source: trunk/MagicSoft/Mars/mimage/MImgCleanStd.cc@ 2812

Last change on this file since 2812 was 2781, checked in by tbretz, 21 years ago
*** empty log message ***
File size: 23.5 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19! Author(s): Harald Kornmayer, 1/2001
20! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MImgCleanStd
30//
31// The Image Cleaning task selects the pixels you use for the Hillas
32// parameters calculation.
33//
34// There are two methods to make the selection: the standard one, as done
35// in the analysis of CT1 data, and the democratic one, as suggested by
36// W.Wittek. The number of photo-electrons of a pixel is compared with the
37// pedestal RMS of the pixel itself (standard method) or with the average
38// RMS of the inner pixels (democratic method).
39// In both cases, the possibility to have a camera with pixels of
40// different area is taken into account.
41// The too noisy pixels can be recognized and eventally switched off
42// (Unmap: set blind pixels to UNUSED) separately, using the
43// MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
44// function to replace the value of the noisy pixels with the interpolation
45// of the content of the neighbors (SetUseInterpolation).
46//
47// Example:
48// ...
49// MBlindPixelCalc blind;
50// blind.SetUseInterpolation();
51// blind.SetUseBlindPixels();
52//
53// MImgCleanStd clean;
54// ...
55// tlist.AddToList(&blind);
56// tlist.AddToList(&clean);
57//
58// Look at the MBlindPixelCalc Class for more details.
59//
60// Starting point: default values ----------------------------------------
61//
62// When an event is read, before the image cleaning, all the pixels that
63// are in MCerPhotEvt are set as USED and NOT CORE. All the pixels belong
64// to RING number 1 (like USED pixels).
65// Look at MCerPhotPix.h to see how these informations of the pixel are
66// stored.
67// The default cleaning METHOD is the STANDARD one and the number of the
68// rings around the CORE pixel it analyzes is 1. Look at the Constructor
69// of the class in MImgCleanStd.cc to see (or change) the default values.
70//
71// Example: To modify this setting, use the member functions
72// SetMethod(MImgCleanStd::kDemocratic) and SetCleanRings(UShort_t n).
73//
74// MImgCleanStd:CleanStep1 -----------------------------------------------
75//
76// The first step of cleaning defines the CORE pixels. The CORE pixels are
77// the ones which contain the informations about the core of the electro-
78// magnetic shower.
79// The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
80// the area of the central pixel of the camera, A_i is the area of the
81// examined pixel. In this way, if we have a MAGIC-like camera, with the
82// outer pixels bigger than the inner ones, the level of cleaning in the
83// two different regions is weighted.
84// This avoids problems of deformations of the shower images.
85// The signal S_i and the pedestal RMS Prms_i of the pixel are called from
86// the object MCerPhotPix.
87// If (default method = kStandard)
88//Begin_Html
89//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
90//End_Html
91// the pixel is set as CORE pixel. L_1 (n=1) is called "first level of
92// cleaning" (default: fCleanLvl1 = 3).
93// All the other pixels are set as UNUSED and belong to RING 0.
94// After this point, only the CORE pixels are set as USED, with RING
95// number 1.
96//
97// MImgCleanStd:CleanStep2 ----------------------------------------------
98//
99// The second step of cleaning looks at the isolated CORE pixels and sets
100// them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
101// At the end of this point, we have set as USED only CORE pixels with at
102// least one CORE neighbor.
103//
104// MImgCleanStd:CleanStep3 ----------------------------------------------
105//
106// The third step of cleaning looks at all the pixels (USED or UNUSED) that
107// surround the USED pixels.
108// If the content of the analyzed pixel survives at the second level of
109// cleaning, i.e. if
110//Begin_Html
111//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
112//End_Html
113// the pixel is set as USED. L_2 (n=2) is called "second level of cleaning"
114// (default:fCleanLvl2 = 2.5).
115//
116// When the number of RINGS to analyze is 1 (default value), only the
117// pixels that have a neighbor CORE pixel are analyzed.
118//
119// There is the option to decide the number of times you want to repeat
120// this procedure (number of RINGS analyzed around the core pixels = n).
121// Every time the level of cleaning is the same (fCleanLvl2) and the pixel
122// will belong to ring r+1, 1 < r < n+1. This is described in
123// MImgCleanStd:CleanStep4 .
124//
125// Dictionary and member functions ---------------------------------------
126//
127// Here there is the detailed description of the member functions and of
128// the terms commonly used in the class.
129//
130// STANDARD CLEANING:
131// =================
132// This is the method used for the CT1 data analysis. It is the default
133// method of the class.
134// The number of photo-electrons of a pixel (S_i) is compared to the
135// pedestal RMS of the pixel itself (Prms_i). To have the comparison to
136// the same photon density for all the pixels, taking into account they
137// can have different areas, we have to keep in mind that the number of
138// photons that hit each pixel, goes linearly with the area of the pixel.
139// The fluctuations of the LONS are proportional to sqrt(A_i), so when we
140// compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
141// have the same (N.photons/Area) threshold for all the pixels.
142//
143// !!WARNING: if noise independent from the
144// pixel size (example: electronic noise) is introduced,
145// then the noise fluctuations are no longer proportional
146// to sqrt(A_i), and then the cut value (for a camera with
147// pixels of different sizes) resulting from the above
148// procedure would not be proportional to pixel size as we
149// intend. In that case, democratic cleaning is preferred.
150//
151// If
152//Begin_Html
153//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
154//End_Html
155// the pixel survives the cleaning and it is set as CORE (when L_n is the
156// first level of cleaning, fCleanLvl1) or USED (when L_n is the second
157// level of cleaning, fCleanLvl2).
158//
159// Example:
160//
161// MImgCleanStd clean;
162// //creates a default Cleaning object, with default setting
163// ...
164// tlist.AddToList(&clean);
165// // add the image cleaning to the main task list
166//
167// DEMOCRATIC CLEANING:
168// ===================
169// You use this cleaning method when you want to compare the number of
170// photo-electons of each pixel with the average pedestal RMS
171// (fInnerNoise = fSgb->GetSigmabarInner()) of the inner pixels (for the
172// MAGIC camera they are the smaller ones):
173//Begin_Html
174//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f2.png">
175//End_Html
176// In this case, the simple ratio (A_0/A_i) is used to weight the level of
177// cleaning, because both the inner and the outer pixels (that in MAGIC
178// have a different area) are compared to the same pedestal RMS, coming
179// from the inner pixels.
180// To calculate the average pedestal RMS of the inner pixels, you have to
181// add to the main task list an object of type MSigmabarCalc before the
182// MImgCleanStd object. To know how the calculation of fInnerNoise is done
183// look at the MSigmabarCalc Class.
184//
185// Example:
186//
187// MSigmabarCalc sbcalc;
188// //creates an object that calcutates the average pedestal RMS
189// MImgCleanStd clean;
190// ...
191// tlist.AddToList(&sbcalc);
192// tlist.AddToList(&clean);
193//
194// Member Function: SetMethod()
195// ============================
196// When you call the MImgCleanStd task, the default method is kStandard.
197//
198// If you want to switch to the kDemocratic method you have to
199// call this member function.
200//
201// Example:
202//
203// MImgCleanStd clean;
204// //creates a default Cleaning object, with default setting
205//
206// clean.SetMethod(MImgCleanStd::kDemocratic);
207// //now the method of cleaning is changed to Democratic
208//
209// FIRST AND SECOND CLEANING LEVEL
210// ===============================
211// When you call the MImgCleanStd task, the default cleaning levels are
212// fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
213// create the MImgCleanStd object.
214//
215// Example:
216//
217// MImgCleanStd clean(Float_t lvl1,Float_t lvl2);
218// //creates a default cleaning object, but the cleaning levels are now
219// //lvl1 and lvl2.
220//
221// RING NUMBER
222// ===========
223// The standard cleaning procedure is such that it looks for the
224// informations of the boundary part of the shower only on the first
225// neighbors of the CORE pixels.
226// There is the possibility now to look not only at the firs neighbors
227// (first ring),but also further away, around the CORE pixels. All the new
228// pixels you can find with this method, are tested with the second level
229// of cleaning and have to have at least an USED neighbor.
230//
231// They will be also set as USED and will be taken into account during the
232// calculation of the image parameters.
233// The only way to distinguish them from the other USED pixels, is the
234// Ring number, that is bigger than 1.
235//
236// Example: You can decide how many rings you want to analyze using:
237//
238// MImgCleanStd clean;
239// //creates a default cleaning object (default number of rings =1)
240// clean.SetCleanRings(UShort_t r);
241// //now it looks r times around the CORE pixels to find new pixels with
242// //signal.
243//
244//
245// Input Containers:
246// MGeomCam
247// MCerPhotEvt
248// [MSigmabar]
249//
250// Output Containers:
251// MCerPhotEvt
252//
253/////////////////////////////////////////////////////////////////////////////
254#include "MImgCleanStd.h"
255
256#include <stdlib.h> // atof
257#include <fstream> // ofstream, SavePrimitive
258
259#include <TGFrame.h> // TGFrame
260#include <TGLabel.h> // TGLabel
261#include <TGTextEntry.h> // TGTextEntry
262
263#include "MLog.h"
264#include "MLogManip.h"
265
266#include "MParList.h"
267#include "MSigmabar.h"
268#include "MCameraData.h"
269
270#include "MGeomPix.h"
271#include "MGeomCam.h"
272
273#include "MCerPhotPix.h"
274#include "MCerPhotEvt.h"
275
276#include "MGGroupFrame.h" // MGGroupFrame
277
278ClassImp(MImgCleanStd);
279
280using namespace std;
281
282enum {
283 kImgCleanLvl1,
284 kImgCleanLvl2
285};
286
287static const TString gsDefName = "MImgCleanStd";
288static const TString gsDefTitle = "Task to perform image cleaning";
289
290// --------------------------------------------------------------------------
291//
292// Default constructor. Here you can specify the cleaning method and levels.
293// If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
294// above mean) are used.
295// Here you can also specify how many rings around the core pixels you want
296// to analyze (with the fixed lvl2). The default value for "rings" is 1.
297//
298MImgCleanStd::MImgCleanStd(const Float_t lvl1, const Float_t lvl2,
299 const char *name, const char *title)
300 : fSgb(NULL), fCleaningMethod(kStandard), fCleanLvl1(lvl1),
301 fCleanLvl2(lvl2), fCleanRings(1)
302
303{
304 fName = name ? name : gsDefName.Data();
305 fTitle = title ? title : gsDefTitle.Data();
306
307 Print();
308}
309
310// --------------------------------------------------------------------------
311//
312// The first step of cleaning defines the CORE pixels. All the other pixels
313// are set as UNUSED and belong to RING 0.
314// After this point, only the CORE pixels are set as USED, with RING
315// number 1.
316//
317// NT 28/04/2003: now the option to use the standard method or the
318// democratic method is implemented:
319//
320// kStandard: This method looks for all pixels with an entry (photons)
321// that is three times bigger than the noise of the pixel
322// (default: 3 sigma, clean level 1)
323//
324// kDemocratic: this method looks for all pixels with an entry (photons)
325// that is n times bigger than the noise of the mean of the
326// inner pixels (default: 3 sigmabar, clean level 1)
327//
328//
329void MImgCleanStd::CleanStep1()
330{
331 const Int_t entries = fEvt->GetNumPixels();
332 const TArrayD &data = fData->GetData();
333
334 //
335 // check the number of all pixels against the noise level and
336 // set them to 'unused' state if necessary
337 //
338 for (Int_t i=0; i<entries; i++ )
339 {
340 MCerPhotPix &pix = (*fEvt)[i];
341
342 if (data[pix.GetPixId()] <= fCleanLvl1)
343 pix.SetPixelUnused();
344 }
345}
346
347// --------------------------------------------------------------------------
348//
349// Check if the survived pixel have a neighbor, that also
350// survived, otherwise set pixel to unused (removes pixels without
351// neighbors).
352//
353// Takes the maximum pixel id from CleanStep1 as an argument
354//
355void MImgCleanStd::CleanStep2()
356{
357 const Int_t entries = fEvt->GetNumPixels();
358
359 //
360 // In the worst case we have to loop 6 times 577 times, to
361 // catch the behaviour of all next neighbors. Here we can gain
362 // much by using an array instead of checking through all pixels
363 // (MCerPhotEvt::IsPixelUsed) all the time.
364 //
365 // We allocate the array ourself because the TArrays always do
366 // range check which slows down the access to the array
367 // by 25-50%
368 //
369 Byte_t *ispixused = new Byte_t[fCam->GetNumPixels()];
370 memset(ispixused, 0, sizeof(Byte_t)*fCam->GetNumPixels());
371
372 for (Int_t i=0; i<entries; i++)
373 {
374 const MCerPhotPix &pix = (*fEvt)[i];
375 ispixused[pix.GetPixId()] = pix.IsPixelUsed() ? 1 : 0 ;
376 }
377
378 for (Int_t i=0; i<entries; i++)
379 {
380 // get entry i from list
381 MCerPhotPix &pix = (*fEvt)[i];
382
383 // get pixel id of this entry
384 const Int_t idx = pix.GetPixId();
385
386 // check if pixel is in use, if not goto next pixel in list
387 if (ispixused[idx] == 0)
388 continue;
389
390 // check for 'used' neighbors of this pixel
391 const MGeomPix &gpix = (*fCam)[idx];
392 const Int_t nnmax = gpix.GetNumNeighbors();
393
394 Bool_t hasNeighbor = kFALSE;
395
396 //loop on the neighbors to check if they are used
397 for (Int_t j=0; j<nnmax; j++)
398 {
399 const Int_t idx2 = gpix.GetNeighbor(j);
400
401 // when you find an used neighbor, break the loop
402 if (ispixused[idx2] == 1)
403 {
404 hasNeighbor = kTRUE;
405 break;
406 }
407 }
408
409 if (hasNeighbor == kFALSE)
410 pix.SetPixelUnused();
411 }
412
413 delete ispixused;
414
415 //
416 // now we declare all pixels that survive as CorePixels
417 //
418 for (Int_t i=0; i<entries; i++)
419 {
420 MCerPhotPix &pix = (*fEvt)[i];
421
422 if (pix.IsPixelUsed())
423 pix.SetPixelCore();
424 }
425}
426
427void MImgCleanStd::CleanStep3b(MCerPhotPix &pix)
428{
429 const Int_t idx = pix.GetPixId();
430
431 //
432 // check if the pixel's next neighbor is a core pixel.
433 // if it is a core pixel set pixel state to: used.
434 //
435 MGeomPix &gpix = (*fCam)[idx];
436 const Int_t nnmax = gpix.GetNumNeighbors();
437
438 for (Int_t j=0; j<nnmax; j++)
439 {
440 const Int_t idx2 = gpix.GetNeighbor(j);
441
442 if (!fEvt->GetPixById(idx2) || !fEvt->IsPixelCore(idx2))
443 continue;
444
445 pix.SetPixelUsed();
446 break;
447 }
448}
449
450// --------------------------------------------------------------------------
451//
452// NT: Add option "rings": default value = 1.
453// Look n (n>1) times for the boundary pixels around the used pixels.
454// If a pixel has more than 2.5 (clean level 2.5) sigma,
455// it is declared as used.
456//
457// If a value<2 for fCleanRings is used, no CleanStep4 is done.
458//
459void MImgCleanStd::CleanStep4(UShort_t r, MCerPhotPix &pix)
460{
461 // Skip events that have already a defined status;
462 if( pix.GetRing()!= 0)
463 return;
464 //
465 // check if the pixel's next neighbor is a used pixel.
466 // if it is a used pixel set pixel state to: used,
467 // and tell to which ring it belongs to.
468 //
469 const Int_t idx = pix.GetPixId();
470
471 MGeomPix &gpix = (*fCam)[idx];
472
473 const Int_t nnmax = gpix.GetNumNeighbors();
474
475 for (Int_t j=0; j<nnmax; j++)
476 {
477 const Int_t idx2 = gpix.GetNeighbor(j);
478
479 MCerPhotPix *npix = fEvt->GetPixById(idx2);
480
481 if (!npix || !npix->IsPixelUsed() || npix->GetRing()>r-1 )
482 continue;
483
484 pix.SetRing(r);
485 break;
486 }
487}
488
489// --------------------------------------------------------------------------
490//
491// Look for the boundary pixels around the core pixels
492// if a pixel has more than 2.5 (clean level 2.5) sigma, and
493// a core neigbor, it is declared as used.
494//
495void MImgCleanStd::CleanStep3()
496{
497 const Int_t entries = fEvt->GetNumPixels();
498 const TArrayD &data = fData->GetData();
499
500 for (UShort_t r=1; r<fCleanRings+1; r++)
501 {
502 for (Int_t i=0; i<entries; i++)
503 {
504 //
505 // get pixel as entry il from list
506 //
507 MCerPhotPix &pix = (*fEvt)[i];
508
509 //
510 // if pixel is a core pixel go to the next pixel
511 //
512 if (pix.IsPixelCore())
513 continue;
514
515 if (data[pix.GetPixId()] <= fCleanLvl2)
516 continue;
517
518 if (r==1)
519 CleanStep3b(pix);
520 else
521 CleanStep4(r, pix);
522 }
523 }
524}
525
526// --------------------------------------------------------------------------
527//
528// Check if MEvtHeader exists in the Parameter list already.
529// if not create one and add them to the list
530//
531Int_t MImgCleanStd::PreProcess (MParList *pList)
532{
533 fCam = (MGeomCam*)pList->FindObject(AddSerialNumber("MGeomCam"));
534 if (!fCam)
535 {
536 *fLog << dbginf << "MGeomCam not found (no geometry information available)... aborting." << endl;
537 return kFALSE;
538 }
539
540 fEvt = (MCerPhotEvt*)pList->FindObject(AddSerialNumber("MCerPhotEvt"));
541 if (!fEvt)
542 {
543 *fLog << dbginf << "MCerPhotEvt not found... aborting." << endl;
544 return kFALSE;
545 }
546
547 if (fCleaningMethod == kDemocratic)
548 {
549 fSgb = (MSigmabar*)pList->FindObject(AddSerialNumber("MSigmabar"));
550 if (!fSgb)
551 {
552 *fLog << dbginf << "MSigmabar not found... aborting." << endl;
553 return kFALSE;
554 }
555 }
556 else
557 {
558 fPed = (MPedPhotCam*)pList->FindObject(AddSerialNumber("MPedPhotCam"));
559 if (!fPed)
560 {
561 *fLog << dbginf << "MPedPhotCam not found... aborting." << endl;
562 return kFALSE;
563 }
564 }
565
566 fData = (MCameraData*)pList->FindCreateObj(AddSerialNumber("MCameraData"));
567 if (!fData)
568 return kFALSE;
569
570 return kTRUE;
571}
572
573// --------------------------------------------------------------------------
574//
575// Cleans the image.
576//
577Int_t MImgCleanStd::Process()
578{
579 if (fSgb)
580 fData->CalcCleaningLevel(*fEvt, *fSgb, *fCam);
581 else
582 fData->CalcCleaningLevel(*fEvt, *fPed, *fCam);
583
584#ifdef DEBUG
585 *fLog << all << "CleanStep 1" << endl;
586#endif
587 CleanStep1();
588#ifdef DEBUG
589 *fLog << all << "CleanStep 2" << endl;
590#endif
591 CleanStep2();
592#ifdef DEBUG
593 *fLog << all << "CleanStep 3" << endl;
594#endif
595 CleanStep3();
596#ifdef DEBUG
597 *fLog << all << "Done." << endl;
598#endif
599
600 return kTRUE;
601}
602
603// --------------------------------------------------------------------------
604//
605// Print descriptor and cleaning levels.
606//
607void MImgCleanStd::Print(Option_t *o) const
608{
609 *fLog << all << GetDescriptor() << " using ";
610 switch (fCleaningMethod)
611 {
612 case kDemocratic:
613 *fLog << "democratic";
614 break;
615 case kStandard:
616 *fLog << "standard";
617 break;
618 }
619 *fLog << " cleaning initialized with noise level " << fCleanLvl1 << " and " << fCleanLvl2;
620 *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
621}
622
623// --------------------------------------------------------------------------
624//
625// Create two text entry fields, one for each cleaning level and a
626// describing text line.
627//
628void MImgCleanStd::CreateGuiElements(MGGroupFrame *f)
629{
630 //
631 // Create a frame for line 3 and 4 to be able
632 // to align entry field and label in one line
633 //
634 TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
635 TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
636
637 /*
638 * --> use with root >=3.02 <--
639 *
640
641 TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
642 TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
643
644 */
645 TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
646 TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
647
648 // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
649 // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
650
651 entry1->SetText("3.0");
652 entry2->SetText("2.5");
653
654 entry1->Associate(f);
655 entry2->Associate(f);
656
657 TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
658 TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
659
660 l1->SetTextJustify(kTextLeft);
661 l2->SetTextJustify(kTextLeft);
662
663 //
664 // Align the text of the label centered, left in the row
665 // with a left padding of 10
666 //
667 TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
668 TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
669
670 //
671 // Add one entry field and the corresponding label to each line
672 //
673 f1->AddFrame(entry1);
674 f2->AddFrame(entry2);
675
676 f1->AddFrame(l1, laylabel);
677 f2->AddFrame(l2, laylabel);
678
679 f->AddFrame(f1, layframe);
680 f->AddFrame(f2, layframe);
681
682 f->AddToList(entry1);
683 f->AddToList(entry2);
684 f->AddToList(l1);
685 f->AddToList(l2);
686 f->AddToList(laylabel);
687 f->AddToList(layframe);
688}
689
690// --------------------------------------------------------------------------
691//
692// Process the GUI Events comming from the two text entry fields.
693//
694Bool_t MImgCleanStd::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
695{
696 if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
697 return kTRUE;
698
699 TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
700
701 if (!txt)
702 return kTRUE;
703
704 Float_t lvl = atof(txt->GetText());
705
706 switch (param1)
707 {
708 case kImgCleanLvl1:
709 fCleanLvl1 = lvl;
710 *fLog << "Cleaning level 1 set to " << lvl << " sigma." << endl;
711 return kTRUE;
712
713 case kImgCleanLvl2:
714 fCleanLvl2 = lvl;
715 *fLog << "Cleaning level 2 set to " << lvl << " sigma." << endl;
716 return kTRUE;
717 }
718
719 return kTRUE;
720}
721
722// --------------------------------------------------------------------------
723//
724// Implementation of SavePrimitive. Used to write the call to a constructor
725// to a macro. In the original root implementation it is used to write
726// gui elements to a macro-file.
727//
728void MImgCleanStd::StreamPrimitive(ofstream &out) const
729{
730 out << " MImgCleanStd " << GetUniqueName() << "(";
731 out << fCleanLvl1 << ", " << fCleanLvl2;
732
733 if (fName!=gsDefName || fTitle!=gsDefTitle)
734 {
735 out << ", \"" << fName << "\"";
736 if (fTitle!=gsDefTitle)
737 out << ", \"" << fTitle << "\"";
738 }
739 out << ");" << endl;
740
741 if (fCleaningMethod!=kDemocratic)
742 return;
743
744 out << " " << GetUniqueName() << ".SetMethod(MImgCleanStd::kDemocratic);" << endl;
745
746 if (fCleanRings==1)
747 return;
748
749 out << " " << GetUniqueName() << ".SetCleanRings(" << fCleanRings << ");" << endl;
750}
Note: See TracBrowser for help on using the repository browser.