source: trunk/MagicSoft/Mars/mimage/MImgCleanStd.cc@ 6724

Last change on this file since 6724 was 6489, checked in by tbretz, 20 years ago
*** empty log message ***
File size: 28.2 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19! Author(s): Harald Kornmayer, 1/2001
20! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MImgCleanStd
30//
31// The Image Cleaning task selects the pixels you use for the Hillas
32// parameters calculation.
33//
34// There are two methods to make the selection: the standard one, as done
35// in the analysis of CT1 data, and the democratic one, as suggested by
36// W.Wittek. The number of photo-electrons of a pixel is compared with the
37// pedestal RMS of the pixel itself (standard method) or with the average
38// RMS of the inner pixels (democratic method).
39// In both cases, the possibility to have a camera with pixels of
40// different area is taken into account.
41// The too noisy pixels can be recognized and eventally switched off
42// (Unmap: set blind pixels to UNUSED) separately, using the
43// MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
44// function to replace the value of the noisy pixels with the interpolation
45// of the content of the neighbors (SetUseInterpolation).
46//
47// Example:
48// ...
49// MBlindPixelCalc blind;
50// blind.SetUseInterpolation();
51// blind.SetUseBlindPixels();
52//
53// MImgCleanStd clean;
54// ...
55// tlist.AddToList(&blind);
56// tlist.AddToList(&clean);
57//
58// Look at the MBlindPixelCalc Class for more details.
59//
60// Starting point: default values ----------------------------------------
61//
62// When an event is read, before the image cleaning, all the pixels that
63// are in MCerPhotEvt are set as USED and NOT CORE. All the pixels belong
64// to RING number 1 (like USED pixels).
65// Look at MCerPhotPix.h to see how these informations of the pixel are
66// stored.
67// The default cleaning METHOD is the STANDARD one and the number of the
68// rings around the CORE pixel it analyzes is 1. Look at the Constructor
69// of the class in MImgCleanStd.cc to see (or change) the default values.
70//
71// Example: To modify this setting, use the member functions
72// SetMethod(MImgCleanStd::kDemocratic) and SetCleanRings(UShort_t n).
73//
74// MImgCleanStd:CleanStep1 -----------------------------------------------
75//
76// The first step of cleaning defines the CORE pixels. The CORE pixels are
77// the ones which contain the informations about the core of the electro-
78// magnetic shower.
79// The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
80// the area of the central pixel of the camera, A_i is the area of the
81// examined pixel. In this way, if we have a MAGIC-like camera, with the
82// outer pixels bigger than the inner ones, the level of cleaning in the
83// two different regions is weighted.
84// This avoids problems of deformations of the shower images.
85// The signal S_i and the pedestal RMS Prms_i of the pixel are called from
86// the object MCerPhotPix.
87// If (default method = kStandard)
88//Begin_Html
89//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
90//End_Html
91// the pixel is set as CORE pixel. L_1 (n=1) is called "first level of
92// cleaning" (default: fCleanLvl1 = 3).
93// All the other pixels are set as UNUSED and belong to RING 0.
94// After this point, only the CORE pixels are set as USED, with RING
95// number 1.
96//
97// MImgCleanStd:CleanStep2 ----------------------------------------------
98//
99// The second step of cleaning looks at the isolated CORE pixels and sets
100// them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
101// At the end of this point, we have set as USED only CORE pixels with at
102// least one CORE neighbor.
103//
104// MImgCleanStd:CleanStep3 ----------------------------------------------
105//
106// The third step of cleaning looks at all the pixels (USED or UNUSED) that
107// surround the USED pixels.
108// If the content of the analyzed pixel survives at the second level of
109// cleaning, i.e. if
110//Begin_Html
111//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
112//End_Html
113// the pixel is set as USED. L_2 (n=2) is called "second level of cleaning"
114// (default:fCleanLvl2 = 2.5).
115//
116// When the number of RINGS to analyze is 1 (default value), only the
117// pixels that have a neighbor CORE pixel are analyzed.
118//
119// There is the option to decide the number of times you want to repeat
120// this procedure (number of RINGS analyzed around the core pixels = n).
121// Every time the level of cleaning is the same (fCleanLvl2) and the pixel
122// will belong to ring r+1, 1 < r < n+1. This is described in
123// MImgCleanStd:CleanStep4 .
124//
125// Dictionary and member functions ---------------------------------------
126//
127// Here there is the detailed description of the member functions and of
128// the terms commonly used in the class.
129//
130//
131// STANDARD CLEANING:
132// =================
133// This is the method used for the CT1 data analysis. It is the default
134// method of the class.
135// The number of photo-electrons of a pixel (S_i) is compared to the
136// pedestal RMS of the pixel itself (Prms_i). To have the comparison to
137// the same photon density for all the pixels, taking into account they
138// can have different areas, we have to keep in mind that the number of
139// photons that hit each pixel, goes linearly with the area of the pixel.
140// The fluctuations of the LONS are proportional to sqrt(A_i), so when we
141// compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
142// have the same (N.photons/Area) threshold for all the pixels.
143//
144// !!WARNING: if noise independent from the
145// pixel size (example: electronic noise) is introduced,
146// then the noise fluctuations are no longer proportional
147// to sqrt(A_i), and then the cut value (for a camera with
148// pixels of different sizes) resulting from the above
149// procedure would not be proportional to pixel size as we
150// intend. In that case, democratic cleaning is preferred.
151//
152// If
153//Begin_Html
154//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
155//End_Html
156// the pixel survives the cleaning and it is set as CORE (when L_n is the
157// first level of cleaning, fCleanLvl1) or USED (when L_n is the second
158// level of cleaning, fCleanLvl2).
159//
160// Example:
161//
162// MImgCleanStd clean;
163// //creates a default Cleaning object, with default setting
164// ...
165// tlist.AddToList(&clean);
166// // add the image cleaning to the main task list
167//
168//
169// DEMOCRATIC CLEANING:
170// ===================
171// You use this cleaning method when you want to compare the number of
172// photo-electons of each pixel with the average pedestal RMS of the
173// inner pixels (for the MAGIC camera they are the smaller ones):
174//Begin_Html
175//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f2.png">
176//End_Html
177// In this case, the simple ratio (A_0/A_i) is used to weight the level of
178// cleaning, because both the inner and the outer pixels (that in MAGIC
179// have a different area) are compared to the same pedestal RMS, coming
180// from the inner pixels.
181//
182// Make sure that you used a class calculating the MPedPhotCam which also
183// updated the contents of the mean values (Recalc) correctly.
184//
185//
186// PROBABILITY CLEANING
187// ====================
188// This method takes signal height (over signal noise) and arrival time
189// into account. Instead of comparing signal/Noise with cleaning level
190// one and two, we calculate
191// - P_ped: The probability that a signal is a pedestal (using
192// the signal height and the pedestal) For this probability the
193// same algorithm like in kScaled is used (which is a standard
194// cleaning which scales the noise with the mean noise of pixels
195// with the same size)
196// - P_sig: The probability that the signal corresponds to the pixel
197// with the highest signal. For this probability we use the
198// arrival time only.
199//
200// The cleaning now is done in levels of Probability (eg. 0.2, 0.05)
201// The meaning of the cleaning levels is essentially the same (the same cleaning
202// algorithm is used) but the cleaning is not done in levels of signal/noise
203// but in level of this probability.
204//
205// This probability is calculated as (1-P_ped)*P_sig
206//
207// Example:
208//
209// MImgCleanStd clean(0.2, 0.05);
210// clean.SetMethod(MImgCleanStd::kProbability);
211//
212//
213// ABSOLUTE CLEANING
214// =================
215// This method takes signal height (photons) times area ratio
216// ad the cleaning levels.
217//
218// The cleaning now is done in these levels (eg. 16, 20)
219// The meaning of the cleaning levels is essentially the same (the same cleaning
220// algorithm is used) but the cleaning is not done in different 'units'
221//
222// Example:
223//
224// MImgCleanStd clean(20, 16);
225// clean.SetMethod(MImgCleanStd::kAbsolulte);
226//
227//
228// Member Function: SetMethod()
229// ============================
230// When you call the MImgCleanStd task, the default method is kStandard.
231//
232// If you want to switch to the kDemocratic method you have to
233// call this member function.
234//
235// Example:
236//
237// MImgCleanStd clean;
238// //creates a default Cleaning object, with default setting
239//
240// clean.SetMethod(MImgCleanStd::kDemocratic);
241// //now the method of cleaning is changed to Democratic
242//
243//
244// FIRST AND SECOND CLEANING LEVEL
245// ===============================
246// When you call the MImgCleanStd task, the default cleaning levels are
247// fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
248// create the MImgCleanStd object.
249//
250// Example:
251//
252// MImgCleanStd clean(Float_t lvl1,Float_t lvl2);
253// //creates a default cleaning object, but the cleaning levels are now
254// //lvl1 and lvl2.
255//
256// RING NUMBER
257// ===========
258// The standard cleaning procedure is such that it looks for the
259// informations of the boundary part of the shower only on the first
260// neighbors of the CORE pixels.
261// There is the possibility now to look not only at the firs neighbors
262// (first ring),but also further away, around the CORE pixels. All the new
263// pixels you can find with this method, are tested with the second level
264// of cleaning and have to have at least an USED neighbor.
265//
266// They will be also set as USED and will be taken into account during the
267// calculation of the image parameters.
268// The only way to distinguish them from the other USED pixels, is the
269// Ring number, that is bigger than 1.
270//
271// Example: You can decide how many rings you want to analyze using:
272//
273// MImgCleanStd clean;
274// //creates a default cleaning object (default number of rings =1)
275// clean.SetCleanRings(UShort_t r);
276// //now it looks r times around the CORE pixels to find new pixels with
277// //signal.
278//
279//
280// Input Containers:
281// MGeomCam
282// MPedPhotCam
283// MCerPhotEvt
284//
285// Output Containers:
286// MCerPhotEvt
287//
288/////////////////////////////////////////////////////////////////////////////
289#include "MImgCleanStd.h"
290
291#include <stdlib.h> // atof
292#include <fstream> // ofstream, SavePrimitive
293
294#include <TEnv.h>
295
296#include <TGFrame.h> // TGFrame
297#include <TGLabel.h> // TGLabel
298#include <TGTextEntry.h> // TGTextEntry
299
300#include "MLog.h"
301#include "MLogManip.h"
302
303#include "MParList.h"
304#include "MCameraData.h"
305
306#include "MGeomPix.h"
307#include "MGeomCam.h"
308
309#include "MCerPhotPix.h"
310#include "MCerPhotEvt.h"
311
312#include "MGGroupFrame.h" // MGGroupFrame
313
314ClassImp(MImgCleanStd);
315
316using namespace std;
317
318enum {
319 kImgCleanLvl1,
320 kImgCleanLvl2
321};
322
323static const TString gsDefName = "MImgCleanStd";
324static const TString gsDefTitle = "Task to perform image cleaning";
325
326const TString MImgCleanStd::gsNamePedPhotCam="MPedPhotCam"; // default name of the 'MPedPhotCam' container
327const TString MImgCleanStd::gsNameCerPhotEvt="MCerPhotEvt"; // default name of the 'MCerPhotEvt' container
328const TString MImgCleanStd::gsNameGeomCam ="MGeomCam"; // default name of the 'MGeomCam' container
329
330// --------------------------------------------------------------------------
331//
332// Default constructor. Here you can specify the cleaning method and levels.
333// If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
334// above mean) are used.
335// Here you can also specify how many rings around the core pixels you want
336// to analyze (with the fixed lvl2). The default value for "rings" is 1.
337//
338MImgCleanStd::MImgCleanStd(const Float_t lvl1, const Float_t lvl2,
339 const char *name, const char *title)
340 : fCleaningMethod(kStandard), fCleanLvl1(lvl1),
341 fCleanLvl2(lvl2), fCleanRings(1), fKeepSinglePixels(kFALSE),
342 fNamePedPhotCam(gsNamePedPhotCam), fNameGeomCam(gsNameGeomCam),
343 fNameCerPhotEvt(gsNameCerPhotEvt)
344{
345 fName = name ? name : gsDefName.Data();
346 fTitle = title ? title : gsDefTitle.Data();
347}
348
349// --------------------------------------------------------------------------
350//
351// The first step of cleaning defines the CORE pixels. All the other pixels
352// are set as UNUSED and belong to RING 0.
353// After this point, only the CORE pixels are set as USED, with RING
354// number 1.
355//
356// NT 28/04/2003: now the option to use the standard method or the
357// democratic method is implemented:
358//
359// kStandard: This method looks for all pixels with an entry (photons)
360// that is three times bigger than the noise of the pixel
361// (default: 3 sigma, clean level 1)
362//
363// kDemocratic: this method looks for all pixels with an entry (photons)
364// that is n times bigger than the noise of the mean of the
365// inner pixels (default: 3 sigmabar, clean level 1)
366//
367//
368void MImgCleanStd::CleanStep1()
369{
370 const TArrayD &data = fData->GetData();
371
372 //
373 // check the number of all pixels against the noise level and
374 // set them to 'unused' state if necessary
375 //
376 MCerPhotPix *pix;
377
378 // Loop over all pixels
379 MCerPhotEvtIter Next(fEvt, kFALSE);
380 while ((pix=static_cast<MCerPhotPix*>(Next())))
381 if (!pix->IsPixelUnmapped() && data[pix->GetPixId()] <= fCleanLvl1)
382 pix->SetPixelUnused();
383}
384
385// --------------------------------------------------------------------------
386//
387// Check if the survived pixel have a neighbor, that also
388// survived. Set all single pixels Unused if !fKeepSinglePixels. Now we
389// declare all pixels that survived previous CleanSteps as CorePixels.
390// Return number of single pixels, and there cumulative size in size.
391//
392Short_t MImgCleanStd::CleanStep2(Float_t &size)
393{
394 Short_t n=0;
395 size = 0;
396
397 MCerPhotPix *pix;
398
399 // Loop over used pixels only
400 TIter Next(*fEvt);
401
402 while ((pix=static_cast<MCerPhotPix*>(Next())))
403 {
404 // get pixel id of this entry
405 const Int_t idx = pix->GetPixId();
406
407 // check for 'used' neighbors of this pixel
408 const MGeomPix &gpix = (*fCam)[idx];
409 const Int_t nnmax = gpix.GetNumNeighbors();
410
411 Bool_t hasNeighbor = kFALSE;
412
413 //loop on the neighbors to check if they are used
414 for (Int_t j=0; j<nnmax; j++)
415 {
416 const Int_t idx2 = gpix.GetNeighbor(j);
417
418 // when you find an used neighbor, break the loop
419 if (fEvt->IsPixelUsed(idx2))
420 {
421 hasNeighbor = kTRUE;
422 break;
423 }
424 }
425
426 if (hasNeighbor == kFALSE)
427 {
428 if (!fKeepSinglePixels)
429 pix->SetPixelUnused();
430 size += pix->GetNumPhotons();
431 n++;
432 }
433 }
434
435 Next.Reset();
436 while ((pix=static_cast<MCerPhotPix*>(Next())))
437 {
438 if (pix->IsPixelUsed())
439 pix->SetPixelCore();
440 }
441
442 return n;
443}
444
445void MImgCleanStd::CleanStep3b(MCerPhotPix &pix)
446{
447 const Int_t idx = pix.GetPixId();
448
449 //
450 // check if the pixel's next neighbor is a core pixel.
451 // if it is a core pixel set pixel state to: used.
452 //
453 MGeomPix &gpix = (*fCam)[idx];
454 const Int_t nnmax = gpix.GetNumNeighbors();
455
456 for (Int_t j=0; j<nnmax; j++)
457 {
458 const Int_t idx2 = gpix.GetNeighbor(j);
459
460 if (!fEvt->IsPixelCore(idx2))
461 continue;
462
463 pix.SetPixelUsed();
464 break;
465 }
466}
467
468// --------------------------------------------------------------------------
469//
470// NT: Add option "rings": default value = 1.
471// Look n (n>1) times for the boundary pixels around the used pixels.
472// If a pixel has more than 2.5 (clean level 2.5) sigma,
473// it is declared as used.
474//
475// If a value<2 for fCleanRings is used, no CleanStep4 is done.
476//
477void MImgCleanStd::CleanStep4(UShort_t r, MCerPhotPix &pix)
478{
479 //
480 // Skip events that have already a defined status;
481 //
482 if (pix.GetRing() != 0)
483 return;
484
485 //
486 // check if the pixel's next neighbor is a used pixel.
487 // if it is a used pixel set pixel state to: used,
488 // and tell to which ring it belongs to.
489 //
490 const Int_t idx = pix.GetPixId();
491
492 MGeomPix &gpix = (*fCam)[idx];
493
494 const Int_t nnmax = gpix.GetNumNeighbors();
495
496 for (Int_t j=0; j<nnmax; j++)
497 {
498 const Int_t idx2 = gpix.GetNeighbor(j);
499
500 MCerPhotPix *npix = fEvt->GetPixById(idx2);
501 if (!npix || !npix->IsPixelUsed() || npix->GetRing()>r-1 )
502 continue;
503
504 pix.SetRing(r);
505 break;
506 }
507}
508
509// --------------------------------------------------------------------------
510//
511// Look for the boundary pixels around the core pixels
512// if a pixel has more than 2.5 (clean level 2.5) sigma, and
513// a core neigbor, it is declared as used.
514//
515void MImgCleanStd::CleanStep3()
516{
517 const TArrayD &data = fData->GetData();
518
519 for (UShort_t r=1; r<fCleanRings+1; r++)
520 {
521 MCerPhotPix *pix;
522
523 // Loop over all pixels
524
525 MCerPhotEvtIter NextAll(fEvt, kFALSE);
526 while ((pix=static_cast<MCerPhotPix*>(NextAll())))
527 {
528 //
529 // if pixel is a core pixel or unmapped, go to the next pixel
530 //
531 if (pix->IsPixelCore() || pix->IsPixelUnmapped())
532 continue;
533
534 if (data[pix->GetPixId()] <= fCleanLvl2)
535 continue;
536
537 if (r==1)
538 CleanStep3b(*pix);
539 else
540 CleanStep4(r, *pix);
541 }
542 }
543}
544
545// --------------------------------------------------------------------------
546//
547// Check if MEvtHeader exists in the Parameter list already.
548// if not create one and add them to the list
549//
550Int_t MImgCleanStd::PreProcess (MParList *pList)
551{
552 fCam = (MGeomCam*)pList->FindObject(AddSerialNumber(fNameGeomCam), "MGeomCam");
553 if (!fCam)
554 {
555 *fLog << err << fNameGeomCam << " [MGeomCam] not found (no geometry information available)... aborting." << endl;
556 return kFALSE;
557 }
558
559 fEvt = (MCerPhotEvt*)pList->FindObject(AddSerialNumber(fNameCerPhotEvt), "MCerPhotEvt");
560 if (!fEvt)
561 {
562 *fLog << err << fNameCerPhotEvt << " [MCerPhotEvt] not found... aborting." << endl;
563 return kFALSE;
564 }
565
566 fPed = (MPedPhotCam*)pList->FindObject(AddSerialNumber(fNamePedPhotCam), "MPedPhotCam");
567 if (!fPed)
568 {
569 *fLog << err << fNamePedPhotCam << " [MPedPhotCam] not found... aborting." << endl;
570 return kFALSE;
571 }
572
573 fTime = (MArrivalTime*)pList->FindObject(AddSerialNumber("MArrivalTime"));
574 if (!fTime && fCleaningMethod==kProbability)
575 *fLog << warn << "MArrivalTime not found... probability cleaning done with signal only!" << endl;
576
577 fData = (MCameraData*)pList->FindCreateObj(AddSerialNumber("MCameraData"));
578 if (!fData)
579 return kFALSE;
580
581 Print();
582
583 return kTRUE;
584}
585
586// --------------------------------------------------------------------------
587//
588// Cleans the image.
589//
590Int_t MImgCleanStd::Process()
591{
592 switch (fCleaningMethod)
593 {
594 case kStandard:
595 fData->CalcCleaningLevel(*fEvt, *fPed, *fCam);
596 break;
597 case kScaled:
598 fData->CalcCleaningLevel2(*fEvt, *fPed, *fCam);
599 break;
600 case kDemocratic:
601 fData->CalcCleaningLevelDemocratic(*fEvt, *fPed, *fCam);
602 break;
603 case kProbability:
604 fData->CalcCleaningProbability(*fEvt, *fPed, *fCam, fTime);
605 break;
606 case kAbsolute:
607 fData->CalcCleaningAbsolute(*fEvt, *fCam);
608 break;
609 default:
610 break;
611 }
612
613#ifdef DEBUG
614 *fLog << all << "CleanStep 1" << endl;
615#endif
616 CleanStep1();
617
618
619#ifdef DEBUG
620 *fLog << all << "CleanStep 2" << endl;
621#endif
622 Float_t size;
623 const Short_t n = CleanStep2(size);
624 fEvt->SetSinglePixels(n, size);
625
626 // For speed reasons skip the rest of the cleaning if no
627 // action will be taken!
628 if (fCleanLvl1>fCleanLvl2)
629 {
630#ifdef DEBUG
631 *fLog << all << "CleanStep 3" << endl;
632#endif
633 CleanStep3();
634 }
635
636#ifdef DEBUG
637 *fLog << all << "Calc Islands" << endl;
638#endif
639 // Takes roughly 10% of the time
640 fEvt->CalcIslands(*fCam);
641
642#ifdef DEBUG
643 *fLog << all << "Done." << endl;
644#endif
645
646 return kTRUE;
647}
648
649// --------------------------------------------------------------------------
650//
651// Print descriptor and cleaning levels.
652//
653void MImgCleanStd::Print(Option_t *o) const
654{
655 *fLog << all << GetDescriptor() << " using ";
656 switch (fCleaningMethod)
657 {
658 case kDemocratic:
659 *fLog << "democratic";
660 break;
661 case kStandard:
662 *fLog << "standard";
663 break;
664 case kScaled:
665 *fLog << "scaled";
666 break;
667 case kProbability:
668 *fLog << "probability";
669 break;
670 case kAbsolute:
671 *fLog << "absolute";
672 break;
673 }
674 *fLog << " cleaning" << endl;
675 *fLog << "initialized with level " << fCleanLvl1 << " and " << fCleanLvl2;
676 *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
677
678 *fLog << "Name of MPedPhotCam container used: ";
679 *fLog << (fPed?((MParContainer*)fPed)->GetName():(const char*)fNamePedPhotCam) << endl;
680}
681
682// --------------------------------------------------------------------------
683//
684// Create two text entry fields, one for each cleaning level and a
685// describing text line.
686//
687void MImgCleanStd::CreateGuiElements(MGGroupFrame *f)
688{
689 //
690 // Create a frame for line 3 and 4 to be able
691 // to align entry field and label in one line
692 //
693 TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
694 TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
695
696 /*
697 * --> use with root >=3.02 <--
698 *
699
700 TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
701 TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
702
703 */
704 TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
705 TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
706
707 // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
708 // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
709
710 entry1->SetText("3.0");
711 entry2->SetText("2.5");
712
713 entry1->Associate(f);
714 entry2->Associate(f);
715
716 TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
717 TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
718
719 l1->SetTextJustify(kTextLeft);
720 l2->SetTextJustify(kTextLeft);
721
722 //
723 // Align the text of the label centered, left in the row
724 // with a left padding of 10
725 //
726 TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
727 TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
728
729 //
730 // Add one entry field and the corresponding label to each line
731 //
732 f1->AddFrame(entry1);
733 f2->AddFrame(entry2);
734
735 f1->AddFrame(l1, laylabel);
736 f2->AddFrame(l2, laylabel);
737
738 f->AddFrame(f1, layframe);
739 f->AddFrame(f2, layframe);
740
741 f->AddToList(entry1);
742 f->AddToList(entry2);
743 f->AddToList(l1);
744 f->AddToList(l2);
745 f->AddToList(laylabel);
746 f->AddToList(layframe);
747}
748
749// --------------------------------------------------------------------------
750//
751// Process the GUI Events comming from the two text entry fields.
752//
753Bool_t MImgCleanStd::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
754{
755 if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
756 return kTRUE;
757
758 TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
759
760 if (!txt)
761 return kTRUE;
762
763 Float_t lvl = atof(txt->GetText());
764
765 switch (param1)
766 {
767 case kImgCleanLvl1:
768 fCleanLvl1 = lvl;
769 *fLog << "Cleaning level 1 set to " << lvl << endl;
770 return kTRUE;
771
772 case kImgCleanLvl2:
773 fCleanLvl2 = lvl;
774 *fLog << "Cleaning level 2 set to " << lvl << endl;
775 return kTRUE;
776 }
777
778 return kTRUE;
779}
780
781// --------------------------------------------------------------------------
782//
783// Implementation of SavePrimitive. Used to write the call to a constructor
784// to a macro. In the original root implementation it is used to write
785// gui elements to a macro-file.
786//
787void MImgCleanStd::StreamPrimitive(ofstream &out) const
788{
789 out << " MImgCleanStd " << GetUniqueName() << "(";
790 out << fCleanLvl1 << ", " << fCleanLvl2;
791
792 if (fName!=gsDefName || fTitle!=gsDefTitle)
793 {
794 out << ", \"" << fName << "\"";
795 if (fTitle!=gsDefTitle)
796 out << ", \"" << fTitle << "\"";
797 }
798 out << ");" << endl;
799
800 if (fCleaningMethod!=kStandard)
801 {
802 out << " " << GetUniqueName() << ".SetMethod(MImgCleanStd::k";
803 switch (fCleaningMethod)
804 {
805 case kScaled: out << "Scaled"; break;
806 case kDemocratic: out << "Democratic"; break;
807 case kProbability: out << "Probability"; break;
808 case kAbsolute: out << "Absolute"; break;
809 default:
810 break;
811 }
812 out << ");" << endl;
813 }
814 if (fCleanRings!=1)
815 out << " " << GetUniqueName() << ".SetCleanRings(" << fCleanRings << ");" << endl;
816
817 if (gsNamePedPhotCam!=fNamePedPhotCam)
818 out << " " << GetUniqueName() << ".SetNamePedPhotCam(\"" << fNamePedPhotCam << "\");" << endl;
819 if (gsNameGeomCam!=fNameGeomCam)
820 out << " " << GetUniqueName() << ".SetNameGeomCam(\"" << fNameGeomCam << "\");" << endl;
821 if (gsNameCerPhotEvt!=fNameCerPhotEvt)
822 out << " " << GetUniqueName() << ".SetNameCerPhotEvt(\"" << fNameCerPhotEvt << "\");" << endl;
823 if (fKeepSinglePixels)
824 out << " " << GetUniqueName() << ".SetKeepSinglePixels();" << endl;
825
826}
827
828// --------------------------------------------------------------------------
829//
830// Read the setup from a TEnv, eg:
831// MImgCleanStd.CleanLevel1: 3.0
832// MImgCleanStd.CleanLevel2: 2.5
833// MImgCleanStd.CleanMethod: Standard, Scaled, Democratic, Probability, Absolute
834// MImgCleanStd.CleanRings: 1
835// MImgCleanStd.KeepSinglePixels: yes, no
836//
837Int_t MImgCleanStd::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
838{
839 Bool_t rc = kFALSE;
840 if (IsEnvDefined(env, prefix, "CleanRings", print))
841 {
842 rc = kTRUE;
843 SetCleanRings(GetEnvValue(env, prefix, "CleanRings", fCleanRings));
844 }
845 if (IsEnvDefined(env, prefix, "CleanLevel1", print))
846 {
847 rc = kTRUE;
848 fCleanLvl1 = GetEnvValue(env, prefix, "CleanLevel1", fCleanLvl1);
849 }
850 if (IsEnvDefined(env, prefix, "CleanLevel2", print))
851 {
852 rc = kTRUE;
853 fCleanLvl2 = GetEnvValue(env, prefix, "CleanLevel2", fCleanLvl2);
854 }
855 if (IsEnvDefined(env, prefix, "KeepSinglePixels", print))
856 {
857 rc = kTRUE;
858 fKeepSinglePixels = GetEnvValue(env, prefix, "KeepSinglePixels", fKeepSinglePixels);
859 }
860
861 if (IsEnvDefined(env, prefix, "CleanMethod", print))
862 {
863 rc = kTRUE;
864 TString s = GetEnvValue(env, prefix, "CleanMethod", "");
865 s.ToLower();
866 if (s.BeginsWith("standard"))
867 SetMethod(kStandard);
868 if (s.BeginsWith("scaled"))
869 SetMethod(kScaled);
870 if (s.BeginsWith("democratic"))
871 SetMethod(kDemocratic);
872 if (s.BeginsWith("probability"))
873 SetMethod(kProbability);
874 if (s.BeginsWith("absolute"))
875 SetMethod(kAbsolute);
876 }
877
878 return rc;
879}
Note: See TracBrowser for help on using the repository browser.