source: trunk/MagicSoft/Mars/mimage/MImgCleanStd.cc@ 2480

Last change on this file since 2480 was 2470, checked in by tbretz, 22 years ago
*** empty log message ***
File size: 26.6 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19! Author(s): Harald Kornmayer, 1/2001
20! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MImgCleanStd
30//
31// The Image Cleaning task selects the pixels you use for the Hillas
32// parameters calculation.
33//
34// There are two methods to make the selection: the standard one, as done
35// in the analysis of CT1 data, and the democratic one, as suggested by
36// W.Wittek. The number of photo-electrons of a pixel is compared with the
37// pedestal RMS of the pixel itself (standard method) or with the average
38// RMS of the inner pixels (democratic method).
39// In both cases, the possibility to have a camera with pixels of
40// different area is taken into account.
41// The too noisy pixels can be recognized and eventally switched off
42// (Unmap: set blind pixels to UNUSED) separately, using the
43// MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
44// function to replace the value of the noisy pixels with the interpolation
45// of the content of the neighbors (SetUseInterpolation).
46//
47// Example:
48// ...
49// MBlindPixelCalc blind;
50// blind.SetUseInterpolation();
51// blind.SetUseBlindPixels();
52//
53// MImgCleanStd clean;
54// ...
55// tlist.AddToList(&blind);
56// tlist.AddToList(&clean);
57//
58// Look at the MBlindPixelCalc Class for more details.
59//
60// Starting point: default values ----------------------------------------
61//
62// When an event is read, before the image cleaning, all the pixels that
63// are in MCerPhotEvt are set as USED and NOT CORE. All the pixels belong
64// to RING number 1 (like USED pixels).
65// Look at MCerPhotPix.h to see how these informations of the pixel are
66// stored.
67// The default cleaning METHOD is the STANDARD one and the number of the
68// rings around the CORE pixel it analyzes is 1. Look at the Constructor
69// of the class in MImgCleanStd.cc to see (or change) the default values.
70//
71// Example: To modify this setting, use the member functions
72// SetMethod(MImgCleanStd::kDemocratic) and SetCleanRings(UShort_t n).
73//
74// MImgCleanStd:CleanStep1 -----------------------------------------------
75//
76// The first step of cleaning defines the CORE pixels. The CORE pixels are
77// the ones which contain the informations about the core of the electro-
78// magnetic shower.
79// The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
80// the area of the central pixel of the camera, A_i is the area of the
81// examined pixel. In this way, if we have a MAGIC-like camera, with the
82// outer pixels bigger than the inner ones, the level of cleaning in the
83// two different regions is weighted.
84// This avoids problems of deformations of the shower images.
85// The signal S_i and the pedestal RMS Prms_i of the pixel are called from
86// the object MCerPhotPix.
87// If (default method = kStandard)
88//Begin_Html
89//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
90//End_Html
91// the pixel is set as CORE pixel. L_1 (n=1) is called "first level of
92// cleaning" (default: fCleanLvl1 = 3).
93// All the other pixels are set as UNUSED and belong to RING 0.
94// After this point, only the CORE pixels are set as USED, with RING
95// number 1.
96//
97// MImgCleanStd:CleanStep2 ----------------------------------------------
98//
99// The second step of cleaning looks at the isolated CORE pixels and sets
100// them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
101// At the end of this point, we have set as USED only CORE pixels with at
102// least one CORE neighbor.
103//
104// MImgCleanStd:CleanStep3 ----------------------------------------------
105//
106// The third step of cleaning looks at all the pixels (USED or UNUSED) that
107// surround the USED pixels.
108// If the content of the analyzed pixel survives at the second level of
109// cleaning, i.e. if
110//Begin_Html
111//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
112//End_Html
113// the pixel is set as USED. L_2 (n=2) is called "second level of cleaning"
114// (default:fCleanLvl2 = 2.5).
115//
116// When the number of RINGS to analyze is 1 (default value), only the
117// pixels that have a neighbor CORE pixel are analyzed.
118//
119// There is the option to decide the number of times you want to repeat
120// this procedure (number of RINGS analyzed around the core pixels = n).
121// Every time the level of cleaning is the same (fCleanLvl2) and the pixel
122// will belong to ring r+1, 1 < r < n+1. This is described in
123// MImgCleanStd:CleanStep4 .
124//
125// Dictionary and member functions ---------------------------------------
126//
127// Here there is the detailed description of the member functions and of
128// the terms commonly used in the class.
129//
130// STANDARD CLEANING:
131// =================
132// This is the method used for the CT1 data analysis. It is the default
133// method of the class.
134// The number of photo-electrons of a pixel (S_i) is compared to the
135// pedestal RMS of the pixel itself (Prms_i). To have the comparison to
136// the same photon density for all the pixels, taking into account they
137// can have different areas, we have to keep in mind that the number of
138// photons that hit each pixel, goes linearly with the area of the pixel.
139// The fluctuations of the LONS are proportional to sqrt(A_i), so when we
140// compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
141// have the same (N.photons/Area) threshold for all the pixels.
142//
143// !!WARNING: if noise independent from the
144// pixel size (example: electronic noise) is introduced,
145// then the noise fluctuations are no longer proportional
146// to sqrt(A_i), and then the cut value (for a camera with
147// pixels of different sizes) resulting from the above
148// procedure would not be proportional to pixel size as we
149// intend. In that case, democratic cleaning is preferred.
150//
151// If
152//Begin_Html
153//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
154//End_Html
155// the pixel survives the cleaning and it is set as CORE (when L_n is the
156// first level of cleaning, fCleanLvl1) or USED (when L_n is the second
157// level of cleaning, fCleanLvl2).
158//
159// Example:
160//
161// MImgCleanStd clean;
162// //creates a default Cleaning object, with default setting
163// ...
164// tlist.AddToList(&clean);
165// // add the image cleaning to the main task list
166//
167// DEMOCRATIC CLEANING:
168// ===================
169// You use this cleaning method when you want to compare the number of
170// photo-electons of each pixel with the average pedestal RMS
171// (fInnerNoise = fSgb->GetSigmabarInner()) of the inner pixels (for the
172// MAGIC camera they are the smaller ones):
173//Begin_Html
174//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f2.png">
175//End_Html
176// In this case, the simple ratio (A_0/A_i) is used to weight the level of
177// cleaning, because both the inner and the outer pixels (that in MAGIC
178// have a different area) are compared to the same pedestal RMS, coming
179// from the inner pixels.
180// To calculate the average pedestal RMS of the inner pixels, you have to
181// add to the main task list an object of type MSigmabarCalc before the
182// MImgCleanStd object. To know how the calculation of fInnerNoise is done
183// look at the MSigmabarCalc Class.
184//
185// Example:
186//
187// MSigmabarCalc sbcalc;
188// //creates an object that calcutates the average pedestal RMS
189// MImgCleanStd clean;
190// ...
191// tlist.AddToList(&sbcalc);
192// tlist.AddToList(&clean);
193//
194// Member Function: SetMethod()
195// ============================
196// When you call the MImgCleanStd task, the default method is kStandard.
197//
198// If you want to switch to the kDemocratic method you have to
199// call this member function.
200//
201// Example:
202//
203// MImgCleanStd clean;
204// //creates a default Cleaning object, with default setting
205//
206// clean.SetMethod(MImgCleanStd::kDemocratic);
207// //now the method of cleaning is changed to Democratic
208//
209// FIRST AND SECOND CLEANING LEVEL
210// ===============================
211// When you call the MImgCleanStd task, the default cleaning levels are
212// fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
213// create the MImgCleanStd object.
214//
215// Example:
216//
217// MImgCleanStd clean(Float_t lvl1,Float_t lvl2);
218// //creates a default cleaning object, but the cleaning levels are now
219// //lvl1 and lvl2.
220//
221// RING NUMBER
222// ===========
223// The standard cleaning procedure is such that it looks for the
224// informations of the boundary part of the shower only on the first
225// neighbors of the CORE pixels.
226// There is the possibility now to look not only at the firs neighbors
227// (first ring),but also further away, around the CORE pixels. All the new
228// pixels you can find with this method, are tested with the second level
229// of cleaning and have to have at least an USED neighbor.
230//
231// They will be also set as USED and will be taken into account during the
232// calculation of the image parameters.
233// The only way to distinguish them from the other USED pixels, is the
234// Ring number, that is bigger than 1.
235//
236// Example: You can decide how many rings you want to analyze using:
237//
238// MImgCleanStd clean;
239// //creates a default cleaning object (default number of rings =1)
240// clean.SetCleanRings(UShort_t r);
241// //now it looks r times around the CORE pixels to find new pixels with
242// //signal.
243//
244//
245// Input Containers:
246// MGeomCam
247// MCerPhotEvt
248// [MSigmabar]
249//
250// Output Containers:
251// MCerPhotEvt
252//
253/////////////////////////////////////////////////////////////////////////////
254#include "MImgCleanStd.h"
255
256#include <stdlib.h> // atof
257#include <fstream> // ofstream, SavePrimitive
258
259#include <TGFrame.h> // TGFrame
260#include <TGLabel.h> // TGLabel
261#include <TGTextEntry.h> // TGTextEntry
262
263#include "MLog.h"
264#include "MLogManip.h"
265
266#include "MParList.h"
267#include "MSigmabar.h"
268
269#include "MGeomPix.h"
270#include "MGeomCam.h"
271
272#include "MCerPhotPix.h"
273#include "MCerPhotEvt.h"
274
275#include "MPedestalPix.h"
276#include "MPedestalCam.h"
277
278#include "MGGroupFrame.h" // MGGroupFrame
279
280ClassImp(MImgCleanStd);
281
282using namespace std;
283
284enum {
285 kImgCleanLvl1,
286 kImgCleanLvl2
287};
288
289static const TString gsDefName = "MImgCleanStd";
290static const TString gsDefTitle = "Task to perform image cleaning";
291
292// --------------------------------------------------------------------------
293//
294// Default constructor. Here you can specify the cleaning method and levels.
295// If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
296// above mean) are used.
297// Here you can also specify how many rings around the core pixels you want
298// to analyze (with the fixed lvl2). The default value for "rings" is 1.
299//
300MImgCleanStd::MImgCleanStd(const Float_t lvl1, const Float_t lvl2,
301 const char *name, const char *title)
302 : fSgb(NULL), fCleaningMethod(kStandard), fCleanLvl1(lvl1),
303 fCleanLvl2(lvl2), fCleanRings(1)
304
305{
306 fName = name ? name : gsDefName.Data();
307 fTitle = title ? title : gsDefTitle.Data();
308
309 Print();
310}
311
312// --------------------------------------------------------------------------
313//
314// NT 28/04/2003: now the option to use the standard method or the
315// democratic method is implemented:
316//
317// KStandard: This method looks for all pixels with an entry (photons)
318// that is three times bigger than the noise of the pixel
319// (default: 3 sigma, clean level 1)
320//
321// --------------------------------------------------------------------------
322//
323// Returns the maximum Pixel Id (used for ispixused in CleanStep2)
324//
325void MImgCleanStd::CleanStep1Std()
326{
327 const Int_t entries = fEvt->GetNumPixels();
328
329 //
330 // check the number of all pixels against the noise level and
331 // set them to 'unused' state if necessary
332 //
333
334 for (Int_t i=0; i<entries; i++ )
335 {
336 MCerPhotPix &pix = (*fEvt)[i];
337
338 const Int_t idx = pix.GetPixId();
339
340 const Float_t entry = pix.GetNumPhotons();
341 const Float_t noise = (*fPed)[idx].GetPedestalRms();
342
343 //
344 // We calculate a correction factor which accounts for the
345 // fact that pixels have different size (see TDAS 02-14).
346 //
347 const Double_t factor = fCam->GetPixRatioSqrt(idx);
348
349 // COBB: '<=' to skip entry=noise=0
350 if (entry * factor <= fCleanLvl1 * noise)
351 pix.SetPixelUnused();
352 }
353}
354
355// --------------------------------------------------------------------------
356//
357// NT 28/04/2003: now the option to use the standard method or the
358// democratic method is implemented:
359//
360// "KDemocratic": this method looks for all pixels with an entry (photons)
361// that is n times bigger than the noise of the mean of the
362// inner pixels (default: 3 sigmabar, clean level 1)
363//
364// Returns the maximum Pixel Id (used for ispixused in CleanStep2)
365//
366void MImgCleanStd::CleanStep1Dem()
367{
368 const Int_t entries = fEvt->GetNumPixels();
369
370 //
371 // check the number of all pixels against the noise level and
372 // set them to 'unused' state if necessary
373 //
374 for (Int_t i=0; i<entries; i++ )
375 {
376 MCerPhotPix &pix = (*fEvt)[i];
377
378 const Int_t idx = pix.GetPixId();
379
380 const Float_t entry = pix.GetNumPhotons();
381 const Double_t ratio = fCam->GetPixRatio(idx);
382
383 // COBB: '<=' to skip entry=noise=0
384 if (entry * ratio <= fCleanLvl1 * fInnerNoise)
385 pix.SetPixelUnused();
386 }
387}
388
389// --------------------------------------------------------------------------
390// The first step of cleaning defines the CORE pixels. All the other pixels
391// are set as UNUSED and belong to RING 0.
392// After this point, only the CORE pixels are set as USED, with RING
393// number 1.
394// Returns the maximum Pixel Id (used for ispixused in CleanStep2)
395//
396void MImgCleanStd::CleanStep1()
397{
398 switch (fCleaningMethod)
399 {
400 case kStandard:
401 CleanStep1Std();
402 return;
403 case kDemocratic:
404 CleanStep1Dem();
405 return;
406 }
407}
408
409// --------------------------------------------------------------------------
410//
411// Check if the survived pixel have a neighbor, that also
412// survived, otherwise set pixel to unused (removes pixels without
413// neighbors).
414//
415// Takes the maximum pixel id from CleanStep1 as an argument
416//
417void MImgCleanStd::CleanStep2()
418{
419 const Int_t entries = fEvt->GetNumPixels();
420
421 //
422 // In the worst case we have to loop 6 times 577 times, to
423 // catch the behaviour of all next neighbors. Here we can gain
424 // much by using an array instead of checking through all pixels
425 // (MCerPhotEvt::IsPixelUsed) all the time.
426 //
427 // We allocate the array ourself because the TArrays always do
428 // range check which slows down the access to the array
429 // by 25-50%
430 //
431 Byte_t *ispixused = new Byte_t[fCam->GetNumPixels()];
432 memset(ispixused, 0, sizeof(Byte_t)*fCam->GetNumPixels());
433
434 for (Int_t i=0; i<entries; i++)
435 {
436 const MCerPhotPix &pix = (*fEvt)[i];
437 ispixused[pix.GetPixId()] = pix.IsPixelUsed() ? 1 : 0 ;
438 }
439
440 for (Int_t i=0; i<entries; i++)
441 {
442 // get entry i from list
443 MCerPhotPix &pix = (*fEvt)[i];
444
445 // get pixel id of this entry
446 const Int_t idx = pix.GetPixId();
447
448 // check if pixel is in use, if not goto next pixel in list
449 if (ispixused[idx] == 0)
450 continue;
451
452 // check for 'used' neighbors of this pixel
453 const MGeomPix &gpix = (*fCam)[idx];
454 const Int_t nnmax = gpix.GetNumNeighbors();
455
456 Bool_t hasNeighbor = kFALSE;
457
458 //loop on the neighbors to check if they are used
459 for (Int_t j=0; j<nnmax; j++)
460 {
461 const Int_t idx2 = gpix.GetNeighbor(j);
462
463 // when you find an used neighbor, break the loop
464 if (ispixused[idx2] == 1)
465 {
466 hasNeighbor = kTRUE;
467 break;
468 }
469 }
470
471 if (hasNeighbor == kFALSE)
472 pix.SetPixelUnused();
473 }
474
475 delete ispixused;
476
477 //
478 // now we declare all pixels that survive as CorePixels
479 //
480 for (Int_t i=0; i<entries; i++)
481 {
482 MCerPhotPix &pix = (*fEvt)[i];
483
484 if (pix.IsPixelUsed())
485 pix.SetPixelCore();
486 }
487}
488
489
490// --------------------------------------------------------------------------
491//
492// Look for the boundary pixels around the core pixels
493// if a pixel has more than 2.5 (clean level 2.5) sigma, and
494// a core neigbor it is declared as used.
495//
496Bool_t MImgCleanStd::CleanStep3Std(const MCerPhotPix &pix)
497{
498 //
499 // get pixel id of this entry
500 //
501 const Int_t idx = pix.GetPixId();
502
503 //
504 // check the num of photons against the noise level
505 //
506 const Float_t entry = pix.GetNumPhotons();
507 const Float_t noise = (*fPed)[idx].GetPedestalRms();
508
509 //
510 // We calculate a correction factor which accounts for the
511 // fact that pixels have different size (see TDAS 02-14).
512 //
513 const Double_t factor = fCam->GetPixRatioSqrt(idx);
514
515 return (entry * factor <= fCleanLvl2 * noise);
516}
517
518// --------------------------------------------------------------------------
519//
520// Look for the boundary pixels around the core pixels
521// if a pixel has more than 2.5 (clean level 2.5) sigmabar and
522// a core neighbor, it is declared as used.
523//
524Bool_t MImgCleanStd::CleanStep3Dem(const MCerPhotPix &pix)
525{
526 //
527 // get pixel id of this entry
528 //
529 const Int_t idx = pix.GetPixId();
530
531 //
532 // check the num of photons against the noise level
533 //
534 const Float_t entry = pix.GetNumPhotons();
535 const Double_t ratio = fCam->GetPixRatio(idx);
536
537 return (entry * ratio <= fCleanLvl2 * fInnerNoise);
538}
539
540void MImgCleanStd::CleanStep3b(MCerPhotPix &pix)
541{
542 const Int_t idx = pix.GetPixId();
543
544 //
545 // check if the pixel's next neighbor is a core pixel.
546 // if it is a core pixel set pixel state to: used.
547 //
548 MGeomPix &gpix = (*fCam)[idx];
549 const Int_t nnmax = gpix.GetNumNeighbors();
550
551 for (Int_t j=0; j<nnmax; j++)
552 {
553 const Int_t idx2 = gpix.GetNeighbor(j);
554
555 if (!fEvt->GetPixById(idx2) || !fEvt->IsPixelCore(idx2))
556 continue;
557
558 pix.SetPixelUsed();
559 break;
560 }
561}
562
563// --------------------------------------------------------------------------
564//
565// NT: Add option "rings": default value = 1.
566// Look n (n>1) times for the boundary pixels around the used pixels.
567// If a pixel has more than 2.5 (clean level 2.5) sigma,
568// it is declared as used.
569//
570// If a value<2 for fCleanRings is used, no CleanStep4 is done.
571//
572void MImgCleanStd::CleanStep4(UShort_t r, MCerPhotPix &pix)
573{
574 //
575 // check if the pixel's next neighbor is a used pixel.
576 // if it is a used pixel set pixel state to: used,
577 // and tell to which ring it belongs to.
578 //
579 const Int_t idx = pix.GetPixId();
580 MGeomPix &gpix = (*fCam)[idx];
581
582 const Int_t nnmax = gpix.GetNumNeighbors();
583
584 for (Int_t j=0; j<nnmax; j++)
585 {
586 const Int_t idx2 = gpix.GetNeighbor(j);
587
588 MCerPhotPix *npix = fEvt->GetPixById(idx2);
589
590 if (!npix || !npix->IsPixelUsed() || npix->GetRing()>r-1 )
591 continue;
592
593 pix.SetRing(r);
594 break;
595 }
596}
597
598// --------------------------------------------------------------------------
599//
600// Look for the boundary pixels around the core pixels
601// if a pixel has more than 2.5 (clean level 2.5) sigma, and
602// a core neigbor, it is declared as used.
603//
604void MImgCleanStd::CleanStep3()
605{
606 const Int_t entries = fEvt->GetNumPixels();
607
608 for (UShort_t r=1; r<fCleanRings+1; r++)
609 {
610 for (Int_t i=0; i<entries; i++)
611 {
612 //
613 // get pixel as entry il from list
614 //
615 MCerPhotPix &pix = (*fEvt)[i];
616
617 //
618 // if pixel is a core pixel go to the next pixel
619 //
620 if (pix.IsPixelCore())
621 continue;
622
623 switch (fCleaningMethod)
624 {
625 case kStandard:
626 if (CleanStep3Std(pix))
627 continue;
628 break;
629 case kDemocratic:
630 if (CleanStep3Dem(pix))
631 continue;
632 break;
633 }
634
635 if (r==1)
636 CleanStep3b(pix);
637 else
638 CleanStep4(r, pix);
639 }
640 }
641}
642
643// --------------------------------------------------------------------------
644//
645// Check if MEvtHeader exists in the Parameter list already.
646// if not create one and add them to the list
647//
648Int_t MImgCleanStd::PreProcess (MParList *pList)
649{
650 fCam = (MGeomCam*)pList->FindObject(AddSerialNumber("MGeomCam"));
651 if (!fCam)
652 {
653 *fLog << dbginf << "MGeomCam not found (no geometry information available)... aborting." << endl;
654 return kFALSE;
655 }
656
657 fEvt = (MCerPhotEvt*)pList->FindObject(AddSerialNumber("MCerPhotEvt"));
658 if (!fEvt)
659 {
660 *fLog << dbginf << "MCerPhotEvt not found... aborting." << endl;
661 return kFALSE;
662 }
663
664 if (fCleaningMethod == kDemocratic)
665 {
666 fSgb = (MSigmabar*)pList->FindObject(AddSerialNumber("MSigmabar"));
667 if (!fSgb)
668 {
669 *fLog << dbginf << "MSigmabar not found... aborting." << endl;
670 return kFALSE;
671 }
672 }
673 else
674 {
675 fPed = (MPedestalCam*)pList->FindObject(AddSerialNumber("MPedestalCam"));
676 if (!fPed)
677 {
678 *fLog << dbginf << "MPedestalCam not found... aborting." << endl;
679 return kFALSE;
680 }
681 }
682
683 return kTRUE;
684}
685
686// --------------------------------------------------------------------------
687//
688// Cleans the image.
689//
690Int_t MImgCleanStd::Process()
691{
692 if (fSgb)
693 fInnerNoise = fSgb->GetSigmabarInner();
694#ifdef DEBUG
695 *fLog << all << "CleanStep 1" << endl;
696#endif
697 CleanStep1();
698#ifdef DEBUG
699 *fLog << all << "CleanStep 2" << endl;
700#endif
701 CleanStep2();
702#ifdef DEBUG
703 *fLog << all << "CleanStep 3" << endl;
704#endif
705 CleanStep3();
706#ifdef DEBUG
707 *fLog << all << "Done." << endl;
708#endif
709
710 return kTRUE;
711}
712
713// --------------------------------------------------------------------------
714//
715// Print descriptor and cleaning levels.
716//
717void MImgCleanStd::Print(Option_t *o) const
718{
719 *fLog << all << GetDescriptor() << " using ";
720 switch (fCleaningMethod)
721 {
722 case kDemocratic:
723 *fLog << "democratic";
724 break;
725 case kStandard:
726 *fLog << "standard";
727 break;
728 }
729 *fLog << " cleaning initialized with noise level " << fCleanLvl1 << " and " << fCleanLvl2;
730 *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
731}
732
733// --------------------------------------------------------------------------
734//
735// Create two text entry fields, one for each cleaning level and a
736// describing text line.
737//
738void MImgCleanStd::CreateGuiElements(MGGroupFrame *f)
739{
740 //
741 // Create a frame for line 3 and 4 to be able
742 // to align entry field and label in one line
743 //
744 TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
745 TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
746
747 /*
748 * --> use with root >=3.02 <--
749 *
750
751 TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
752 TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
753
754 */
755 TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
756 TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
757
758 // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
759 // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
760
761 entry1->SetText("3.0");
762 entry2->SetText("2.5");
763
764 entry1->Associate(f);
765 entry2->Associate(f);
766
767 TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
768 TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
769
770 l1->SetTextJustify(kTextLeft);
771 l2->SetTextJustify(kTextLeft);
772
773 //
774 // Align the text of the label centered, left in the row
775 // with a left padding of 10
776 //
777 TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
778 TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
779
780 //
781 // Add one entry field and the corresponding label to each line
782 //
783 f1->AddFrame(entry1);
784 f2->AddFrame(entry2);
785
786 f1->AddFrame(l1, laylabel);
787 f2->AddFrame(l2, laylabel);
788
789 f->AddFrame(f1, layframe);
790 f->AddFrame(f2, layframe);
791
792 f->AddToList(entry1);
793 f->AddToList(entry2);
794 f->AddToList(l1);
795 f->AddToList(l2);
796 f->AddToList(laylabel);
797 f->AddToList(layframe);
798}
799
800// --------------------------------------------------------------------------
801//
802// Process the GUI Events comming from the two text entry fields.
803//
804Bool_t MImgCleanStd::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
805{
806 if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
807 return kTRUE;
808
809 TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
810
811 if (!txt)
812 return kTRUE;
813
814 Float_t lvl = atof(txt->GetText());
815
816 switch (param1)
817 {
818 case kImgCleanLvl1:
819 fCleanLvl1 = lvl;
820 *fLog << "Cleaning level 1 set to " << lvl << " sigma." << endl;
821 return kTRUE;
822
823 case kImgCleanLvl2:
824 fCleanLvl2 = lvl;
825 *fLog << "Cleaning level 2 set to " << lvl << " sigma." << endl;
826 return kTRUE;
827 }
828
829 return kTRUE;
830}
831
832// --------------------------------------------------------------------------
833//
834// Implementation of SavePrimitive. Used to write the call to a constructor
835// to a macro. In the original root implementation it is used to write
836// gui elements to a macro-file.
837//
838void MImgCleanStd::StreamPrimitive(ofstream &out) const
839{
840 out << " MImgCleanStd " << GetUniqueName() << "(";
841 out << fCleanLvl1 << ", " << fCleanLvl2;
842
843 if (fName!=gsDefName || fTitle!=gsDefTitle)
844 {
845 out << ", \"" << fName << "\"";
846 if (fTitle!=gsDefTitle)
847 out << ", \"" << fTitle << "\"";
848 }
849 out << ");" << endl;
850
851 if (fCleaningMethod!=kDemocratic)
852 return;
853
854 out << " " << GetUniqueName() << ".SetMethod(MImgCleanStd::kDemocratic);" << endl;
855
856 if (fCleanRings==1)
857 return;
858
859 out << " " << GetUniqueName() << ".SetCleanRings(" << fCleanRings << ");" << endl;
860}
Note: See TracBrowser for help on using the repository browser.