source: trunk/MagicSoft/Mars/mimage/MImgCleanStd.cc@ 2038

Last change on this file since 2038 was 2038, checked in by tbretz, 22 years ago
*** empty log message ***
File size: 25.0 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@uni-sw.gwdg.de>
19! Author(s): Harald Kornmayer, 1/2001
20! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MImgCleanStd
30//
31// The Image Cleaning task selects the pixels you use for the Hillas
32// parameters calculation.
33//
34// There are two methods to make the selection: the standard one, as done
35// in the analysis of CT1 data, and the democratic one, as suggested by
36// W.Wittek. The number of photo-electrons of a pixel is compared with the
37// pedestal RMS of the pixel itself (standard method) or with the average
38// RMS of the inner pixels (democratic method).
39// In both cases, the possibility to have a camera with pixels of
40// different area is taken into account.
41// The too noisy pixels can be recognized and eventally switched off
42// (Unmap: set blind pixels to UNUSED) separately, using the
43// MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
44// function to replace the value of the noisy pixels with the interpolation
45// of the content of the neighbors (SetUseInterpolation).
46//
47// Example:
48// ...
49// MBlindPixelCalc blind;
50// blind.SetUseInterpolation();
51// blind.SetUseBlindPixels();
52//
53// MImgCleanStd clean;
54// ...
55// tlist.AddToList(&blind);
56// tlist.AddToList(&clean);
57//
58// Look at the MBlindPixelCalc Class for more details.
59//
60// Starting point: default values ----------------------------------------
61//
62// When an event is read, before the image cleaning, all the pixels that
63// are in MCerPhotEvt are set as USED and NOT CORE. All the pixels belong
64// to RING number 1 (like USED pixels).
65// Look at MCerPhotPix.h to see how these informations of the pixel are
66// stored.
67// The default cleaning METHOD is the STANDARD one and the number of the
68// rings around the CORE pixel it analyzes is 1. Look at the Constructor
69// of the class in MImgCleanStd.cc to see (or change) the default values.
70//
71// Example: To modify this setting, use the member functions
72// SetMethod(MImgCleanStd::kDemocratic) and SetCleanRings(UShort_t n).
73//
74// MImgCleanStd:CleanStep1 -------------------------------------------- ---
75//
76// The first step of cleaning defines the CORE pixels. The CORE pixels are
77// the ones which contain the informations about the core of the electro-
78// magnetic shower.
79// The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
80// the area of the central pixel of the camera, A_i is the area of the
81// examined pixel. In this way, if we have a MAGIC-like camera, with the
82// outer pixels bigger than the inner ones, the level of cleaning in the
83// two different regions is weighted.
84// This avoids problems of deformations of the shower images.
85// The signal S_i and the pedestal RMS Prms_i of the pixel are called from
86// the object MCerPhotPix.
87// If (default method = kStandard)
88//
89// S_i > L_1 * Prms_i / sqrt(A_0/A_i)
90//
91// the pixel is set as CORE pixel. L_1 is called "first level of cleaning"
92// (default: fCleanLvl1 = 3).
93// All the other pixels are set as UNUSED and belong to RING 0.
94// After this point, only the CORE pixels are set as USED, with RING
95// number 1.
96//
97// MImgCleanStd:CleanStep2 ----------------------------------------------
98//
99// The second step of cleaning looks at the isolated CORE pixels and sets
100// them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
101// At the end of this point, we have set as USED only CORE pixels with at
102// least one CORE neighbor.
103//
104// MImgCleanStd:CleanStep3 ----------------------------------------------
105//
106// The third step of cleaning looks at all the pixels (USED or UNUSED) that
107// surround the USED pixels.
108// If the content of the analyzed pixel survives at the second level of
109// cleaning, i.e. if
110//
111// S_i > L_2 * Prms_i / sqrt(A_0/A_i)
112//
113// the pixel is set as USED. L_2 is called "second level of cleaning"
114// (default:fCleanLvl2 = 2.5).
115//
116// When the number of RINGS to analyze is 1 (default value), only the
117// pixels that have a neighbor CORE pixel are analyzed.
118//
119// There is the option to decide the number of times you want to repeat
120// this procedure (number of RINGS analyzed around the core pixels = n).
121// Every time the level of cleaning is the same (fCleanLvl2) and the pixel
122// will belong to ring r+1, 1 < r < n+1. This is described in
123// MImgCleanStd:CleanStep4 .
124//
125// Dictionary and member functions ---------------------------------------
126//
127// Here there is the detailed description of the member functions and of
128// the terms commonly used in the class.
129//
130// STANDARD CLEANING:
131// =================
132// This is the method used for the CT1 data analysis. It is the default
133// method of the class.
134// The number of photo-electrons of a pixel (S_i) is compared to the
135// pedestal RMS of the pixel itself (Prms_i). To have the comparison to
136// the same photon density for all the pixels, taking into account they
137// can have different areas, we have to keep in mind that the number of
138// photons that hit each pixel, goes linearly with the area of the pixel.
139// The fluctuations of the LONS are proportional to sqrt(A_i), so when we
140// compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
141// have the same (N.photons/Area) threshold for all the pixels.
142//
143// !!WARNING: if noise independent from the
144// pixel size is considered,
145// this weight can give wrong results!!
146// If
147//
148// S_i > L_n * Prms_i / sqrt(A_0/A_i)
149//
150// the pixel survives the cleaning and it is set as CORE (when L_n is the
151// first level of cleaning, fCleanLvl1) or USED ((when L_n is the second
152// level of cleaning, fCleanLvl2).
153//
154// Example:
155//
156// MImgCleanStd clean;
157// //creates a default Cleaning object, with default setting
158// ...
159// tlist.AddToList(&clean);
160// // add the image cleaning to the main task list
161//
162// DEMOCRATIC CLEANING:
163// ===================
164// You use this cleaning method when you want to compare the number of
165// photo-electons of each pixel with the average pedestal RMS
166// (fInnerNoise = fSgb->GetSigmabarInner()) of the inner pixels (for the
167// MAGIC camera they are the smaller ones):
168//
169// S_i > L_n * fInnerNoise / (A_0/A_i)
170//
171// In this case, the simple ratio (A_0/A_i) is used to weight the level of
172// cleaning, because both the inner and the outer pixels (that in MAGIC
173// have a different area) are compared to the same pedestal RMS, coming
174// from the inner pixels.
175// To calculate the average pedestal RMS of the inner pixels, you have to
176// add to the main task list an object of type MSigmabarCalc before the
177// MImgCleanStd object. To know how the calculation of fInnerNoise is done
178// look at the MSigmabarCalc Class.
179//
180// Example:
181//
182// MSigmabarCalc sbcalc;
183// //creates an object that calcutates the average pedestal RMS
184// MImgCleanStd clean;
185// ...
186// tlist.AddToList(&sbcalc);
187// tlist.AddToList(&clean);
188//
189// Member Function: SetMethod()
190// ============================
191// When you call the MImgCleanStd task, the default method is kStandard.
192//
193// If you want to switch to the kDemocratic method you have to
194// call this member function.
195//
196// Example:
197//
198// MImgCleanStd clean;
199// //creates a default Cleaning object, with default setting
200//
201// clean.SetMethod(MImgCleanStd::kDemocratic);
202// //now the method of cleaning is changed to Democratic
203//
204// FIRST AND SECOND CLEANING LEVEL
205// ===============================
206// When you call the MImgCleanStd task, the default cleaning levels are
207// fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
208// create the MImgCleanStd object.
209//
210// Example:
211//
212// MImgCleanStd clean(Float_t lvl1,Float_t lvl2);
213// //creates a default cleaning object, but the cleaning levels are now
214// //lvl1 and lvl2.
215//
216// RING NUMBER
217// ===========
218// The standard cleaning procedure is such that it looks for the
219// informations of the boundary part of the shower only on the first
220// neighbors of the CORE pixels.
221// There is the possibility now to look not only at the firs neighbors
222// (first ring),but also further away, around the CORE pixels. All the new
223// pixels you can find with this method, are tested with the second level
224// of cleaning and have to have at least an USED neighbor.
225//
226// They will be also set as USED and will be taken into account during the
227// calculation of the image parameters.
228// The only way to distinguish them from the other USED pixels, is the
229// Ring number, that is bigger than 1.
230//
231// Example: You can decide how many rings you want to analyze using:
232//
233// MImgCleanStd clean;
234// //creates a default cleaning object (default number of rings =1)
235// clean.SetCleanRings(UShort_t r);
236// //now it looks r times around the CORE pixels to find new pixels with
237// //signal.
238//
239//
240// Input Containers:
241// MGeomCam, MCerPhotEvt, MSigmabar
242//
243// Output Containers:
244// MCerPhotEvt
245//
246/////////////////////////////////////////////////////////////////////////////
247#include "MImgCleanStd.h"
248
249#include <stdlib.h> // atof
250#include <fstream.h> // ofstream, SavePrimitive
251
252#include <TGFrame.h> // TGFrame
253#include <TGLabel.h> // TGLabel
254#include <TGTextEntry.h> // TGTextEntry
255
256#include "MLog.h"
257#include "MLogManip.h"
258
259#include "MParList.h"
260#include "MGeomPix.h"
261#include "MGeomCam.h"
262#include "MCerPhotPix.h"
263#include "MCerPhotEvt.h"
264#include "MSigmabar.h"
265
266#include "MGGroupFrame.h" // MGGroupFrame
267
268ClassImp(MImgCleanStd);
269
270enum {
271 kImgCleanLvl1,
272 kImgCleanLvl2
273};
274
275static const TString gsDefName = "MImgCleanStd";
276static const TString gsDefTitle = "Task to perform image cleaning";
277
278// --------------------------------------------------------------------------
279//
280// Default constructor. Here you can specify the cleaning method and levels.
281// If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
282// above mean) are used.
283// Here you can also specify how many rings around the core pixels you want
284// to analyze (with the fixed lvl2). The default value for "rings" is 1.
285//
286MImgCleanStd::MImgCleanStd(const Float_t lvl1, const Float_t lvl2,
287 const char *name, const char *title)
288 : fSgb(NULL), fCleaningMethod(kStandard), fCleanLvl1(lvl1),
289 fCleanLvl2(lvl2), fCleanRings(1)
290
291{
292 fName = name ? name : gsDefName.Data();
293 fTitle = title ? title : gsDefTitle.Data();
294
295 Print();
296}
297
298// --------------------------------------------------------------------------
299//
300// NT 28/04/2003: now the option to use the standard method or the
301// democratic method is implemented:
302//
303// KStandard: This method looks for all pixels with an entry (photons)
304// that is three times bigger than the noise of the pixel
305// (default: 3 sigma, clean level 1)
306// AM 18/11/2002: now cut levels are proportional to the pixel area.
307// In this way the cut corresponds to a fixed
308// phe-density (otherwise, it would bias the images).
309//
310// Returns the maximum Pixel Id (used for ispixused in CleanStep2)
311//
312Int_t MImgCleanStd::CleanStep1Std()
313{
314 const Int_t entries = fEvt->GetNumPixels();
315
316 Int_t max = entries;
317
318 //
319 // check the number of all pixels against the noise level and
320 // set them to 'unused' state if necessary
321 //
322 for (Int_t i=0; i<entries; i++ )
323 {
324 MCerPhotPix &pix = (*fEvt)[i];
325
326 const Float_t entry = pix.GetNumPhotons();
327 const Float_t noise = pix.GetErrorPhot();
328
329 const Int_t id = pix.GetPixId();
330 const Double_t ratio = TMath::Sqrt(fCam->GetPixRatio(id));
331
332 // COBB: '<=' to skip entry=noise=0
333 if (entry <= fCleanLvl1 * noise / ratio)
334 pix.SetPixelUnused();
335
336 if (id>max)
337 max = id;
338 }
339
340 return max;
341}
342
343// --------------------------------------------------------------------------
344//
345// NT 28/04/2003: now the option to use the standard method or the
346// democratic method is implemented:
347//
348// "KDemocratic": this method looks for all pixels with an entry (photons)
349// that is n times bigger than the noise of the mean of the
350// inner pixels (default: 3 sigmabar, clean level 1)
351//
352// Returns the maximum Pixel Id (used for ispixused in CleanStep2)
353//
354Int_t MImgCleanStd::CleanStep1Dem()
355{
356 const Int_t entries = fEvt->GetNumPixels();
357
358 Int_t max = entries;
359
360 //
361 // check the number of all pixels against the noise level and
362 // set them to 'unused' state if necessary
363 //
364 for (Int_t i=0; i<entries; i++ )
365 {
366 MCerPhotPix &pix = (*fEvt)[i];
367
368 const Float_t entry = pix.GetNumPhotons();
369
370 const Int_t id = pix.GetPixId();
371
372 const Double_t ratio = fCam->GetPixRatio(id);
373
374 // COBB: '<=' to skip entry=noise=0
375 if (entry <= fCleanLvl1 * fInnerNoise / ratio)
376 pix.SetPixelUnused();
377
378 if (id>max)
379 max = id;
380 }
381 return max;
382}
383
384// --------------------------------------------------------------------------
385// The first step of cleaning defines the CORE pixels. All the other pixels
386// are set as UNUSED and belong to RING 0.
387// After this point, only the CORE pixels are set as USED, with RING
388// number 1.
389// Returns the maximum Pixel Id (used for ispixused in CleanStep2)
390//
391Int_t MImgCleanStd::CleanStep1()
392{
393 switch (fCleaningMethod)
394 {
395 case kStandard:
396 return CleanStep1Std();
397 case kDemocratic:
398 return CleanStep1Dem();
399 }
400
401 return 0;
402}
403
404// --------------------------------------------------------------------------
405//
406// Check if the survived pixel have a neighbor, that also
407// survived, otherwise set pixel to unused (removes pixels without
408// neighbors).
409//
410// Takes the maximum pixel id from CleanStep1 as an argument
411//
412void MImgCleanStd::CleanStep2(Int_t max)
413{
414 const Int_t entries = fEvt->GetNumPixels();
415
416 //
417 // In the worst case we have to loop 6 times 577 times, to
418 // catch the behaviour of all next neighbors. Here we can gain
419 // much by using an array instead of checking through all pixels
420 // (MCerPhotEvt::IsPixelUsed) all the time.
421 //
422 Byte_t *ispixused = new Byte_t[max+1];
423
424 for (Int_t i=0; i<entries; i++)
425 {
426 const MCerPhotPix &pix = (*fEvt)[i];
427 ispixused[pix.GetPixId()] = pix.IsPixelUsed() ? 1 : 0 ;
428 }
429
430 for (Int_t i=0; i<entries; i++)
431 {
432 // get entry i from list
433 MCerPhotPix &pix = (*fEvt)[i];
434
435 // get pixel id of this entry
436 const Int_t id = pix.GetPixId();
437
438 // check if pixel is in use, if not goto next pixel in list
439 if (ispixused[id] == 0)
440 continue;
441
442 // check for 'used' neighbors of this pixel
443 const MGeomPix &gpix = (*fCam)[id];
444 const Int_t nnmax = gpix.GetNumNeighbors();
445
446 Bool_t hasNeighbor = kFALSE;
447
448 //loop on the neighbors to check if they are used
449 for (Int_t j=0; j<nnmax; j++)
450 {
451 const Int_t id2 = gpix.GetNeighbor(j);
452
453 // when you find an used neighbor, break the loop
454 if (ispixused[id2] == 1)
455 {
456 hasNeighbor = kTRUE ;
457 break;
458 }
459 }
460
461 if (hasNeighbor == kFALSE)
462 pix.SetPixelUnused();
463 }
464
465 delete ispixused;
466
467 //
468 // now we declare all pixels that survive as CorePixels
469 //
470 for (Int_t i=0; i<entries; i++)
471 {
472 MCerPhotPix &pix = (*fEvt)[i];
473
474 if (pix.IsPixelUsed())
475 pix.SetPixelCore();
476 }
477}
478
479// --------------------------------------------------------------------------
480//
481// Look for the boundary pixels around the core pixels
482// if a pixel has more than 2.5 (clean level 2.5) sigma, and
483// a core neigbor it is declared as used.
484//
485Bool_t MImgCleanStd::CleanStep3Std(const MCerPhotPix &pix)
486{
487 //
488 // get pixel id of this entry
489 //
490 const Int_t id = pix.GetPixId();
491
492 //
493 // check the num of photons against the noise level
494 //
495 const Float_t entry = pix.GetNumPhotons();
496 const Float_t noise = pix.GetErrorPhot();
497
498 const Double_t ratio = TMath::Sqrt(fCam->GetPixRatio(id));
499
500 return (entry <= fCleanLvl2 * noise / ratio);
501}
502
503// --------------------------------------------------------------------------
504//
505// Look for the boundary pixels around the core pixels
506// if a pixel has more than 2.5 (clean level 2.5) sigmabar and
507// a core neighbor, it is declared as used.
508//
509Bool_t MImgCleanStd::CleanStep3Dem(const MCerPhotPix &pix)
510{
511 //
512 // get pixel id of this entry
513 //
514 const Int_t id = pix.GetPixId();
515
516 //
517 // check the num of photons against the noise level
518 //
519 const Float_t entry = pix.GetNumPhotons();
520
521 const Double_t ratio = fCam->GetPixRatio(id);
522
523 return (entry <= fCleanLvl2 * fInnerNoise / ratio);
524}
525
526void MImgCleanStd::CleanStep3b(MCerPhotPix &pix)
527{
528 const Int_t id = pix.GetPixId();
529
530 //
531 // check if the pixel's next neighbor is a core pixel.
532 // if it is a core pixel set pixel state to: used.
533 //
534 MGeomPix &gpix = (*fCam)[id];
535 const Int_t nnmax = gpix.GetNumNeighbors();
536
537 for (Int_t j=0; j<nnmax; j++)
538 {
539 const Int_t id2 = gpix.GetNeighbor(j);
540
541 if (!fEvt->GetPixById(id2) || !fEvt->IsPixelCore(id2))
542 continue;
543
544 pix.SetPixelUsed();
545 break;
546 }
547}
548
549// --------------------------------------------------------------------------
550//
551// NT: Add option "rings": default value = 1.
552// Look n (n>1) times for the boundary pixels around the used pixels.
553// If a pixel has more than 2.5 (clean level 2.5) sigma,
554// it is declared as used.
555//
556// If a value<2 for fCleanRings is used, no CleanStep4 is done.
557//
558void MImgCleanStd::CleanStep4(UShort_t r, MCerPhotPix &pix)
559{
560 //
561 // check if the pixel's next neighbor is a used pixel.
562 // if it is a used pixel set pixel state to: used,
563 // and tell to which ring it belongs to.
564 //
565 const Int_t id = pix.GetPixId();
566 MGeomPix &gpix = (*fCam)[id];
567
568 const Int_t nnmax = gpix.GetNumNeighbors();
569
570 for (Int_t j=0; j<nnmax; j++)
571 {
572 const Int_t id2 = gpix.GetNeighbor(j);
573
574 MCerPhotPix &npix = *fEvt->GetPixById(id2);
575
576 // FIXME!
577 // Needed check to read CT1 data without having a Segmentation fault
578 if (!fEvt->GetPixById(id2))
579 continue;
580
581 if (!npix.IsPixelUsed() || npix.GetRing()>r-1 )
582 continue;
583
584 pix.SetRing(r);
585 break;
586 }
587}
588
589// --------------------------------------------------------------------------
590//
591// Look for the boundary pixels around the core pixels
592// if a pixel has more than 2.5 (clean level 2.5) sigma, and
593// a core neigbor, it is declared as used.
594//
595void MImgCleanStd::CleanStep3()
596{
597 const Int_t entries = fEvt->GetNumPixels();
598
599 for (UShort_t r=1; r<fCleanRings+1; r++)
600 {
601 for (Int_t i=0; i<entries; i++)
602 {
603 //
604 // get pixel as entry il from list
605 //
606 MCerPhotPix &pix = (*fEvt)[i];
607
608 //
609 // if pixel is a core pixel go to the next pixel
610 //
611 if (pix.IsPixelCore())
612 continue;
613
614 switch (fCleaningMethod)
615 {
616 case kStandard:
617 if (CleanStep3Std(pix))
618 continue;
619 break;
620 case kDemocratic:
621 if (CleanStep3Dem(pix))
622 continue;
623 break;
624 }
625
626 if (r==1)
627 CleanStep3b(pix);
628 else
629 CleanStep4(r, pix);
630 }
631 }
632}
633
634// --------------------------------------------------------------------------
635//
636// Check if MEvtHeader exists in the Parameter list already.
637// if not create one and add them to the list
638//
639Bool_t MImgCleanStd::PreProcess (MParList *pList)
640{
641 fCam = (MGeomCam*)pList->FindObject("MGeomCam");
642 if (!fCam)
643 {
644 *fLog << dbginf << "MGeomCam not found (no geometry information available)... aborting." << endl;
645 return kFALSE;
646 }
647
648 fEvt = (MCerPhotEvt*)pList->FindObject("MCerPhotEvt");
649 if (!fEvt)
650 {
651 *fLog << dbginf << "MCerPhotEvt not found... aborting." << endl;
652 return kFALSE;
653 }
654
655 if (fCleaningMethod != kDemocratic)
656 return kTRUE;
657
658 fSgb = (MSigmabar*)pList->FindObject("MSigmabar");
659 if (!fSgb)
660 {
661 *fLog << dbginf << "MSigmabar not found... aborting." << endl;
662 return kFALSE;
663 }
664
665 return kTRUE;
666}
667
668// --------------------------------------------------------------------------
669//
670// Cleans the image.
671//
672Bool_t MImgCleanStd::Process()
673{
674 if (fSgb)
675 fInnerNoise = fSgb->GetSigmabarInner();
676
677 const Int_t max = CleanStep1();
678 CleanStep2(max);
679 CleanStep3();
680
681 return kTRUE;
682}
683
684// --------------------------------------------------------------------------
685//
686// Print descriptor and cleaning levels.
687//
688void MImgCleanStd::Print(Option_t *o) const
689{
690 *fLog << all << GetDescriptor() << " using ";
691 switch (fCleaningMethod)
692 {
693 case kDemocratic:
694 *fLog << "democratic";
695 break;
696 case kStandard:
697 *fLog << "standard";
698 break;
699 }
700 *fLog << " cleaning initialized with noise level " << fCleanLvl1 << " and " << fCleanLvl2;
701 *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
702}
703
704// --------------------------------------------------------------------------
705//
706// Create two text entry fields, one for each cleaning level and a
707// describing text line.
708//
709void MImgCleanStd::CreateGuiElements(MGGroupFrame *f)
710{
711 //
712 // Create a frame for line 3 and 4 to be able
713 // to align entry field and label in one line
714 //
715 TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
716 TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
717
718 /*
719 * --> use with root >=3.02 <--
720 *
721
722 TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
723 TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
724
725 */
726 TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
727 TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
728
729 // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
730 // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
731
732 entry1->SetText("3.0");
733 entry2->SetText("2.5");
734
735 entry1->Associate(f);
736 entry2->Associate(f);
737
738 TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
739 TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
740
741 l1->SetTextJustify(kTextLeft);
742 l2->SetTextJustify(kTextLeft);
743
744 //
745 // Align the text of the label centered, left in the row
746 // with a left padding of 10
747 //
748 TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
749 TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
750
751 //
752 // Add one entry field and the corresponding label to each line
753 //
754 f1->AddFrame(entry1);
755 f2->AddFrame(entry2);
756
757 f1->AddFrame(l1, laylabel);
758 f2->AddFrame(l2, laylabel);
759
760 f->AddFrame(f1, layframe);
761 f->AddFrame(f2, layframe);
762
763 f->AddToList(entry1);
764 f->AddToList(entry2);
765 f->AddToList(l1);
766 f->AddToList(l2);
767 f->AddToList(laylabel);
768 f->AddToList(layframe);
769}
770
771// --------------------------------------------------------------------------
772//
773// Process the GUI Events comming from the two text entry fields.
774//
775Bool_t MImgCleanStd::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
776{
777 if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
778 return kTRUE;
779
780 TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
781
782 if (!txt)
783 return kTRUE;
784
785 Float_t lvl = atof(txt->GetText());
786
787 switch (param1)
788 {
789 case kImgCleanLvl1:
790 fCleanLvl1 = lvl;
791 *fLog << "Cleaning level 1 set to " << lvl << " sigma." << endl;
792 return kTRUE;
793
794 case kImgCleanLvl2:
795 fCleanLvl2 = lvl;
796 *fLog << "Cleaning level 2 set to " << lvl << " sigma." << endl;
797 return kTRUE;
798 }
799
800 return kTRUE;
801}
802
803// --------------------------------------------------------------------------
804//
805// Implementation of SavePrimitive. Used to write the call to a constructor
806// to a macro. In the original root implementation it is used to write
807// gui elements to a macro-file.
808//
809void MImgCleanStd::StreamPrimitive(ofstream &out) const
810{
811 out << " MImgCleanStd " << GetUniqueName() << "(";
812 out << fCleanLvl1 << ", " << fCleanLvl2;
813
814 if (fName!=gsDefName || fTitle!=gsDefTitle)
815 {
816 out << ", \"" << fName << "\"";
817 if (fTitle!=gsDefTitle)
818 out << ", \"" << fTitle << "\"";
819 }
820 out << ");" << endl;
821}
Note: See TracBrowser for help on using the repository browser.