source: trunk/MagicSoft/Mars/mimage/M2dimFunction.cc@ 2493

Last change on this file since 2493 was 2475, checked in by wittek, 21 years ago
*** empty log message ***
File size: 7.0 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Wolfgang Wittek 10/2003 <mailto:wittek@mppmu.mpg.de>
19!
20! Copyright: MAGIC Software Development, 2000-2003
21!
22!
23\* ======================================================================== */
24
25/////////////////////////////////////////////////////////////////////////////
26//
27// M2dimFunction
28//
29// Storage Container for the parameters of the 2-dim function describing
30// the shower image
31//
32//
33/////////////////////////////////////////////////////////////////////////////
34#include "M2dimFunction.h"
35
36#include <fstream>>
37
38#include "TMath.h"
39#include "TVectorD.h"
40#include "TMatrixD.h"
41
42#include "MLog.h"
43#include "MLogManip.h"
44
45#include "MHillas.h"
46
47#include "MGeomCam.h"
48#include "MGeomPix.h"
49
50#include "MCerPhotEvt.h"
51#include "MCerPhotPix.h"
52
53ClassImp(M2dimFunction);
54
55using namespace std;
56
57// --------------------------------------------------------------------------
58//
59// TwodimFunction
60//
61// this function calculates for a given set of parameters
62//
63// - the log likelihood function L to be minimized
64// - beta_k = -1/2 * dL/da_k (a kind of gradient of L)
65// - alfa_kl = 1/2 * dL/(da_k da_l) (a kind of second derivative of L)
66//
67// (see Numerical recipes (2nd ed.), W.H.Press et al., p. 687)
68//
69// Note : this is not a member function of M2dimFunction;
70// it will be called by the minimization class MMarquardt;
71// the address of this function is passed to MMarquardt
72// in M2dimFunction::Fit() by the call MMarquardt::Loop()
73//
74
75Bool_t TwodimFunction(TVectord &a, TMatrixD &alfa, TVectord &beta, Double_t &L)
76{
77 Int_t npar = a.GetNrows();
78 Int_t npixels =;
79
80 TMatrixD dmuda (npar, npixels);
81 TVector dLdmu (npixels);
82 TVector d2Ldmu2(npixels);
83
84 //------------------------------------------
85 // these are the parameters for which alfa, beta and L are calculated
86
87 Double_t xbar = a(0);
88 Double_t ybar = a(1);
89 Double_t delta = a(2);
90 Double_t amp = a(3);
91 Double_t leng = a(4);
92 Double_t wid = a(5);
93 Double_t asy = a(6);
94
95
96 for (Int_t m=0; m<npar; m++)
97 {
98 beta(m) = 0.0;
99 for (Int_t n=0; n<=m; n++)
100 {
101 alfa(m,n) = 0.0;
102 }
103 }
104
105 //------------------------------------------
106 // loop over the pixels
107 //
108 // quantities for each pixel :
109 //
110 // ar pixel area
111 // b quantum efficiency * geometrical acceptance of 1st dynode
112 // c = ar * b
113 // q measured number of photo electrons
114 // (after subtraction of the pedestal)
115 // S 'measured' number of photo electrons (including the NSB)
116 // mu fitted number of Cherenkov photons per area
117 // lambda average number of NSB photons per area
118 // (obtained from the pedestal fluctuations)
119 // sigma_el sigma of electronic noise
120 // F the probability of measuring S
121
122
123 L = 0.0;
124 Double_t Fexcessnoise2 = 1.2 * 1.2;
125 for (Int_t i=0; i<npixels; i++)
126 {
127 Double_t lambda =
128 Double_t sigma_el =
129
130  Double_t S =
131 Double_t mu = 2-dim function evaluated for pixel i, at the position (x,y);
132
133 Double_t F = 0.0;
134 Double_t dFdmu = 0.0;
135 Double_t dFdmu2 = 0.0;
136
137 // range of n for which Poisson and Gaus are not too small
138 Int_t nmin =
139 Int_t nmax =
140
141 for (Int_t n=nmin; n<=nmax; n++)
142 {
143 Double_t sigma_n = sqrt( n*(Fecessnoise2-1.0) + sigma_el*sigma_el );
144 Double_t probn = TMath::Poisson(n, c*(mu+lambda))
145 * TMath::Gaus(S, n, sigma_n, kTRUE);
146 Double_t brack = n/(mu+lambda)-c;
147
148 F += probn;
149 dFdmu += probn * brack;
150 dFdmu2 += probn * (brack * brack - n/( (mu+lambda)*(mu+lambda) );
151 }
152
153 // log-likelihood function
154 L -= 2.0 * log(F);
155
156 // derivatives of log-likelihood function, up to factors of 2)
157 dLdmu(i) = dFdmu / F;
158 d2Ldmu2(i) = dFdmu*dFdmu / (F*F) - dFdmu2 / F;
159
160
161 // derivatives of 2-dim function mu
162 // - with respect to xbar, ybar and delta :
163 dmudu =
164 dmudv =
165 dmuda(0,i) = -dmudu * cos(delta) + dmudv * sin(delta);
166 dmuda(1,i) = -dmudu * sin(delta) - dmudv * cos(delta);
167 dmuda(2,i) = dmudu * ( -(x-xbar)*sin(delta) +(y-ybar)*cos(delta) )
168 + dmudv * ( -(x-xbar)*cos(delta) -(y-ybar)*sin(delta) );
169
170 // - with respect to the other variables :
171 dmuda(3,i) =
172 dmuda(4,i) =
173 dmuda(5,i) =
174 dmuda(6,i) =
175 }
176
177
178 //------------------------------------------
179 // calculate alfa and beta
180 //
181 // sum over all pixels
182 for (Int_t i=0; i<npixels; i++)
183 {
184 for (Int_t m=0; m<npar; m++)
185 {
186 Double_t g = dmuda(m,i);
187 for (Int_t n=0; n<=m; n++)
188 {
189 alfa(m,n) += d2Ldmu2(i) * g * dmuda(n,i);
190 }
191 beta(m) += dLdmu(i) * g;
192 }
193 }
194
195 return kTRUE;
196}
197
198// --------------------------------------------------------------------------
199//
200// Default constructor.
201//
202M2dimFunction::M2dimFunction(const char *name, const char *title)
203{
204 fName = name ? name : "M2dimFunction";
205 fTitle = title ? title : "Parameters of 2-dim function";
206}
207
208
209// --------------------------------------------------------------------------
210//
211// SetVinit
212//
213// set the initial values of the parameters
214//
215void M2dimFunction::SetVinit(MHillas *fhillas)
216{
217 // get some initial values from the Hillas class
218
219 if (fhillas)
220 {
221 fVinit(0) = fhillas->GetMeanX();
222 fVinit(1) = fhillas->GetMeanY();
223 fVinit(2) = fhillas->GetDelta();
224 }
225 else
226 {
227 fVinit(0) = ;
228 fVinit(1) = ;
229 fVinit(2) = ;
230 }
231
232 fVinit(3) =
233 fVinit(4) =
234 fVinit(5) =
235 fVinit(6) =
236
237 return;
238}
239
240
241
242// --------------------------------------------------------------------------
243//
244// Fit of the 2-dim function to the shower image
245//
246void M2dimFunction::Fit()
247{
248 fMarquardt.Loop(TwodimFunction, fVinit);
249
250 SetReadyToSave();
251}
252
253// --------------------------------------------------------------------------
254//
255void M2dimFunction::Print(Option_t *) const
256{
257 *fLog << all;
258 *fLog << "Parameters of 2-dim function (" << GetName() << ")" << endl;
259 *fLog << " - fXbar = " << fXbar << endl;
260 *fLog << " - fYbar = " << fYbar << endl;
261 *fLog << " - fAmp = " << fAmp << endl;
262 *fLog << " - fMajor = " << fMajor << endl;
263 *fLog << " - fMinor = " << fMinor << endl;
264 *fLog << " - fAsym = " << fAsym << endl;
265}
266//============================================================================
267
268
269
270
271
272
273
274
275
276
Note: See TracBrowser for help on using the repository browser.