|
---|
156 | MH::MakeDefCanvas(fHistSel);
|
---|
157 |
|
---|
158 | fHistSel->Draw(option);
|
---|
159 |
|
---|
160 | gPad->Modified();
|
---|
161 | gPad->Update();
|
---|
162 | }
|
---|
163 |
|
---|
164 | // --------------------------------------------------------------------------
|
---|
165 | //
|
---|
166 | // Creates a new canvas and draws the histogram into it.
|
---|
167 | // Be careful: The histogram belongs to this object and won't get deleted
|
---|
168 | // together with the canvas.
|
---|
169 | //
|
---|
170 | TObject *MHMcCT1CollectionArea::DrawClone(Option_t* option) const
|
---|
171 | {
|
---|
172 | TCanvas *c = MH::MakeDefCanvas(fHistCol);
|
---|
173 |
|
---|
174 | //
|
---|
175 | // This is necessary to get the expected behaviour of DrawClone
|
---|
176 | //
|
---|
177 | gROOT->SetSelectedPad(NULL);
|
---|
178 |
|
---|
179 | fHistCol->DrawCopy(option);
|
---|
180 |
|
---|
181 | c->Modified();
|
---|
182 | c->Update();
|
---|
183 |
|
---|
184 | return c;
|
---|
185 | }
|
---|
186 |
|
---|
187 | void MHMcCT1CollectionArea::Draw(Option_t* option)
|
---|
188 | {
|
---|
189 | if (!gPad)
|
---|
190 | MH::MakeDefCanvas(fHistCol);
|
---|
191 |
|
---|
192 | fHistCol->Draw(option);
|
---|
193 |
|
---|
194 | gPad->Modified();
|
---|
195 | gPad->Update();
|
---|
196 | }
|
---|
197 |
|
---|
198 | //
|
---|
199 | // Calculate the Efficiency (collection area) for the CT1 MC sample
|
---|
200 | // and set the 'ReadyToSave' flag
|
---|
201 | //
|
---|
202 | void MHMcCT1CollectionArea::CalcEfficiency()
|
---|
203 | {
|
---|
204 | //
|
---|
205 | // Here we estimate the total number of showers in each energy bin
|
---|
206 | // from the known the energy range and spectral index of the generated
|
---|
207 | // showers. This procedure is intended for the CT1 MC files. The total
|
---|
208 | // number of generated events, collection area, spectral index etc will be
|
---|
209 | // set here by hand, so make sure that the MC sample you are using is the
|
---|
210 | // right one (check all these quantities in your files and compare with
|
---|
211 | // is written below. In some theta bins, there are two different
|
---|
212 | // productions, with different energy limits but with the same spectral
|
---|
213 | // slope. We account for this when calculating the original number of
|
---|
214 | // events in each energy bin.
|
---|
215 | //
|
---|
216 |
|
---|
217 | for (Int_t thetabin = 1; thetabin <= fHistAll->GetNbinsY(); thetabin++)
|
---|
218 | {
|
---|
219 | // This theta is not exactly the one of the MC events, just about
|
---|
220 | // the same:
|
---|
221 | Float_t theta = fHistAll->GetYaxis()->GetBinCenter(thetabin);
|
---|
222 |
|
---|
223 | Float_t emin1, emax1, emin2, emax2;
|
---|
224 | Float_t index, expo, k1, k2;
|
---|
225 | Float_t numevts1, numevts2;
|
---|
226 | Float_t r1, r2; // Impact parameter range (on ground).
|
---|
227 |
|
---|
228 | emin1 = 0; emax1 = 0; emin2 = 0; emax2 = 0;
|
---|
229 | expo = 0.; k1 = 0.; k2 = 0.; r1 = 0.; r2 = 0.;
|
---|
230 | numevts1 = 0; numevts2 = 0;
|
---|
231 |
|
---|
232 | if (theta > 14 && theta < 16) // 15 deg
|
---|
233 | {
|
---|
234 | r1 = 0.;
|
---|
235 | r2 = 250.; //meters
|
---|
236 | emin1 = 300.;
|
---|
237 | emax1 = 400.; // Energies in GeV.
|
---|
238 | emin2 = 400.;
|
---|
239 | emax2 = 30000.;
|
---|
240 | numevts1 = 4000.;
|
---|
241 | numevts2 = 25740.;
|
---|
242 | }
|
---|
243 | else if (theta > 20 && theta < 21) // 20.5 deg
|
---|
244 | {
|
---|
245 | r1 = 0.;
|
---|
246 | r2 = 263.; //meters
|
---|
247 | emin1 = 300.;
|
---|
248 | emax1 = 400.; // Energies in GeV.
|
---|
249 | emin2 = 400.;
|
---|
250 | emax2 = 30000.;
|
---|
251 | numevts1 = 6611.;
|
---|
252 | numevts2 = 24448.;
|
---|
253 | }
|
---|
254 | else if (theta > 26 && theta < 27) // 26.5 degrees
|
---|
255 | {
|
---|
256 | r1 = 0.;
|
---|
257 | r2 = 290.; //meters
|
---|
258 | emin1 = 300.;
|
---|
259 | emax1 = 400.; // Energies in GeV.
|
---|
260 | emax2 = emax1; emin2 = 400.;
|
---|
261 | emax2 = 30000.;
|
---|
262 | numevts1 = 4000.;
|
---|
263 | numevts2 = 26316.;
|
---|
264 | }
|
---|
265 | else if (theta > 32 && theta < 33) // 32.5 degrees
|
---|
266 | {
|
---|
267 | r1 = 0.;
|
---|
268 | r2 = 350.; //meters
|
---|
269 | emin1 = 300.;
|
---|
270 | emax1 = 30000.; // Energies in GeV.
|
---|
271 | emax2 = emax1;
|
---|
272 | numevts1 = 33646.;
|
---|
273 | }
|
---|
274 | else if (theta > 38 && theta < 39) // 38.75 degrees
|
---|
275 | {
|
---|
276 | r1 = 0.;
|
---|
277 | r2 = 380.; //meters
|
---|
278 | emin1 = 300.;
|
---|
279 | emax1 = 30000.; // Energies in GeV.
|
---|
280 | emax2 = emax1;
|
---|
281 | numevts1 = 38415.;
|
---|
282 | }
|
---|
283 | else if (theta > 44 && theta < 46) // 45 degrees
|
---|
284 | {
|
---|
285 | r1 = 0.;
|
---|
286 | r2 = 565.; //meters
|
---|
287 | emin1 = 300.;
|
---|
288 | emax1 = 50000.; // Energies in GeV.
|
---|
289 | emax2 = emax1;
|
---|
290 | numevts1 = 30197.;
|
---|
291 | }
|
---|
292 |
|
---|
293 | index = 1.5; // Differential spectral Index.
|
---|
294 | expo = 1.-index;
|
---|
295 | k1 = numevts1 / (pow(emax1,expo) - pow(emin1,expo));
|
---|
296 | k2 = numevts2 / (pow(emax2,expo) - pow(emin2,expo));
|
---|
297 |
|
---|
298 | for (Int_t i=1; i <= fHistAll->GetNbinsX(); i++)
|
---|
299 | {
|
---|
300 | const Float_t e1 = pow(10.,fHistAll->GetXaxis()->GetBinLowEdge(i));
|
---|
301 | const Float_t e2 = pow(10.,fHistAll->GetXaxis()->GetBinLowEdge(i+1));
|
---|
302 |
|
---|
303 | if (e1 < emin1 || e2 > emax2)
|
---|
304 | continue;
|
---|
305 |
|
---|
306 | Float_t events;
|
---|
307 |
|
---|
308 | if (e2 <= emax1)
|
---|
309 | events = k1 * (pow(e2, expo) - pow(e1, expo));
|
---|
310 | else if (e1 >= emin2)
|
---|
311 | events = k2 * (pow(e2, expo) - pow(e1, expo));
|
---|
312 | else
|
---|
313 | events =
|
---|
314 | k1 * (pow(emax1, expo) - pow(e1, expo))+
|
---|
315 | k2 * (pow(e2, expo) - pow(emin2, expo));
|
---|
316 |
|
---|
317 | fHistAll->SetBinContent(i, thetabin, events);
|
---|
318 | fHistAll->SetBinError(i, thetabin, sqrt(events));
|
---|
319 | }
|
---|
320 |
|
---|
321 | // -----------------------------------------------------------
|
---|
322 |
|
---|
323 | const Float_t dr = TMath::Pi() * (r2*r2 - r1*r1);
|
---|
324 |
|
---|
325 | for (Int_t ix = 1; ix <= fHistAll->GetNbinsX(); ix++)
|
---|
326 | {
|
---|
327 | const Float_t Na = fHistAll->GetBinContent(ix,thetabin);
|
---|
328 |
|
---|
329 | if (Na <= 0)
|
---|
330 | {
|
---|
331 | //
|
---|
332 | // If energy is large, this case means that no or very few events
|
---|
333 | // were generated at this energy bin. In this case we assign it
|
---|
334 | // the effective area of the bin below it in energy. If energy is
|
---|
335 | // below 1E4, it means that no events triggered -> eff area = 0
|
---|
336 | //
|
---|
337 |
|
---|
338 | if (fHistSel->GetXaxis()->GetBinLowEdge(ix) > 4.)
|
---|
339 | {
|
---|
340 | fHistCol->SetBinContent(ix, thetabin, fHistCol->GetBinContent(ix-1, thetabin));
|
---|
341 | fHistCol->SetBinError(ix, thetabin, fHistCol->GetBinError(ix-1, thetabin));
|
---|
342 | }
|
---|
343 | continue;
|
---|
344 | }
|
---|
345 |
|
---|
346 | const Float_t Ns = fHistSel->GetBinContent(ix,thetabin);
|
---|
347 |
|
---|
348 | // Since Na is an estimate of the total number of showers generated
|
---|
349 | // in the energy bin, it may happen that Ns (triggered showers) is
|
---|
350 | // larger than Na. In that case, the bin is skipped:
|
---|
351 |
|
---|
352 | if (Na < Ns)
|
---|
353 | continue;
|
---|
354 |
|
---|
355 | const Double_t eff = Ns/Na;
|
---|
356 | const Double_t err = sqrt((1.-eff)*Ns)/Na;
|
---|
357 |
|
---|
358 |
|
---|
359 | const Float_t area = dr * cos(theta*TMath::Pi()/180.);
|
---|
360 |
|
---|
361 | fHistCol->SetBinContent(ix, thetabin, eff*area);
|
---|
362 | fHistCol->SetBinError(ix, thetabin, err*area);
|
---|
363 |
|
---|
364 | }
|
---|
365 | }
|
---|
366 |
|
---|
367 | SetReadyToSave();
|
---|
368 | }
|
---|