| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): A. Moralejo 3/2003 <mailto:moralejo@pd.infn.it>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2003
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | // //
|
|---|
| 27 | // MHMcCT1CollectionArea //
|
|---|
| 28 | // //
|
|---|
| 29 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 30 |
|
|---|
| 31 | #include "MHMcCT1CollectionArea.h"
|
|---|
| 32 |
|
|---|
| 33 | #include <TH2.h>
|
|---|
| 34 | #include <TCanvas.h>
|
|---|
| 35 |
|
|---|
| 36 | #include "MMcEvt.hxx"
|
|---|
| 37 | #include "MH.h"
|
|---|
| 38 | #include "MBinning.h"
|
|---|
| 39 | #include "MParList.h"
|
|---|
| 40 | #include "MLog.h"
|
|---|
| 41 | #include "MLogManip.h"
|
|---|
| 42 |
|
|---|
| 43 | ClassImp(MHMcCT1CollectionArea);
|
|---|
| 44 |
|
|---|
| 45 | using namespace std;
|
|---|
| 46 |
|
|---|
| 47 | // --------------------------------------------------------------------------
|
|---|
| 48 | //
|
|---|
| 49 | // Creates the three necessary histograms:
|
|---|
| 50 | // - selected showers (input)
|
|---|
| 51 | // - all showers (input)
|
|---|
| 52 | // - collection area (result)
|
|---|
| 53 | //
|
|---|
| 54 | MHMcCT1CollectionArea::MHMcCT1CollectionArea(const char *name, const char *title) :
|
|---|
| 55 | fEaxis(kLog10)
|
|---|
| 56 | {
|
|---|
| 57 | //
|
|---|
| 58 | // nbins, minEnergy, maxEnergy defaults:
|
|---|
| 59 | // we set the energy range from 100 Gev to 30000 GeV (in log, 3.5 orders
|
|---|
| 60 | // of magnitude) and for each order we take 10 subdivisions --> 35 xbins
|
|---|
| 61 | // we set the theta range from 12.5 to 48 deg, with 6 bins (the latter
|
|---|
| 62 | // choice has been done to make the bin centers as close as possible to
|
|---|
| 63 | // the actual zenith angles in the CT1 MC sample).
|
|---|
| 64 | //
|
|---|
| 65 |
|
|---|
| 66 | fName = name ? name : "MHMcCT1CollectionArea";
|
|---|
| 67 | fTitle = title ? title : "Collection Area vs. log10 Energy";
|
|---|
| 68 |
|
|---|
| 69 | fHistAll = new TH2D;
|
|---|
| 70 | fHistSel = new TH2D;
|
|---|
| 71 | fHistCol = new TH2D;
|
|---|
| 72 |
|
|---|
| 73 | fHistCol->SetName(fName);
|
|---|
| 74 | fHistAll->SetName("AllEvents");
|
|---|
| 75 | fHistSel->SetName("SelectedEvents");
|
|---|
| 76 |
|
|---|
| 77 | fHistCol->SetTitle(fTitle);
|
|---|
| 78 | fHistAll->SetTitle("All showers - Theta vs log10 Energy distribution");
|
|---|
| 79 | fHistSel->SetTitle("Selected showers - Theta vs log10 Energy distribution");
|
|---|
| 80 |
|
|---|
| 81 | fHistAll->SetDirectory(NULL);
|
|---|
| 82 | fHistSel->SetDirectory(NULL);
|
|---|
| 83 | fHistCol->SetDirectory(NULL);
|
|---|
| 84 |
|
|---|
| 85 | fHistAll->SetXTitle("log10(E [GeV])");
|
|---|
| 86 | fHistAll->SetYTitle("\\Theta [\\circ]");
|
|---|
| 87 | fHistAll->SetZTitle("Counts");
|
|---|
| 88 |
|
|---|
| 89 | fHistSel->SetXTitle("log10(E [GeV])");
|
|---|
| 90 | fHistSel->SetYTitle("\\Theta [\\circ]");
|
|---|
| 91 | fHistSel->SetZTitle("Counts");
|
|---|
| 92 |
|
|---|
| 93 | fHistCol->SetXTitle("log10(E [GeV])");
|
|---|
| 94 | fHistCol->SetYTitle("theta [deg]");
|
|---|
| 95 | fHistCol->SetZTitle("A [m^{2}]");
|
|---|
| 96 |
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | // --------------------------------------------------------------------------
|
|---|
| 100 | //
|
|---|
| 101 | // Delete the three histograms
|
|---|
| 102 | //
|
|---|
| 103 | MHMcCT1CollectionArea::~MHMcCT1CollectionArea()
|
|---|
| 104 | {
|
|---|
| 105 | delete fHistAll;
|
|---|
| 106 | delete fHistSel;
|
|---|
| 107 | delete fHistCol;
|
|---|
| 108 | }
|
|---|
| 109 |
|
|---|
| 110 | // --------------------------------------------------------------------------
|
|---|
| 111 | //
|
|---|
| 112 | // Set the binnings and prepare the filling of the histograms
|
|---|
| 113 | //
|
|---|
| 114 | Bool_t MHMcCT1CollectionArea::SetupFill(const MParList *plist)
|
|---|
| 115 | {
|
|---|
| 116 | const MBinning* binsenergy = (MBinning*)plist->FindObject("BinningE");
|
|---|
| 117 | const MBinning* binstheta = (MBinning*)plist->FindObject("BinningTheta");
|
|---|
| 118 |
|
|---|
| 119 | if (!binsenergy || !binstheta)
|
|---|
| 120 | {
|
|---|
| 121 | *fLog << err << dbginf << "At least one MBinning not found... aborting.";
|
|---|
| 122 | *fLog << endl;
|
|---|
| 123 | return kFALSE;
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | SetBinning(fHistAll, binsenergy, binstheta);
|
|---|
| 127 | SetBinning(fHistSel, binsenergy, binstheta);
|
|---|
| 128 | SetBinning(fHistCol, binsenergy, binstheta);
|
|---|
| 129 |
|
|---|
| 130 | fHistAll->Sumw2();
|
|---|
| 131 | fHistSel->Sumw2();
|
|---|
| 132 | fHistCol->Sumw2();
|
|---|
| 133 |
|
|---|
| 134 | if (fEaxis == kLinear)
|
|---|
| 135 | {
|
|---|
| 136 | fTitle = "Collection Area vs. Energy";
|
|---|
| 137 | fHistCol->SetTitle(fTitle);
|
|---|
| 138 | fHistAll->SetTitle("All showers - Theta vs Energy distribution");
|
|---|
| 139 | fHistSel->SetTitle("Selected showers - Theta vs Energy distribution");
|
|---|
| 140 | fHistCol->SetXTitle("E [GeV]");
|
|---|
| 141 | fHistAll->SetXTitle("E [GeV]");
|
|---|
| 142 | fHistSel->SetXTitle("E [GeV]");
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | return kTRUE;
|
|---|
| 146 | }
|
|---|
| 147 |
|
|---|
| 148 |
|
|---|
| 149 | // --------------------------------------------------------------------------
|
|---|
| 150 | //
|
|---|
| 151 | // Fill data into the histogram which contains the selected showers
|
|---|
| 152 | //
|
|---|
| 153 | Bool_t MHMcCT1CollectionArea::Fill(const MParContainer *par, const Stat_t w)
|
|---|
| 154 | {
|
|---|
| 155 | MMcEvt &mcevt = *(MMcEvt*)par;
|
|---|
| 156 |
|
|---|
| 157 | const Double_t E = fEaxis==kLinear ? mcevt.GetEnergy() : log10(mcevt.GetEnergy());
|
|---|
| 158 |
|
|---|
| 159 | fHistSel->Fill(E, kRad2Deg*mcevt.GetTelescopeTheta(), w);
|
|---|
| 160 |
|
|---|
| 161 | return kTRUE;
|
|---|
| 162 | }
|
|---|
| 163 |
|
|---|
| 164 | // --------------------------------------------------------------------------
|
|---|
| 165 | //
|
|---|
| 166 | // Draw the histogram with all showers
|
|---|
| 167 | //
|
|---|
| 168 | void MHMcCT1CollectionArea::DrawAll(Option_t* option)
|
|---|
| 169 | {
|
|---|
| 170 | if (!gPad)
|
|---|
| 171 | MH::MakeDefCanvas(fHistAll);
|
|---|
| 172 |
|
|---|
| 173 | fHistAll->Draw(option);
|
|---|
| 174 |
|
|---|
| 175 | gPad->Modified();
|
|---|
| 176 | gPad->Update();
|
|---|
| 177 | }
|
|---|
| 178 |
|
|---|
| 179 | // --------------------------------------------------------------------------
|
|---|
| 180 | //
|
|---|
| 181 | // Draw the histogram with the selected showers only.
|
|---|
| 182 | //
|
|---|
| 183 | void MHMcCT1CollectionArea::DrawSel(Option_t* option)
|
|---|
| 184 | {
|
|---|
| 185 | if (!gPad)
|
|---|
| 186 | MH::MakeDefCanvas(fHistSel);
|
|---|
| 187 |
|
|---|
| 188 | fHistSel->Draw(option);
|
|---|
| 189 |
|
|---|
| 190 | gPad->Modified();
|
|---|
| 191 | gPad->Update();
|
|---|
| 192 | }
|
|---|
| 193 |
|
|---|
| 194 | // --------------------------------------------------------------------------
|
|---|
| 195 | //
|
|---|
| 196 | // Creates a new canvas and draws the histogram into it.
|
|---|
| 197 | // Be careful: The histogram belongs to this object and won't get deleted
|
|---|
| 198 | // together with the canvas.
|
|---|
| 199 | //
|
|---|
| 200 | TObject *MHMcCT1CollectionArea::DrawClone(Option_t* option) const
|
|---|
| 201 | {
|
|---|
| 202 | TCanvas &c = *MakeDefCanvas("CollArea", "Collection area plots", 600, 600);
|
|---|
| 203 | c.Divide(2,2);
|
|---|
| 204 |
|
|---|
| 205 | //
|
|---|
| 206 | // This is necessary to get the expected behaviour of DrawClone
|
|---|
| 207 | //
|
|---|
| 208 | gROOT->SetSelectedPad(NULL);
|
|---|
| 209 |
|
|---|
| 210 | c.cd(1);
|
|---|
| 211 | if (fEaxis == kLinear)
|
|---|
| 212 | gPad->SetLogx();
|
|---|
| 213 | fHistCol->SetDirectory(NULL);
|
|---|
| 214 | fHistCol->DrawCopy(option);
|
|---|
| 215 |
|
|---|
| 216 | c.cd(2);
|
|---|
| 217 | if (fEaxis == kLinear)
|
|---|
| 218 | gPad->SetLogx();
|
|---|
| 219 | fHistSel->SetDirectory(NULL);
|
|---|
| 220 | fHistSel->DrawCopy(option);
|
|---|
| 221 |
|
|---|
| 222 | c.cd(3);
|
|---|
| 223 | if (fEaxis == kLinear)
|
|---|
| 224 | gPad->SetLogx();
|
|---|
| 225 | fHistAll->SetDirectory(NULL);
|
|---|
| 226 | fHistAll->DrawCopy(option);
|
|---|
| 227 |
|
|---|
| 228 |
|
|---|
| 229 | c.Modified();
|
|---|
| 230 | c.Update();
|
|---|
| 231 |
|
|---|
| 232 | return &c;
|
|---|
| 233 | }
|
|---|
| 234 |
|
|---|
| 235 | void MHMcCT1CollectionArea::Draw(Option_t* option)
|
|---|
| 236 | {
|
|---|
| 237 | if (!gPad)
|
|---|
| 238 | MH::MakeDefCanvas(fHistCol);
|
|---|
| 239 |
|
|---|
| 240 | fHistCol->Draw(option);
|
|---|
| 241 |
|
|---|
| 242 | gPad->Modified();
|
|---|
| 243 | gPad->Update();
|
|---|
| 244 | }
|
|---|
| 245 |
|
|---|
| 246 | //
|
|---|
| 247 | // Calculate the Efficiency (collection area) for the CT1 MC sample
|
|---|
| 248 | // and set the 'ReadyToSave' flag
|
|---|
| 249 | //
|
|---|
| 250 | void MHMcCT1CollectionArea::CalcEfficiency()
|
|---|
| 251 | {
|
|---|
| 252 | //
|
|---|
| 253 | // Here we estimate the total number of showers in each energy bin
|
|---|
| 254 | // from the known the energy range and spectral index of the generated
|
|---|
| 255 | // showers. This procedure is intended for the CT1 MC files. The total
|
|---|
| 256 | // number of generated events, collection area, spectral index etc will be
|
|---|
| 257 | // set here by hand, so make sure that the MC sample you are using is the
|
|---|
| 258 | // right one (check all these quantities in your files and compare with
|
|---|
| 259 | // what is written below. In some theta bins, there are two different
|
|---|
| 260 | // productions, with different energy limits but with the same spectral
|
|---|
| 261 | // slope. We account for this when calculating the original number of
|
|---|
| 262 | // events in each energy bin.
|
|---|
| 263 | //
|
|---|
| 264 | // The theta angle with which the MC data (from D. Kranich) were produced
|
|---|
| 265 | // is not exactly the center of the theta bins we are using (the bin limits
|
|---|
| 266 | // should be 0.0, 17.5, 23.5, 29.5, 35.5, 42., 50.). The theta variable in
|
|---|
| 267 | // the MC root file has nevertheless been changed (W.Wittek) to correspond
|
|---|
| 268 | // to the centers of these bins. Only in the first bin is the difference big:
|
|---|
| 269 | // the data were produced at theta = 15 degrees, whreas the bin center is at
|
|---|
| 270 | // 8.75 degrees. Howeverm at such low z.a. the shower characteristics change
|
|---|
| 271 | // very slowly with theta.
|
|---|
| 272 | //
|
|---|
| 273 | //
|
|---|
| 274 | //
|
|---|
| 275 | // Only for the binning taken from D. Kranich :
|
|---|
| 276 | //
|
|---|
| 277 |
|
|---|
| 278 | for (Int_t thetabin = 1; thetabin <= fHistAll->GetNbinsY(); thetabin++)
|
|---|
| 279 | {
|
|---|
| 280 | // This theta is not exactly the one of the MC events, just about
|
|---|
| 281 | // the same (bins have been selected so):
|
|---|
| 282 |
|
|---|
| 283 | Float_t theta = fHistAll->GetYaxis()->GetBinCenter(thetabin);
|
|---|
| 284 | Float_t thetalo = fHistAll->GetYaxis()->GetBinLowEdge(thetabin);
|
|---|
| 285 | Float_t thetahi = fHistAll->GetYaxis()->GetBinLowEdge(thetabin+1);
|
|---|
| 286 |
|
|---|
| 287 | Float_t emin[4]; // Minimum energy in MC sample
|
|---|
| 288 | Float_t emax[4]; // Maximum energy in MC sample
|
|---|
| 289 | Float_t index[4]; // Spectral index
|
|---|
| 290 | Float_t numevts[4]; // Number of events
|
|---|
| 291 | Float_t multfactor[4]; // Factor by which the original number of events in an MC
|
|---|
| 292 | // sample has been multiplied to account for the differences
|
|---|
| 293 | // in the generation areas of the various samples.
|
|---|
| 294 | Float_t rmax; // Maximum impact parameter range (on ground up to 45 degrees,
|
|---|
| 295 | // on a plane perpendicular to Shower axis for 55 and 65 deg).
|
|---|
| 296 |
|
|---|
| 297 | memset(emin, 0, 4*sizeof(Float_t));
|
|---|
| 298 | memset(emax, 0, 4*sizeof(Float_t));
|
|---|
| 299 | memset(index, 0, 4*sizeof(Float_t));
|
|---|
| 300 | memset(numevts, 0, 4*sizeof(Float_t));
|
|---|
| 301 | rmax = 0.;
|
|---|
| 302 |
|
|---|
| 303 | multfactor[0] = 1.;
|
|---|
| 304 | multfactor[1] = 1.;
|
|---|
| 305 | multfactor[2] = 1.;
|
|---|
| 306 | multfactor[3] = 1.;
|
|---|
| 307 |
|
|---|
| 308 | //
|
|---|
| 309 | // rmin and rmax are the minimum and maximum values of the impact
|
|---|
| 310 | // parameter of the shower on the ground (horizontal plane).
|
|---|
| 311 | //
|
|---|
| 312 |
|
|---|
| 313 | Int_t num_MC_samples = 0;
|
|---|
| 314 |
|
|---|
| 315 | //if (theta > 8 && theta < 9) // 8.75 deg
|
|---|
| 316 | if ( thetalo<8.75 && 8.75<thetahi) // 8.75 deg
|
|---|
| 317 | {
|
|---|
| 318 | emin[0] = 300.;
|
|---|
| 319 | emax[0] = 400.; // Energies in GeV.
|
|---|
| 320 | index[0] = 1.5;
|
|---|
| 321 | numevts[0] = 4000.;
|
|---|
| 322 |
|
|---|
| 323 | emin[1] = 400.;
|
|---|
| 324 | emax[1] = 30000.;
|
|---|
| 325 | index[1] = 1.5;
|
|---|
| 326 | numevts[1] = 25740.;
|
|---|
| 327 |
|
|---|
| 328 | rmax = 250.; //meters
|
|---|
| 329 | num_MC_samples = 2;
|
|---|
| 330 | }
|
|---|
| 331 | //else if (theta > 20 && theta < 21) // 20.5 deg
|
|---|
| 332 | else if ( thetalo<20.5 && 20.5<thetahi) // 20.5 deg
|
|---|
| 333 | {
|
|---|
| 334 | emin[0] = 300.;
|
|---|
| 335 | emax[0] = 400.; // Energies in GeV.
|
|---|
| 336 | index[0] = 1.5;
|
|---|
| 337 | numevts[0] = 6611.;
|
|---|
| 338 |
|
|---|
| 339 | emin[1] = 400.;
|
|---|
| 340 | emax[1] = 30000.;
|
|---|
| 341 | index[1] = 1.5;
|
|---|
| 342 | numevts[1] = 24448.;
|
|---|
| 343 |
|
|---|
| 344 | rmax = 263.;
|
|---|
| 345 | num_MC_samples = 2;
|
|---|
| 346 | }
|
|---|
| 347 | //else if (theta > 26 && theta < 27) // 26.5 degrees
|
|---|
| 348 | else if ( thetalo<26.5 && 26.5<thetahi) // 26.5 deg
|
|---|
| 349 | {
|
|---|
| 350 | emin[0] = 300.;
|
|---|
| 351 | emax[0] = 400.; // Energies in GeV.
|
|---|
| 352 | index[0] = 1.5;
|
|---|
| 353 | numevts[0] = 4000.;
|
|---|
| 354 |
|
|---|
| 355 | emin[1] = 400.;
|
|---|
| 356 | emax[1] = 30000.;
|
|---|
| 357 | index[1] = 1.5;
|
|---|
| 358 | numevts[1] = 26316.;
|
|---|
| 359 |
|
|---|
| 360 | rmax = 290.; //meters
|
|---|
| 361 | num_MC_samples = 2;
|
|---|
| 362 | }
|
|---|
| 363 | //else if (theta > 32 && theta < 33) // 32.5 degrees
|
|---|
| 364 | else if ( thetalo<32.5 && 32.5<thetahi) // 32.5 deg
|
|---|
| 365 | {
|
|---|
| 366 | emin[0] = 300.;
|
|---|
| 367 | emax[0] = 30000.; // Energies in GeV.
|
|---|
| 368 | index[0] = 1.5;
|
|---|
| 369 | numevts[0] = 33646.;
|
|---|
| 370 |
|
|---|
| 371 | rmax = 350.; //meters
|
|---|
| 372 | num_MC_samples = 1;
|
|---|
| 373 | }
|
|---|
| 374 | //else if (theta > 38 && theta < 39) // 38.75 degrees
|
|---|
| 375 | else if ( thetalo<38.75 && 38.75<thetahi) // 38.75 deg
|
|---|
| 376 | {
|
|---|
| 377 | emin[0] = 300.;
|
|---|
| 378 | emax[0] = 30000.; // Energies in GeV.
|
|---|
| 379 | index[0] = 1.5;
|
|---|
| 380 | numevts[0] = 38415.;
|
|---|
| 381 |
|
|---|
| 382 | rmax = 380.; //meters
|
|---|
| 383 | num_MC_samples = 1;
|
|---|
| 384 | }
|
|---|
| 385 | //else if (theta > 45 && theta < 47) // 46 degrees
|
|---|
| 386 | else if ( thetalo<46 && 46<thetahi) // 46 deg
|
|---|
| 387 | {
|
|---|
| 388 | emin[0] = 300.;
|
|---|
| 389 | emax[0] = 50000.; // Energies in GeV.
|
|---|
| 390 | index[0] = 1.5;
|
|---|
| 391 | numevts[0] = 30197.;
|
|---|
| 392 |
|
|---|
| 393 | rmax = 565.; //meters
|
|---|
| 394 | num_MC_samples = 1;
|
|---|
| 395 | }
|
|---|
| 396 | //else if (theta > 54 && theta < 56) // 55 degrees
|
|---|
| 397 | else if ( thetalo<55 && 55<thetahi) // 55 deg
|
|---|
| 398 | {
|
|---|
| 399 | //
|
|---|
| 400 | // The value of numevts in the first sample (below) has been
|
|---|
| 401 | // changed to simplify calculations. We have multiplied it
|
|---|
| 402 | // times 1.2808997 to convert it to the number it would be if
|
|---|
| 403 | // the generation area was equal to that of the other samples
|
|---|
| 404 | // at 55 degrees (pi*600**2 m2). This has to be taken into account
|
|---|
| 405 | // in the error in the number of events.
|
|---|
| 406 | //
|
|---|
| 407 |
|
|---|
| 408 | emin[0] = 500.;
|
|---|
| 409 | emax[0] = 50000.; // Energies in GeV.
|
|---|
| 410 | index[0] = 1.5;
|
|---|
| 411 | numevts[0] = 3298.;
|
|---|
| 412 | multfactor[0] = 1.2808997;
|
|---|
| 413 |
|
|---|
| 414 | emin[1] = 1500.;
|
|---|
| 415 | emax[1] = 50000.; // Energies in GeV.
|
|---|
| 416 | index[1] = 1.5;
|
|---|
| 417 | numevts[1] = 22229.;
|
|---|
| 418 |
|
|---|
| 419 | emin[2] = 1500.;
|
|---|
| 420 | emax[2] = 50000.; // Energies in GeV.
|
|---|
| 421 | index[2] = 1.7;
|
|---|
| 422 | numevts[2] = 7553.;
|
|---|
| 423 |
|
|---|
| 424 | rmax = 600; //meters
|
|---|
| 425 | num_MC_samples = 3;
|
|---|
| 426 | }
|
|---|
| 427 |
|
|---|
| 428 | //else if (theta > 64 && theta < 66) // 65 degrees
|
|---|
| 429 | else if ( thetalo<65 && 65<thetahi) // 65 deg
|
|---|
| 430 | {
|
|---|
| 431 | emin[0] = 2000.;
|
|---|
| 432 | emax[0] = 50000.; // Energies in GeV.
|
|---|
| 433 | index[0] = 1.5;
|
|---|
| 434 | numevts[0] = 16310.;
|
|---|
| 435 |
|
|---|
| 436 | emin[1] = 2000.;
|
|---|
| 437 | emax[1] = 50000.; // Energies in GeV.
|
|---|
| 438 | index[1] = 1.7;
|
|---|
| 439 | numevts[1] = 3000.;
|
|---|
| 440 |
|
|---|
| 441 | //
|
|---|
| 442 | // The value of numevts in the next two samples (below) has been
|
|---|
| 443 | // changed to simplify calculations. We have converted them to the
|
|---|
| 444 | // number it would be if the generation area was equal to that of
|
|---|
| 445 | // the first two samples at 65 degrees (pi*800**2 m2) (four times
|
|---|
| 446 | // as many, since the original maximum impact parameter was 400
|
|---|
| 447 | // instead of 800. This is taken into account in the error too.
|
|---|
| 448 | //
|
|---|
| 449 |
|
|---|
| 450 | emin[2] = 5000.;
|
|---|
| 451 | emax[2] = 50000.; // Energies in GeV.
|
|---|
| 452 | index[2] = 1.5;
|
|---|
| 453 | numevts[2] = 56584.;
|
|---|
| 454 | multfactor[2] = 4;
|
|---|
| 455 |
|
|---|
| 456 | emin[3] = 5000.;
|
|---|
| 457 | emax[3] = 50000.; // Energies in GeV.
|
|---|
| 458 | index[3] = 1.7;
|
|---|
| 459 | numevts[3] = 11464;
|
|---|
| 460 | multfactor[3] = 4;
|
|---|
| 461 |
|
|---|
| 462 | rmax = 800; // meters
|
|---|
| 463 | num_MC_samples = 4;
|
|---|
| 464 | }
|
|---|
| 465 |
|
|---|
| 466 |
|
|---|
| 467 | for (Int_t i=1; i <= fHistAll->GetNbinsX(); i++)
|
|---|
| 468 | {
|
|---|
| 469 | Float_t e1;
|
|---|
| 470 | Float_t e2;
|
|---|
| 471 |
|
|---|
| 472 | if (fEaxis == kLog10)
|
|---|
| 473 | {
|
|---|
| 474 | e1 = pow(10.,fHistAll->GetXaxis()->GetBinLowEdge(i));
|
|---|
| 475 | e2 = pow(10.,fHistAll->GetXaxis()->GetBinLowEdge(i+1));
|
|---|
| 476 | }
|
|---|
| 477 | else
|
|---|
| 478 | {
|
|---|
| 479 | e1 = fHistAll->GetXaxis()->GetBinLowEdge(i);
|
|---|
| 480 | e2 = fHistAll->GetXaxis()->GetBinLowEdge(i+1);
|
|---|
| 481 | }
|
|---|
| 482 |
|
|---|
| 483 | Float_t events = 0.;
|
|---|
| 484 | Float_t errevents = 0.;
|
|---|
| 485 |
|
|---|
| 486 | for (Int_t sample = 0; sample < num_MC_samples; sample++)
|
|---|
| 487 | {
|
|---|
| 488 | Float_t expo = 1.-index[sample];
|
|---|
| 489 | Float_t k = numevts[sample] / (pow(emax[sample],expo) - pow(emin[sample],expo));
|
|---|
| 490 |
|
|---|
| 491 | if (e2 < emin[sample] || e1 > emax[sample])
|
|---|
| 492 | continue;
|
|---|
| 493 |
|
|---|
| 494 | if (emin[sample] > e1)
|
|---|
| 495 | e1 = emin[sample];
|
|---|
| 496 |
|
|---|
| 497 | if (emax[sample] < e2)
|
|---|
| 498 | e2 = emax[sample];
|
|---|
| 499 |
|
|---|
| 500 | events += k * (pow(e2, expo) - pow(e1, expo));
|
|---|
| 501 | errevents += multfactor[sample] * events;
|
|---|
| 502 | }
|
|---|
| 503 |
|
|---|
| 504 | errevents= sqrt(errevents);
|
|---|
| 505 |
|
|---|
| 506 | fHistAll->SetBinContent(i, thetabin, events);
|
|---|
| 507 | fHistAll->SetBinError(i, thetabin, errevents);
|
|---|
| 508 | }
|
|---|
| 509 |
|
|---|
| 510 | // -----------------------------------------------------------
|
|---|
| 511 |
|
|---|
| 512 | const Float_t dr = TMath::Pi() * rmax * rmax;
|
|---|
| 513 |
|
|---|
| 514 | for (Int_t ix = 1; ix <= fHistAll->GetNbinsX(); ix++)
|
|---|
| 515 | {
|
|---|
| 516 | const Float_t Na = fHistAll->GetBinContent(ix,thetabin);
|
|---|
| 517 |
|
|---|
| 518 | if (Na <= 0)
|
|---|
| 519 | {
|
|---|
| 520 | //
|
|---|
| 521 | // If energy is large, this case means that no or very few events
|
|---|
| 522 | // were generated at this energy bin. In this case we assign it
|
|---|
| 523 | // the effective area of the bin below it in energy. If energy is
|
|---|
| 524 | // below 1E4, it means that no events triggered -> eff area = 0
|
|---|
| 525 | //
|
|---|
| 526 | // NOW DISABLED: because collection area after analysis does not
|
|---|
| 527 | // saturate at high E!
|
|---|
| 528 | //
|
|---|
| 529 |
|
|---|
| 530 | /*
|
|---|
| 531 | if (fHistSel->GetXaxis()->GetBinLowEdge(ix) > 4.)
|
|---|
| 532 | {
|
|---|
| 533 | fHistCol->SetBinContent(ix, thetabin, fHistCol->GetBinContent(ix-1, thetabin));
|
|---|
| 534 | fHistCol->SetBinError(ix, thetabin, fHistCol->GetBinError(ix-1, thetabin));
|
|---|
| 535 | }
|
|---|
| 536 | */
|
|---|
| 537 | continue;
|
|---|
| 538 | }
|
|---|
| 539 |
|
|---|
| 540 | const Float_t Ns = fHistSel->GetBinContent(ix,thetabin);
|
|---|
| 541 |
|
|---|
| 542 | // Since Na is an estimate of the total number of showers generated
|
|---|
| 543 | // in the energy bin, it may happen that Ns (triggered showers) is
|
|---|
| 544 | // larger than Na. In that case, the bin is skipped:
|
|---|
| 545 |
|
|---|
| 546 | if (Na < Ns)
|
|---|
| 547 | continue;
|
|---|
| 548 |
|
|---|
| 549 | const Double_t eff = Ns/Na;
|
|---|
| 550 | const Double_t efferr = sqrt((1.-eff)*Ns)/Na;
|
|---|
| 551 |
|
|---|
| 552 | //
|
|---|
| 553 | // Now we get the total area, perpendicular to the observation direction
|
|---|
| 554 | // in which the events were generated (correct for cos theta):
|
|---|
| 555 | //
|
|---|
| 556 |
|
|---|
| 557 | Float_t area = dr;
|
|---|
| 558 |
|
|---|
| 559 | if (theta < 50)
|
|---|
| 560 | area *= cos(theta*TMath::Pi()/180.);
|
|---|
| 561 |
|
|---|
| 562 | // Above 50 degrees MC was generated with Corsika 6.xx, and the cores
|
|---|
| 563 | // were distributed on a circle perpendicular to the observation direction,
|
|---|
| 564 | // and not on ground, hence the correction for cos(theta) is not necessary.
|
|---|
| 565 | //
|
|---|
| 566 |
|
|---|
| 567 |
|
|---|
| 568 | fHistCol->SetBinContent(ix, thetabin, eff*area);
|
|---|
| 569 | fHistCol->SetBinError(ix, thetabin, efferr*area);
|
|---|
| 570 |
|
|---|
| 571 | }
|
|---|
| 572 | }
|
|---|
| 573 |
|
|---|
| 574 | SetReadyToSave();
|
|---|
| 575 | }
|
|---|