source: trunk/MagicSoft/Mars/mimage/MImgCleanStd.cc@ 2194

Last change on this file since 2194 was 2173, checked in by tbretz, 22 years ago
*** empty log message ***
File size: 25.7 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19! Author(s): Harald Kornmayer, 1/2001
20! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MImgCleanStd
30//
31// The Image Cleaning task selects the pixels you use for the Hillas
32// parameters calculation.
33//
34// There are two methods to make the selection: the standard one, as done
35// in the analysis of CT1 data, and the democratic one, as suggested by
36// W.Wittek. The number of photo-electrons of a pixel is compared with the
37// pedestal RMS of the pixel itself (standard method) or with the average
38// RMS of the inner pixels (democratic method).
39// In both cases, the possibility to have a camera with pixels of
40// different area is taken into account.
41// The too noisy pixels can be recognized and eventally switched off
42// (Unmap: set blind pixels to UNUSED) separately, using the
43// MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
44// function to replace the value of the noisy pixels with the interpolation
45// of the content of the neighbors (SetUseInterpolation).
46//
47// Example:
48// ...
49// MBlindPixelCalc blind;
50// blind.SetUseInterpolation();
51// blind.SetUseBlindPixels();
52//
53// MImgCleanStd clean;
54// ...
55// tlist.AddToList(&blind);
56// tlist.AddToList(&clean);
57//
58// Look at the MBlindPixelCalc Class for more details.
59//
60// Starting point: default values ----------------------------------------
61//
62// When an event is read, before the image cleaning, all the pixels that
63// are in MCerPhotEvt are set as USED and NOT CORE. All the pixels belong
64// to RING number 1 (like USED pixels).
65// Look at MCerPhotPix.h to see how these informations of the pixel are
66// stored.
67// The default cleaning METHOD is the STANDARD one and the number of the
68// rings around the CORE pixel it analyzes is 1. Look at the Constructor
69// of the class in MImgCleanStd.cc to see (or change) the default values.
70//
71// Example: To modify this setting, use the member functions
72// SetMethod(MImgCleanStd::kDemocratic) and SetCleanRings(UShort_t n).
73//
74// MImgCleanStd:CleanStep1 -----------------------------------------------
75//
76// The first step of cleaning defines the CORE pixels. The CORE pixels are
77// the ones which contain the informations about the core of the electro-
78// magnetic shower.
79// The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
80// the area of the central pixel of the camera, A_i is the area of the
81// examined pixel. In this way, if we have a MAGIC-like camera, with the
82// outer pixels bigger than the inner ones, the level of cleaning in the
83// two different regions is weighted.
84// This avoids problems of deformations of the shower images.
85// The signal S_i and the pedestal RMS Prms_i of the pixel are called from
86// the object MCerPhotPix.
87// If (default method = kStandard)
88//Begin_Html
89//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
90//End_Html
91// the pixel is set as CORE pixel. L_1 (n=1) is called "first level of
92// cleaning" (default: fCleanLvl1 = 3).
93// All the other pixels are set as UNUSED and belong to RING 0.
94// After this point, only the CORE pixels are set as USED, with RING
95// number 1.
96//
97// MImgCleanStd:CleanStep2 ----------------------------------------------
98//
99// The second step of cleaning looks at the isolated CORE pixels and sets
100// them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
101// At the end of this point, we have set as USED only CORE pixels with at
102// least one CORE neighbor.
103//
104// MImgCleanStd:CleanStep3 ----------------------------------------------
105//
106// The third step of cleaning looks at all the pixels (USED or UNUSED) that
107// surround the USED pixels.
108// If the content of the analyzed pixel survives at the second level of
109// cleaning, i.e. if
110//Begin_Html
111//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
112//End_Html
113// the pixel is set as USED. L_2 (n=2) is called "second level of cleaning"
114// (default:fCleanLvl2 = 2.5).
115//
116// When the number of RINGS to analyze is 1 (default value), only the
117// pixels that have a neighbor CORE pixel are analyzed.
118//
119// There is the option to decide the number of times you want to repeat
120// this procedure (number of RINGS analyzed around the core pixels = n).
121// Every time the level of cleaning is the same (fCleanLvl2) and the pixel
122// will belong to ring r+1, 1 < r < n+1. This is described in
123// MImgCleanStd:CleanStep4 .
124//
125// Dictionary and member functions ---------------------------------------
126//
127// Here there is the detailed description of the member functions and of
128// the terms commonly used in the class.
129//
130// STANDARD CLEANING:
131// =================
132// This is the method used for the CT1 data analysis. It is the default
133// method of the class.
134// The number of photo-electrons of a pixel (S_i) is compared to the
135// pedestal RMS of the pixel itself (Prms_i). To have the comparison to
136// the same photon density for all the pixels, taking into account they
137// can have different areas, we have to keep in mind that the number of
138// photons that hit each pixel, goes linearly with the area of the pixel.
139// The fluctuations of the LONS are proportional to sqrt(A_i), so when we
140// compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
141// have the same (N.photons/Area) threshold for all the pixels.
142//
143// !!WARNING: if noise independent from the
144// pixel size (example: electronic noise) is introduced,
145// then the noise fluctuations are no longer proportional
146// to sqrt(A_i), and then the cut value (for a camera with
147// pixels of different sizes) resulting from the above
148// procedure would not be proportional to pixel size as we
149// intend. In that case, democratic cleaning is preferred.
150//
151// If
152//Begin_Html
153//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
154//End_Html
155// the pixel survives the cleaning and it is set as CORE (when L_n is the
156// first level of cleaning, fCleanLvl1) or USED (when L_n is the second
157// level of cleaning, fCleanLvl2).
158//
159// Example:
160//
161// MImgCleanStd clean;
162// //creates a default Cleaning object, with default setting
163// ...
164// tlist.AddToList(&clean);
165// // add the image cleaning to the main task list
166//
167// DEMOCRATIC CLEANING:
168// ===================
169// You use this cleaning method when you want to compare the number of
170// photo-electons of each pixel with the average pedestal RMS
171// (fInnerNoise = fSgb->GetSigmabarInner()) of the inner pixels (for the
172// MAGIC camera they are the smaller ones):
173//Begin_Html
174//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f2.png">
175//End_Html
176// In this case, the simple ratio (A_0/A_i) is used to weight the level of
177// cleaning, because both the inner and the outer pixels (that in MAGIC
178// have a different area) are compared to the same pedestal RMS, coming
179// from the inner pixels.
180// To calculate the average pedestal RMS of the inner pixels, you have to
181// add to the main task list an object of type MSigmabarCalc before the
182// MImgCleanStd object. To know how the calculation of fInnerNoise is done
183// look at the MSigmabarCalc Class.
184//
185// Example:
186//
187// MSigmabarCalc sbcalc;
188// //creates an object that calcutates the average pedestal RMS
189// MImgCleanStd clean;
190// ...
191// tlist.AddToList(&sbcalc);
192// tlist.AddToList(&clean);
193//
194// Member Function: SetMethod()
195// ============================
196// When you call the MImgCleanStd task, the default method is kStandard.
197//
198// If you want to switch to the kDemocratic method you have to
199// call this member function.
200//
201// Example:
202//
203// MImgCleanStd clean;
204// //creates a default Cleaning object, with default setting
205//
206// clean.SetMethod(MImgCleanStd::kDemocratic);
207// //now the method of cleaning is changed to Democratic
208//
209// FIRST AND SECOND CLEANING LEVEL
210// ===============================
211// When you call the MImgCleanStd task, the default cleaning levels are
212// fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
213// create the MImgCleanStd object.
214//
215// Example:
216//
217// MImgCleanStd clean(Float_t lvl1,Float_t lvl2);
218// //creates a default cleaning object, but the cleaning levels are now
219// //lvl1 and lvl2.
220//
221// RING NUMBER
222// ===========
223// The standard cleaning procedure is such that it looks for the
224// informations of the boundary part of the shower only on the first
225// neighbors of the CORE pixels.
226// There is the possibility now to look not only at the firs neighbors
227// (first ring),but also further away, around the CORE pixels. All the new
228// pixels you can find with this method, are tested with the second level
229// of cleaning and have to have at least an USED neighbor.
230//
231// They will be also set as USED and will be taken into account during the
232// calculation of the image parameters.
233// The only way to distinguish them from the other USED pixels, is the
234// Ring number, that is bigger than 1.
235//
236// Example: You can decide how many rings you want to analyze using:
237//
238// MImgCleanStd clean;
239// //creates a default cleaning object (default number of rings =1)
240// clean.SetCleanRings(UShort_t r);
241// //now it looks r times around the CORE pixels to find new pixels with
242// //signal.
243//
244//
245// Input Containers:
246// MGeomCam, MCerPhotEvt, MSigmabar
247//
248// Output Containers:
249// MCerPhotEvt
250//
251/////////////////////////////////////////////////////////////////////////////
252#include "MImgCleanStd.h"
253
254#include <stdlib.h> // atof
255#include <fstream> // ofstream, SavePrimitive
256
257#include <TGFrame.h> // TGFrame
258#include <TGLabel.h> // TGLabel
259#include <TGTextEntry.h> // TGTextEntry
260
261#include "MLog.h"
262#include "MLogManip.h"
263
264#include "MParList.h"
265#include "MGeomPix.h"
266#include "MGeomCam.h"
267#include "MCerPhotPix.h"
268#include "MCerPhotEvt.h"
269#include "MSigmabar.h"
270
271#include "MGGroupFrame.h" // MGGroupFrame
272
273ClassImp(MImgCleanStd);
274
275using namespace std;
276
277enum {
278 kImgCleanLvl1,
279 kImgCleanLvl2
280};
281
282static const TString gsDefName = "MImgCleanStd";
283static const TString gsDefTitle = "Task to perform image cleaning";
284
285// --------------------------------------------------------------------------
286//
287// Default constructor. Here you can specify the cleaning method and levels.
288// If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
289// above mean) are used.
290// Here you can also specify how many rings around the core pixels you want
291// to analyze (with the fixed lvl2). The default value for "rings" is 1.
292//
293MImgCleanStd::MImgCleanStd(const Float_t lvl1, const Float_t lvl2,
294 const char *name, const char *title)
295 : fSgb(NULL), fCleaningMethod(kStandard), fCleanLvl1(lvl1),
296 fCleanLvl2(lvl2), fCleanRings(1)
297
298{
299 fName = name ? name : gsDefName.Data();
300 fTitle = title ? title : gsDefTitle.Data();
301
302 Print();
303}
304
305// --------------------------------------------------------------------------
306//
307// NT 28/04/2003: now the option to use the standard method or the
308// democratic method is implemented:
309//
310// KStandard: This method looks for all pixels with an entry (photons)
311// that is three times bigger than the noise of the pixel
312// (default: 3 sigma, clean level 1)
313//
314// --------------------------------------------------------------------------
315//
316// Returns the maximum Pixel Id (used for ispixused in CleanStep2)
317//
318Int_t MImgCleanStd::CleanStep1Std()
319{
320 const Int_t entries = fEvt->GetNumPixels();
321
322 Int_t max = entries;
323
324 //
325 // check the number of all pixels against the noise level and
326 // set them to 'unused' state if necessary
327 //
328 for (Int_t i=0; i<entries; i++ )
329 {
330 MCerPhotPix &pix = (*fEvt)[i];
331
332 const Int_t id = pix.GetPixId();
333
334 const Float_t entry = pix.GetNumPhotons();
335 const Float_t noise = pix.GetErrorPhot();
336 const Double_t ratio = TMath::Sqrt(fCam->GetPixRatio(id));
337
338 // COBB: '<=' to skip entry=noise=0
339 if (entry * ratio <= fCleanLvl1 * noise)
340 pix.SetPixelUnused();
341
342 if (id>max)
343 max = id;
344 }
345
346 return max;
347}
348
349// --------------------------------------------------------------------------
350//
351// NT 28/04/2003: now the option to use the standard method or the
352// democratic method is implemented:
353//
354// "KDemocratic": this method looks for all pixels with an entry (photons)
355// that is n times bigger than the noise of the mean of the
356// inner pixels (default: 3 sigmabar, clean level 1)
357//
358// Returns the maximum Pixel Id (used for ispixused in CleanStep2)
359//
360Int_t MImgCleanStd::CleanStep1Dem()
361{
362 const Int_t entries = fEvt->GetNumPixels();
363
364 Int_t max = entries;
365
366 //
367 // check the number of all pixels against the noise level and
368 // set them to 'unused' state if necessary
369 //
370 for (Int_t i=0; i<entries; i++ )
371 {
372 MCerPhotPix &pix = (*fEvt)[i];
373
374 const Int_t id = pix.GetPixId();
375
376 const Float_t entry = pix.GetNumPhotons();
377 const Double_t ratio = fCam->GetPixRatio(id);
378
379 // COBB: '<=' to skip entry=noise=0
380 if (entry * ratio <= fCleanLvl1 * fInnerNoise)
381 pix.SetPixelUnused();
382
383 if (id>max)
384 max = id;
385 }
386 return max;
387}
388
389// --------------------------------------------------------------------------
390// The first step of cleaning defines the CORE pixels. All the other pixels
391// are set as UNUSED and belong to RING 0.
392// After this point, only the CORE pixels are set as USED, with RING
393// number 1.
394// Returns the maximum Pixel Id (used for ispixused in CleanStep2)
395//
396Int_t MImgCleanStd::CleanStep1()
397{
398 switch (fCleaningMethod)
399 {
400 case kStandard:
401 return CleanStep1Std();
402 case kDemocratic:
403 return CleanStep1Dem();
404 }
405
406 return 0;
407}
408
409// --------------------------------------------------------------------------
410//
411// Check if the survived pixel have a neighbor, that also
412// survived, otherwise set pixel to unused (removes pixels without
413// neighbors).
414//
415// Takes the maximum pixel id from CleanStep1 as an argument
416//
417void MImgCleanStd::CleanStep2(Int_t max)
418{
419 const Int_t entries = fEvt->GetNumPixels();
420
421 //
422 // In the worst case we have to loop 6 times 577 times, to
423 // catch the behaviour of all next neighbors. Here we can gain
424 // much by using an array instead of checking through all pixels
425 // (MCerPhotEvt::IsPixelUsed) all the time.
426 //
427 Byte_t *ispixused = new Byte_t[max+1];
428
429 for (Int_t i=0; i<entries; i++)
430 {
431 const MCerPhotPix &pix = (*fEvt)[i];
432 ispixused[pix.GetPixId()] = pix.IsPixelUsed() ? 1 : 0 ;
433 }
434
435 for (Int_t i=0; i<entries; i++)
436 {
437 // get entry i from list
438 MCerPhotPix &pix = (*fEvt)[i];
439
440 // get pixel id of this entry
441 const Int_t id = pix.GetPixId();
442
443 // check if pixel is in use, if not goto next pixel in list
444 if (ispixused[id] == 0)
445 continue;
446
447 // check for 'used' neighbors of this pixel
448 const MGeomPix &gpix = (*fCam)[id];
449 const Int_t nnmax = gpix.GetNumNeighbors();
450
451 Bool_t hasNeighbor = kFALSE;
452
453 //loop on the neighbors to check if they are used
454 for (Int_t j=0; j<nnmax; j++)
455 {
456 const Int_t id2 = gpix.GetNeighbor(j);
457
458 // when you find an used neighbor, break the loop
459 if (ispixused[id2] == 1)
460 {
461 hasNeighbor = kTRUE;
462 break;
463 }
464 }
465
466 if (hasNeighbor == kFALSE)
467 pix.SetPixelUnused();
468 }
469
470 delete ispixused;
471
472 //
473 // now we declare all pixels that survive as CorePixels
474 //
475 for (Int_t i=0; i<entries; i++)
476 {
477 MCerPhotPix &pix = (*fEvt)[i];
478
479 if (pix.IsPixelUsed())
480 pix.SetPixelCore();
481 }
482}
483
484// --------------------------------------------------------------------------
485//
486// Look for the boundary pixels around the core pixels
487// if a pixel has more than 2.5 (clean level 2.5) sigma, and
488// a core neigbor it is declared as used.
489//
490Bool_t MImgCleanStd::CleanStep3Std(const MCerPhotPix &pix)
491{
492 //
493 // get pixel id of this entry
494 //
495 const Int_t id = pix.GetPixId();
496
497 //
498 // check the num of photons against the noise level
499 //
500 const Float_t entry = pix.GetNumPhotons();
501 const Float_t noise = pix.GetErrorPhot();
502 const Double_t ratio = TMath::Sqrt(fCam->GetPixRatio(id));
503
504 return (entry * ratio <= fCleanLvl2 * noise);
505}
506
507// --------------------------------------------------------------------------
508//
509// Look for the boundary pixels around the core pixels
510// if a pixel has more than 2.5 (clean level 2.5) sigmabar and
511// a core neighbor, it is declared as used.
512//
513Bool_t MImgCleanStd::CleanStep3Dem(const MCerPhotPix &pix)
514{
515 //
516 // get pixel id of this entry
517 //
518 const Int_t id = pix.GetPixId();
519
520 //
521 // check the num of photons against the noise level
522 //
523 const Float_t entry = pix.GetNumPhotons();
524 const Double_t ratio = fCam->GetPixRatio(id);
525
526 return (entry * ratio <= fCleanLvl2 * fInnerNoise);
527}
528
529void MImgCleanStd::CleanStep3b(MCerPhotPix &pix)
530{
531 const Int_t id = pix.GetPixId();
532
533 //
534 // check if the pixel's next neighbor is a core pixel.
535 // if it is a core pixel set pixel state to: used.
536 //
537 MGeomPix &gpix = (*fCam)[id];
538 const Int_t nnmax = gpix.GetNumNeighbors();
539
540 for (Int_t j=0; j<nnmax; j++)
541 {
542 const Int_t id2 = gpix.GetNeighbor(j);
543
544 if (!fEvt->GetPixById(id2) || !fEvt->IsPixelCore(id2))
545 continue;
546
547 pix.SetPixelUsed();
548 break;
549 }
550}
551
552// --------------------------------------------------------------------------
553//
554// NT: Add option "rings": default value = 1.
555// Look n (n>1) times for the boundary pixels around the used pixels.
556// If a pixel has more than 2.5 (clean level 2.5) sigma,
557// it is declared as used.
558//
559// If a value<2 for fCleanRings is used, no CleanStep4 is done.
560//
561void MImgCleanStd::CleanStep4(UShort_t r, MCerPhotPix &pix)
562{
563 //
564 // check if the pixel's next neighbor is a used pixel.
565 // if it is a used pixel set pixel state to: used,
566 // and tell to which ring it belongs to.
567 //
568 const Int_t id = pix.GetPixId();
569 MGeomPix &gpix = (*fCam)[id];
570
571 const Int_t nnmax = gpix.GetNumNeighbors();
572
573 for (Int_t j=0; j<nnmax; j++)
574 {
575 const Int_t id2 = gpix.GetNeighbor(j);
576
577 MCerPhotPix &npix = *fEvt->GetPixById(id2);
578
579 // FIXME!
580 // Needed check to read CT1 data without having a Segmentation fault
581 if (!fEvt->GetPixById(id2))
582 continue;
583
584 if (!npix.IsPixelUsed() || npix.GetRing()>r-1 )
585 continue;
586
587 pix.SetRing(r);
588 break;
589 }
590}
591
592// --------------------------------------------------------------------------
593//
594// Look for the boundary pixels around the core pixels
595// if a pixel has more than 2.5 (clean level 2.5) sigma, and
596// a core neigbor, it is declared as used.
597//
598void MImgCleanStd::CleanStep3()
599{
600 const Int_t entries = fEvt->GetNumPixels();
601
602 for (UShort_t r=1; r<fCleanRings+1; r++)
603 {
604 for (Int_t i=0; i<entries; i++)
605 {
606 //
607 // get pixel as entry il from list
608 //
609 MCerPhotPix &pix = (*fEvt)[i];
610
611 //
612 // if pixel is a core pixel go to the next pixel
613 //
614 if (pix.IsPixelCore())
615 continue;
616
617 switch (fCleaningMethod)
618 {
619 case kStandard:
620 if (CleanStep3Std(pix))
621 continue;
622 break;
623 case kDemocratic:
624 if (CleanStep3Dem(pix))
625 continue;
626 break;
627 }
628
629 if (r==1)
630 CleanStep3b(pix);
631 else
632 CleanStep4(r, pix);
633 }
634 }
635}
636
637// --------------------------------------------------------------------------
638//
639// Check if MEvtHeader exists in the Parameter list already.
640// if not create one and add them to the list
641//
642Bool_t MImgCleanStd::PreProcess (MParList *pList)
643{
644 fCam = (MGeomCam*)pList->FindObject("MGeomCam");
645 if (!fCam)
646 {
647 *fLog << dbginf << "MGeomCam not found (no geometry information available)... aborting." << endl;
648 return kFALSE;
649 }
650
651 fEvt = (MCerPhotEvt*)pList->FindObject("MCerPhotEvt");
652 if (!fEvt)
653 {
654 *fLog << dbginf << "MCerPhotEvt not found... aborting." << endl;
655 return kFALSE;
656 }
657
658 if (fCleaningMethod != kDemocratic)
659 return kTRUE;
660
661 fSgb = (MSigmabar*)pList->FindObject("MSigmabar");
662 if (!fSgb)
663 {
664 *fLog << dbginf << "MSigmabar not found... aborting." << endl;
665 return kFALSE;
666 }
667
668 return kTRUE;
669}
670
671// --------------------------------------------------------------------------
672//
673// Cleans the image.
674//
675Bool_t MImgCleanStd::Process()
676{
677 if (fSgb)
678 fInnerNoise = fSgb->GetSigmabarInner();
679
680 const Int_t max = CleanStep1();
681 CleanStep2(max);
682 CleanStep3();
683
684 return kTRUE;
685}
686
687// --------------------------------------------------------------------------
688//
689// Print descriptor and cleaning levels.
690//
691void MImgCleanStd::Print(Option_t *o) const
692{
693 *fLog << all << GetDescriptor() << " using ";
694 switch (fCleaningMethod)
695 {
696 case kDemocratic:
697 *fLog << "democratic";
698 break;
699 case kStandard:
700 *fLog << "standard";
701 break;
702 }
703 *fLog << " cleaning initialized with noise level " << fCleanLvl1 << " and " << fCleanLvl2;
704 *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
705}
706
707// --------------------------------------------------------------------------
708//
709// Create two text entry fields, one for each cleaning level and a
710// describing text line.
711//
712void MImgCleanStd::CreateGuiElements(MGGroupFrame *f)
713{
714 //
715 // Create a frame for line 3 and 4 to be able
716 // to align entry field and label in one line
717 //
718 TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
719 TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
720
721 /*
722 * --> use with root >=3.02 <--
723 *
724
725 TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
726 TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
727
728 */
729 TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
730 TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
731
732 // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
733 // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
734
735 entry1->SetText("3.0");
736 entry2->SetText("2.5");
737
738 entry1->Associate(f);
739 entry2->Associate(f);
740
741 TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
742 TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
743
744 l1->SetTextJustify(kTextLeft);
745 l2->SetTextJustify(kTextLeft);
746
747 //
748 // Align the text of the label centered, left in the row
749 // with a left padding of 10
750 //
751 TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
752 TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
753
754 //
755 // Add one entry field and the corresponding label to each line
756 //
757 f1->AddFrame(entry1);
758 f2->AddFrame(entry2);
759
760 f1->AddFrame(l1, laylabel);
761 f2->AddFrame(l2, laylabel);
762
763 f->AddFrame(f1, layframe);
764 f->AddFrame(f2, layframe);
765
766 f->AddToList(entry1);
767 f->AddToList(entry2);
768 f->AddToList(l1);
769 f->AddToList(l2);
770 f->AddToList(laylabel);
771 f->AddToList(layframe);
772}
773
774// --------------------------------------------------------------------------
775//
776// Process the GUI Events comming from the two text entry fields.
777//
778Bool_t MImgCleanStd::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
779{
780 if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
781 return kTRUE;
782
783 TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
784
785 if (!txt)
786 return kTRUE;
787
788 Float_t lvl = atof(txt->GetText());
789
790 switch (param1)
791 {
792 case kImgCleanLvl1:
793 fCleanLvl1 = lvl;
794 *fLog << "Cleaning level 1 set to " << lvl << " sigma." << endl;
795 return kTRUE;
796
797 case kImgCleanLvl2:
798 fCleanLvl2 = lvl;
799 *fLog << "Cleaning level 2 set to " << lvl << " sigma." << endl;
800 return kTRUE;
801 }
802
803 return kTRUE;
804}
805
806// --------------------------------------------------------------------------
807//
808// Implementation of SavePrimitive. Used to write the call to a constructor
809// to a macro. In the original root implementation it is used to write
810// gui elements to a macro-file.
811//
812void MImgCleanStd::StreamPrimitive(ofstream &out) const
813{
814 out << " MImgCleanStd " << GetUniqueName() << "(";
815 out << fCleanLvl1 << ", " << fCleanLvl2;
816
817 if (fName!=gsDefName || fTitle!=gsDefTitle)
818 {
819 out << ", \"" << fName << "\"";
820 if (fTitle!=gsDefTitle)
821 out << ", \"" << fTitle << "\"";
822 }
823 out << ");" << endl;
824
825 if (fCleaningMethod!=kDemocratic)
826 return;
827
828 out << " " << GetUniqueName() << ".SetMethod(MImgCleanStd::kDemocratic);" << endl;
829
830 if (fCleanRings==1)
831 return;
832
833 out << " " << GetUniqueName() << ".SetCleanRings(" << fCleanRings << ");" << endl;
834}
Note: See TracBrowser for help on using the repository browser.