source: trunk/MagicSoft/Mars/mimage/MImgCleanStd.cc@ 4706

Last change on this file since 4706 was 4702, checked in by tbretz, 20 years ago
*** empty log message ***
File size: 24.9 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19! Author(s): Harald Kornmayer, 1/2001
20! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MImgCleanStd
30//
31// The Image Cleaning task selects the pixels you use for the Hillas
32// parameters calculation.
33//
34// There are two methods to make the selection: the standard one, as done
35// in the analysis of CT1 data, and the democratic one, as suggested by
36// W.Wittek. The number of photo-electrons of a pixel is compared with the
37// pedestal RMS of the pixel itself (standard method) or with the average
38// RMS of the inner pixels (democratic method).
39// In both cases, the possibility to have a camera with pixels of
40// different area is taken into account.
41// The too noisy pixels can be recognized and eventally switched off
42// (Unmap: set blind pixels to UNUSED) separately, using the
43// MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
44// function to replace the value of the noisy pixels with the interpolation
45// of the content of the neighbors (SetUseInterpolation).
46//
47// Example:
48// ...
49// MBlindPixelCalc blind;
50// blind.SetUseInterpolation();
51// blind.SetUseBlindPixels();
52//
53// MImgCleanStd clean;
54// ...
55// tlist.AddToList(&blind);
56// tlist.AddToList(&clean);
57//
58// Look at the MBlindPixelCalc Class for more details.
59//
60// Starting point: default values ----------------------------------------
61//
62// When an event is read, before the image cleaning, all the pixels that
63// are in MCerPhotEvt are set as USED and NOT CORE. All the pixels belong
64// to RING number 1 (like USED pixels).
65// Look at MCerPhotPix.h to see how these informations of the pixel are
66// stored.
67// The default cleaning METHOD is the STANDARD one and the number of the
68// rings around the CORE pixel it analyzes is 1. Look at the Constructor
69// of the class in MImgCleanStd.cc to see (or change) the default values.
70//
71// Example: To modify this setting, use the member functions
72// SetMethod(MImgCleanStd::kDemocratic) and SetCleanRings(UShort_t n).
73//
74// MImgCleanStd:CleanStep1 -----------------------------------------------
75//
76// The first step of cleaning defines the CORE pixels. The CORE pixels are
77// the ones which contain the informations about the core of the electro-
78// magnetic shower.
79// The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
80// the area of the central pixel of the camera, A_i is the area of the
81// examined pixel. In this way, if we have a MAGIC-like camera, with the
82// outer pixels bigger than the inner ones, the level of cleaning in the
83// two different regions is weighted.
84// This avoids problems of deformations of the shower images.
85// The signal S_i and the pedestal RMS Prms_i of the pixel are called from
86// the object MCerPhotPix.
87// If (default method = kStandard)
88//Begin_Html
89//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
90//End_Html
91// the pixel is set as CORE pixel. L_1 (n=1) is called "first level of
92// cleaning" (default: fCleanLvl1 = 3).
93// All the other pixels are set as UNUSED and belong to RING 0.
94// After this point, only the CORE pixels are set as USED, with RING
95// number 1.
96//
97// MImgCleanStd:CleanStep2 ----------------------------------------------
98//
99// The second step of cleaning looks at the isolated CORE pixels and sets
100// them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
101// At the end of this point, we have set as USED only CORE pixels with at
102// least one CORE neighbor.
103//
104// MImgCleanStd:CleanStep3 ----------------------------------------------
105//
106// The third step of cleaning looks at all the pixels (USED or UNUSED) that
107// surround the USED pixels.
108// If the content of the analyzed pixel survives at the second level of
109// cleaning, i.e. if
110//Begin_Html
111//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
112//End_Html
113// the pixel is set as USED. L_2 (n=2) is called "second level of cleaning"
114// (default:fCleanLvl2 = 2.5).
115//
116// When the number of RINGS to analyze is 1 (default value), only the
117// pixels that have a neighbor CORE pixel are analyzed.
118//
119// There is the option to decide the number of times you want to repeat
120// this procedure (number of RINGS analyzed around the core pixels = n).
121// Every time the level of cleaning is the same (fCleanLvl2) and the pixel
122// will belong to ring r+1, 1 < r < n+1. This is described in
123// MImgCleanStd:CleanStep4 .
124//
125// Dictionary and member functions ---------------------------------------
126//
127// Here there is the detailed description of the member functions and of
128// the terms commonly used in the class.
129//
130//
131// STANDARD CLEANING:
132// =================
133// This is the method used for the CT1 data analysis. It is the default
134// method of the class.
135// The number of photo-electrons of a pixel (S_i) is compared to the
136// pedestal RMS of the pixel itself (Prms_i). To have the comparison to
137// the same photon density for all the pixels, taking into account they
138// can have different areas, we have to keep in mind that the number of
139// photons that hit each pixel, goes linearly with the area of the pixel.
140// The fluctuations of the LONS are proportional to sqrt(A_i), so when we
141// compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
142// have the same (N.photons/Area) threshold for all the pixels.
143//
144// !!WARNING: if noise independent from the
145// pixel size (example: electronic noise) is introduced,
146// then the noise fluctuations are no longer proportional
147// to sqrt(A_i), and then the cut value (for a camera with
148// pixels of different sizes) resulting from the above
149// procedure would not be proportional to pixel size as we
150// intend. In that case, democratic cleaning is preferred.
151//
152// If
153//Begin_Html
154//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
155//End_Html
156// the pixel survives the cleaning and it is set as CORE (when L_n is the
157// first level of cleaning, fCleanLvl1) or USED (when L_n is the second
158// level of cleaning, fCleanLvl2).
159//
160// Example:
161//
162// MImgCleanStd clean;
163// //creates a default Cleaning object, with default setting
164// ...
165// tlist.AddToList(&clean);
166// // add the image cleaning to the main task list
167//
168//
169// DEMOCRATIC CLEANING:
170// ===================
171// You use this cleaning method when you want to compare the number of
172// photo-electons of each pixel with the average pedestal RMS of the
173// inner pixels (for the MAGIC camera they are the smaller ones):
174//Begin_Html
175//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f2.png">
176//End_Html
177// In this case, the simple ratio (A_0/A_i) is used to weight the level of
178// cleaning, because both the inner and the outer pixels (that in MAGIC
179// have a different area) are compared to the same pedestal RMS, coming
180// from the inner pixels.
181//
182// Make sure that you used a class calculating the MPedPhotCam which also
183// updated the contents of the mean values (Recalc) correctly.
184//
185//
186// Member Function: SetMethod()
187// ============================
188// When you call the MImgCleanStd task, the default method is kStandard.
189//
190// If you want to switch to the kDemocratic method you have to
191// call this member function.
192//
193// Example:
194//
195// MImgCleanStd clean;
196// //creates a default Cleaning object, with default setting
197//
198// clean.SetMethod(MImgCleanStd::kDemocratic);
199// //now the method of cleaning is changed to Democratic
200//
201//
202// FIRST AND SECOND CLEANING LEVEL
203// ===============================
204// When you call the MImgCleanStd task, the default cleaning levels are
205// fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
206// create the MImgCleanStd object.
207//
208// Example:
209//
210// MImgCleanStd clean(Float_t lvl1,Float_t lvl2);
211// //creates a default cleaning object, but the cleaning levels are now
212// //lvl1 and lvl2.
213//
214// RING NUMBER
215// ===========
216// The standard cleaning procedure is such that it looks for the
217// informations of the boundary part of the shower only on the first
218// neighbors of the CORE pixels.
219// There is the possibility now to look not only at the firs neighbors
220// (first ring),but also further away, around the CORE pixels. All the new
221// pixels you can find with this method, are tested with the second level
222// of cleaning and have to have at least an USED neighbor.
223//
224// They will be also set as USED and will be taken into account during the
225// calculation of the image parameters.
226// The only way to distinguish them from the other USED pixels, is the
227// Ring number, that is bigger than 1.
228//
229// Example: You can decide how many rings you want to analyze using:
230//
231// MImgCleanStd clean;
232// //creates a default cleaning object (default number of rings =1)
233// clean.SetCleanRings(UShort_t r);
234// //now it looks r times around the CORE pixels to find new pixels with
235// //signal.
236//
237//
238// Input Containers:
239// MGeomCam
240// MPedPhotCam
241// MCerPhotEvt
242//
243// Output Containers:
244// MCerPhotEvt
245//
246/////////////////////////////////////////////////////////////////////////////
247#include "MImgCleanStd.h"
248
249#include <stdlib.h> // atof
250#include <fstream> // ofstream, SavePrimitive
251
252#include <TEnv.h>
253
254#include <TGFrame.h> // TGFrame
255#include <TGLabel.h> // TGLabel
256#include <TGTextEntry.h> // TGTextEntry
257
258#include "MLog.h"
259#include "MLogManip.h"
260
261#include "MParList.h"
262#include "MCameraData.h"
263
264#include "MGeomPix.h"
265#include "MGeomCam.h"
266
267#include "MCerPhotPix.h"
268#include "MCerPhotEvt.h"
269
270#include "MGGroupFrame.h" // MGGroupFrame
271
272ClassImp(MImgCleanStd);
273
274using namespace std;
275
276enum {
277 kImgCleanLvl1,
278 kImgCleanLvl2
279};
280
281static const TString gsDefName = "MImgCleanStd";
282static const TString gsDefTitle = "Task to perform image cleaning";
283
284const TString MImgCleanStd::gsNamePedPhotCam="MPedPhotCam"; // default name of the 'MPedPhotCam' container
285
286// --------------------------------------------------------------------------
287//
288// Default constructor. Here you can specify the cleaning method and levels.
289// If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
290// above mean) are used.
291// Here you can also specify how many rings around the core pixels you want
292// to analyze (with the fixed lvl2). The default value for "rings" is 1.
293//
294MImgCleanStd::MImgCleanStd(const Float_t lvl1, const Float_t lvl2,
295 const char *name, const char *title)
296 : fCleaningMethod(kStandard), fCleanLvl1(lvl1),
297 fCleanLvl2(lvl2), fCleanRings(1), fNamePedPhotCam(gsNamePedPhotCam)
298
299{
300 fName = name ? name : gsDefName.Data();
301 fTitle = title ? title : gsDefTitle.Data();
302
303 Print();
304}
305
306// --------------------------------------------------------------------------
307//
308// The first step of cleaning defines the CORE pixels. All the other pixels
309// are set as UNUSED and belong to RING 0.
310// After this point, only the CORE pixels are set as USED, with RING
311// number 1.
312//
313// NT 28/04/2003: now the option to use the standard method or the
314// democratic method is implemented:
315//
316// kStandard: This method looks for all pixels with an entry (photons)
317// that is three times bigger than the noise of the pixel
318// (default: 3 sigma, clean level 1)
319//
320// kDemocratic: this method looks for all pixels with an entry (photons)
321// that is n times bigger than the noise of the mean of the
322// inner pixels (default: 3 sigmabar, clean level 1)
323//
324//
325void MImgCleanStd::CleanStep1()
326{
327 const TArrayD &data = fData->GetData();
328
329 //
330 // check the number of all pixels against the noise level and
331 // set them to 'unused' state if necessary
332 //
333 MCerPhotPix *pix;
334
335 // Loop over all pixels
336 MCerPhotEvtIter Next(fEvt, kFALSE);
337 while ((pix=static_cast<MCerPhotPix*>(Next())))
338 if (!pix->IsPixelUnmapped() && data[pix->GetPixId()] <= fCleanLvl1)
339 pix->SetPixelUnused();
340}
341
342// --------------------------------------------------------------------------
343//
344// Check if the survived pixel have a neighbor, that also
345// survived, otherwise set pixel to unused (removes pixels without
346// neighbors).
347//
348void MImgCleanStd::CleanStep2()
349{
350 MCerPhotPix *pix;
351
352 // Loop over used pixels only
353 TIter Next(*fEvt);
354
355 while ((pix=static_cast<MCerPhotPix*>(Next())))
356 {
357 // get pixel id of this entry
358 const Int_t idx = pix->GetPixId();
359
360 // check for 'used' neighbors of this pixel
361 const MGeomPix &gpix = (*fCam)[idx];
362 const Int_t nnmax = gpix.GetNumNeighbors();
363
364 Bool_t hasNeighbor = kFALSE;
365
366 //loop on the neighbors to check if they are used
367 for (Int_t j=0; j<nnmax; j++)
368 {
369 const Int_t idx2 = gpix.GetNeighbor(j);
370
371 // when you find an used neighbor, break the loop
372 if (fEvt->IsPixelUsed(idx2))
373 {
374 hasNeighbor = kTRUE;
375 break;
376 }
377 }
378
379 if (hasNeighbor == kFALSE)
380 pix->SetPixelUnused();
381 }
382
383 //
384 // now we declare all pixels that survive as CorePixels
385 //
386
387 Next.Reset();
388 while ((pix=static_cast<MCerPhotPix*>(Next())))
389 {
390 if (pix->IsPixelUsed())
391 pix->SetPixelCore();
392 }
393}
394
395void MImgCleanStd::CleanStep3b(MCerPhotPix &pix)
396{
397 const Int_t idx = pix.GetPixId();
398
399 //
400 // check if the pixel's next neighbor is a core pixel.
401 // if it is a core pixel set pixel state to: used.
402 //
403 MGeomPix &gpix = (*fCam)[idx];
404 const Int_t nnmax = gpix.GetNumNeighbors();
405
406 for (Int_t j=0; j<nnmax; j++)
407 {
408 const Int_t idx2 = gpix.GetNeighbor(j);
409
410 if (!fEvt->IsPixelCore(idx2))
411 continue;
412
413 pix.SetPixelUsed();
414 break;
415 }
416}
417
418// --------------------------------------------------------------------------
419//
420// NT: Add option "rings": default value = 1.
421// Look n (n>1) times for the boundary pixels around the used pixels.
422// If a pixel has more than 2.5 (clean level 2.5) sigma,
423// it is declared as used.
424//
425// If a value<2 for fCleanRings is used, no CleanStep4 is done.
426//
427void MImgCleanStd::CleanStep4(UShort_t r, MCerPhotPix &pix)
428{
429 //
430 // Skip events that have already a defined status;
431 //
432 if (pix.GetRing() != 0)
433 return;
434
435 //
436 // check if the pixel's next neighbor is a used pixel.
437 // if it is a used pixel set pixel state to: used,
438 // and tell to which ring it belongs to.
439 //
440 const Int_t idx = pix.GetPixId();
441
442 MGeomPix &gpix = (*fCam)[idx];
443
444 const Int_t nnmax = gpix.GetNumNeighbors();
445
446 for (Int_t j=0; j<nnmax; j++)
447 {
448 const Int_t idx2 = gpix.GetNeighbor(j);
449
450 MCerPhotPix *npix = fEvt->GetPixById(idx2);
451 if (!npix || !npix->IsPixelUsed() || npix->GetRing()>r-1 )
452 continue;
453
454 pix.SetRing(r);
455 break;
456 }
457}
458
459// --------------------------------------------------------------------------
460//
461// Look for the boundary pixels around the core pixels
462// if a pixel has more than 2.5 (clean level 2.5) sigma, and
463// a core neigbor, it is declared as used.
464//
465void MImgCleanStd::CleanStep3()
466{
467 const TArrayD &data = fData->GetData();
468
469 for (UShort_t r=1; r<fCleanRings+1; r++)
470 {
471 MCerPhotPix *pix;
472
473 // Loop over all pixels
474
475 MCerPhotEvtIter NextAll(fEvt, kFALSE);
476 while ((pix=static_cast<MCerPhotPix*>(NextAll())))
477 {
478 //
479 // if pixel is a core pixel or unmapped, go to the next pixel
480 //
481 if (pix->IsPixelCore() || pix->IsPixelUnmapped())
482 continue;
483
484 if (data[pix->GetPixId()] <= fCleanLvl2)
485 continue;
486
487 if (r==1)
488 CleanStep3b(*pix);
489 else
490 CleanStep4(r, *pix);
491 }
492 }
493}
494
495// --------------------------------------------------------------------------
496//
497// Check if MEvtHeader exists in the Parameter list already.
498// if not create one and add them to the list
499//
500Int_t MImgCleanStd::PreProcess (MParList *pList)
501{
502 fCam = (MGeomCam*)pList->FindObject(AddSerialNumber("MGeomCam"));
503 if (!fCam)
504 {
505 *fLog << err << "MGeomCam not found (no geometry information available)... aborting." << endl;
506 return kFALSE;
507 }
508
509 fEvt = (MCerPhotEvt*)pList->FindObject(AddSerialNumber("MCerPhotEvt"));
510 if (!fEvt)
511 {
512 *fLog << err << "MCerPhotEvt not found... aborting." << endl;
513 return kFALSE;
514 }
515
516 fPed = (MPedPhotCam*)pList->FindObject(AddSerialNumber(fNamePedPhotCam), "MPedPhotCam");
517 if (!fPed)
518 {
519 *fLog << err << "MPedPhotCam not found... aborting." << endl;
520 return kFALSE;
521 }
522
523 fTime = (MArrivalTime*)pList->FindObject(AddSerialNumber("MArrivalTime"));
524 if (!fTime && fCleaningMethod==kProbability)
525 *fLog << warn << "MArrivalTime not found... probability cleaning done with signal only!" << endl;
526
527 fData = (MCameraData*)pList->FindCreateObj(AddSerialNumber("MCameraData"));
528 if (!fData)
529 return kFALSE;
530
531 return kTRUE;
532}
533
534// --------------------------------------------------------------------------
535//
536// Cleans the image.
537//
538Int_t MImgCleanStd::Process()
539{
540 switch (fCleaningMethod)
541 {
542 case kStandard:
543 fData->CalcCleaningLevel(*fEvt, *fPed, *fCam);
544 break;
545 case kScaled:
546 fData->CalcCleaningLevel2(*fEvt, *fPed, *fCam);
547 break;
548 case kDemocratic:
549 fData->CalcCleaningLevelDemocratic(*fEvt, *fPed, *fCam);
550 break;
551 /*
552 case kProbability:
553 fData->CalcCleaningProbability(*fEvt, *fPed, *fCam, fTime);
554 break;*/
555 default:
556 break;
557 }
558
559#ifdef DEBUG
560 *fLog << all << "CleanStep 1" << endl;
561#endif
562 CleanStep1();
563
564
565#ifdef DEBUG
566 *fLog << all << "CleanStep 2" << endl;
567#endif
568 CleanStep2();
569
570 // For speed reasons skip the rest of the cleaning if no
571 // action will be taken!
572 if (fCleanLvl1>fCleanLvl2)
573 {
574#ifdef DEBUG
575 *fLog << all << "CleanStep 3" << endl;
576#endif
577 CleanStep3();
578 }
579
580#ifdef DEBUG
581 *fLog << all << "Calc Islands" << endl;
582#endif
583 // Takes roughly 10% of the time
584 fEvt->CalcIslands(*fCam);
585
586#ifdef DEBUG
587 *fLog << all << "Done." << endl;
588#endif
589
590 return kTRUE;
591}
592
593// --------------------------------------------------------------------------
594//
595// Print descriptor and cleaning levels.
596//
597void MImgCleanStd::Print(Option_t *o) const
598{
599 *fLog << all << GetDescriptor() << " using ";
600 switch (fCleaningMethod)
601 {
602 case kDemocratic:
603 *fLog << "democratic";
604 break;
605 case kStandard:
606 *fLog << "standard";
607 break;
608 case kScaled:
609 *fLog << "scaled";
610 break;
611 case kProbability:
612 *fLog << "probability";
613 break;
614 }
615 *fLog << " cleaning initialized with noise level " << fCleanLvl1 << " and " << fCleanLvl2;
616 *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
617}
618
619// --------------------------------------------------------------------------
620//
621// Create two text entry fields, one for each cleaning level and a
622// describing text line.
623//
624void MImgCleanStd::CreateGuiElements(MGGroupFrame *f)
625{
626 //
627 // Create a frame for line 3 and 4 to be able
628 // to align entry field and label in one line
629 //
630 TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
631 TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
632
633 /*
634 * --> use with root >=3.02 <--
635 *
636
637 TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
638 TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
639
640 */
641 TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
642 TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
643
644 // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
645 // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
646
647 entry1->SetText("3.0");
648 entry2->SetText("2.5");
649
650 entry1->Associate(f);
651 entry2->Associate(f);
652
653 TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
654 TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
655
656 l1->SetTextJustify(kTextLeft);
657 l2->SetTextJustify(kTextLeft);
658
659 //
660 // Align the text of the label centered, left in the row
661 // with a left padding of 10
662 //
663 TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
664 TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
665
666 //
667 // Add one entry field and the corresponding label to each line
668 //
669 f1->AddFrame(entry1);
670 f2->AddFrame(entry2);
671
672 f1->AddFrame(l1, laylabel);
673 f2->AddFrame(l2, laylabel);
674
675 f->AddFrame(f1, layframe);
676 f->AddFrame(f2, layframe);
677
678 f->AddToList(entry1);
679 f->AddToList(entry2);
680 f->AddToList(l1);
681 f->AddToList(l2);
682 f->AddToList(laylabel);
683 f->AddToList(layframe);
684}
685
686// --------------------------------------------------------------------------
687//
688// Process the GUI Events comming from the two text entry fields.
689//
690Bool_t MImgCleanStd::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
691{
692 if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
693 return kTRUE;
694
695 TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
696
697 if (!txt)
698 return kTRUE;
699
700 Float_t lvl = atof(txt->GetText());
701
702 switch (param1)
703 {
704 case kImgCleanLvl1:
705 fCleanLvl1 = lvl;
706 *fLog << "Cleaning level 1 set to " << lvl << " sigma." << endl;
707 return kTRUE;
708
709 case kImgCleanLvl2:
710 fCleanLvl2 = lvl;
711 *fLog << "Cleaning level 2 set to " << lvl << " sigma." << endl;
712 return kTRUE;
713 }
714
715 return kTRUE;
716}
717
718// --------------------------------------------------------------------------
719//
720// Implementation of SavePrimitive. Used to write the call to a constructor
721// to a macro. In the original root implementation it is used to write
722// gui elements to a macro-file.
723//
724void MImgCleanStd::StreamPrimitive(ofstream &out) const
725{
726 out << " MImgCleanStd " << GetUniqueName() << "(";
727 out << fCleanLvl1 << ", " << fCleanLvl2;
728
729 if (fName!=gsDefName || fTitle!=gsDefTitle)
730 {
731 out << ", \"" << fName << "\"";
732 if (fTitle!=gsDefTitle)
733 out << ", \"" << fTitle << "\"";
734 }
735 out << ");" << endl;
736
737 if (fCleaningMethod!=kStandard)
738 {
739 out << " " << GetUniqueName() << ".SetMethod(MImgCleanStd::k";
740 switch (fCleaningMethod)
741 {
742 case kScaled: out << "Scaled"; break;
743 case kDemocratic: out << "Democratic"; break;
744 case kProbability: out << "Probability"; break;
745 default:
746 break;
747 }
748 out << ");" << endl;
749 }
750 if (fCleanRings!=1)
751 out << " " << GetUniqueName() << ".SetCleanRings(" << fCleanRings << ");" << endl;
752
753 if (gsNamePedPhotCam!=fNamePedPhotCam)
754 out << " " << GetUniqueName() << ".SetNamePedPhotCam(\"" << fNamePedPhotCam << "\");" << endl;
755}
756
757// --------------------------------------------------------------------------
758//
759// Read the setup from a TEnv, eg:
760// MImgCleanStd.CleanLevel1: 3.0
761// MImgCleanStd.CleanLevel2: 2.5
762// MImgCleanStd.CleanMethod: Standard, Scaled, Democratic, Probability
763// MImgCleanStd.CleanRings: 1
764//
765Int_t MImgCleanStd::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
766{
767 Bool_t rc = kFALSE;
768 if (IsEnvDefined(env, prefix, "CleanRings", print))
769 {
770 rc = kTRUE;
771 SetCleanRings(GetEnvValue(env, prefix, "CleanRings", fCleanRings));
772 }
773 if (IsEnvDefined(env, prefix, "CleanLevel1", print))
774 {
775 rc = kTRUE;
776 fCleanLvl1 = GetEnvValue(env, prefix, "CleanLevel1", fCleanLvl1);
777 }
778 if (IsEnvDefined(env, prefix, "CleanLevel2", print))
779 {
780 rc = kTRUE;
781 fCleanLvl2 = GetEnvValue(env, prefix, "CleanLevel2", fCleanLvl2);
782 }
783
784 if (IsEnvDefined(env, prefix, "CleanMethod", print))
785 {
786 rc = kTRUE;
787 TString s = GetEnvValue(env, prefix, "CleanMethod", "");
788 s.ToLower();
789 if (s.BeginsWith("standard"))
790 SetMethod(kStandard);
791 if (s.BeginsWith("scaled"))
792 SetMethod(kScaled);
793 if (s.BeginsWith("democratic"))
794 SetMethod(kDemocratic);
795 if (s.BeginsWith("probability"))
796 SetMethod(kProbability);
797 }
798
799 return rc;
800}
Note: See TracBrowser for help on using the repository browser.