source: trunk/MagicSoft/Mars/mimage/MImgCleanStd.cc@ 4452

Last change on this file since 4452 was 4452, checked in by tbretz, 20 years ago
*** empty log message ***
File size: 22.5 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19! Author(s): Harald Kornmayer, 1/2001
20! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MImgCleanStd
30//
31// The Image Cleaning task selects the pixels you use for the Hillas
32// parameters calculation.
33//
34// There are two methods to make the selection: the standard one, as done
35// in the analysis of CT1 data, and the democratic one, as suggested by
36// W.Wittek. The number of photo-electrons of a pixel is compared with the
37// pedestal RMS of the pixel itself (standard method) or with the average
38// RMS of the inner pixels (democratic method).
39// In both cases, the possibility to have a camera with pixels of
40// different area is taken into account.
41// The too noisy pixels can be recognized and eventally switched off
42// (Unmap: set blind pixels to UNUSED) separately, using the
43// MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
44// function to replace the value of the noisy pixels with the interpolation
45// of the content of the neighbors (SetUseInterpolation).
46//
47// Example:
48// ...
49// MBlindPixelCalc blind;
50// blind.SetUseInterpolation();
51// blind.SetUseBlindPixels();
52//
53// MImgCleanStd clean;
54// ...
55// tlist.AddToList(&blind);
56// tlist.AddToList(&clean);
57//
58// Look at the MBlindPixelCalc Class for more details.
59//
60// Starting point: default values ----------------------------------------
61//
62// When an event is read, before the image cleaning, all the pixels that
63// are in MCerPhotEvt are set as USED and NOT CORE. All the pixels belong
64// to RING number 1 (like USED pixels).
65// Look at MCerPhotPix.h to see how these informations of the pixel are
66// stored.
67// The default cleaning METHOD is the STANDARD one and the number of the
68// rings around the CORE pixel it analyzes is 1. Look at the Constructor
69// of the class in MImgCleanStd.cc to see (or change) the default values.
70//
71// Example: To modify this setting, use the member functions
72// SetMethod(MImgCleanStd::kDemocratic) and SetCleanRings(UShort_t n).
73//
74// MImgCleanStd:CleanStep1 -----------------------------------------------
75//
76// The first step of cleaning defines the CORE pixels. The CORE pixels are
77// the ones which contain the informations about the core of the electro-
78// magnetic shower.
79// The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
80// the area of the central pixel of the camera, A_i is the area of the
81// examined pixel. In this way, if we have a MAGIC-like camera, with the
82// outer pixels bigger than the inner ones, the level of cleaning in the
83// two different regions is weighted.
84// This avoids problems of deformations of the shower images.
85// The signal S_i and the pedestal RMS Prms_i of the pixel are called from
86// the object MCerPhotPix.
87// If (default method = kStandard)
88//Begin_Html
89//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
90//End_Html
91// the pixel is set as CORE pixel. L_1 (n=1) is called "first level of
92// cleaning" (default: fCleanLvl1 = 3).
93// All the other pixels are set as UNUSED and belong to RING 0.
94// After this point, only the CORE pixels are set as USED, with RING
95// number 1.
96//
97// MImgCleanStd:CleanStep2 ----------------------------------------------
98//
99// The second step of cleaning looks at the isolated CORE pixels and sets
100// them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
101// At the end of this point, we have set as USED only CORE pixels with at
102// least one CORE neighbor.
103//
104// MImgCleanStd:CleanStep3 ----------------------------------------------
105//
106// The third step of cleaning looks at all the pixels (USED or UNUSED) that
107// surround the USED pixels.
108// If the content of the analyzed pixel survives at the second level of
109// cleaning, i.e. if
110//Begin_Html
111//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
112//End_Html
113// the pixel is set as USED. L_2 (n=2) is called "second level of cleaning"
114// (default:fCleanLvl2 = 2.5).
115//
116// When the number of RINGS to analyze is 1 (default value), only the
117// pixels that have a neighbor CORE pixel are analyzed.
118//
119// There is the option to decide the number of times you want to repeat
120// this procedure (number of RINGS analyzed around the core pixels = n).
121// Every time the level of cleaning is the same (fCleanLvl2) and the pixel
122// will belong to ring r+1, 1 < r < n+1. This is described in
123// MImgCleanStd:CleanStep4 .
124//
125// Dictionary and member functions ---------------------------------------
126//
127// Here there is the detailed description of the member functions and of
128// the terms commonly used in the class.
129//
130//
131// STANDARD CLEANING:
132// =================
133// This is the method used for the CT1 data analysis. It is the default
134// method of the class.
135// The number of photo-electrons of a pixel (S_i) is compared to the
136// pedestal RMS of the pixel itself (Prms_i). To have the comparison to
137// the same photon density for all the pixels, taking into account they
138// can have different areas, we have to keep in mind that the number of
139// photons that hit each pixel, goes linearly with the area of the pixel.
140// The fluctuations of the LONS are proportional to sqrt(A_i), so when we
141// compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
142// have the same (N.photons/Area) threshold for all the pixels.
143//
144// !!WARNING: if noise independent from the
145// pixel size (example: electronic noise) is introduced,
146// then the noise fluctuations are no longer proportional
147// to sqrt(A_i), and then the cut value (for a camera with
148// pixels of different sizes) resulting from the above
149// procedure would not be proportional to pixel size as we
150// intend. In that case, democratic cleaning is preferred.
151//
152// If
153//Begin_Html
154//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
155//End_Html
156// the pixel survives the cleaning and it is set as CORE (when L_n is the
157// first level of cleaning, fCleanLvl1) or USED (when L_n is the second
158// level of cleaning, fCleanLvl2).
159//
160// Example:
161//
162// MImgCleanStd clean;
163// //creates a default Cleaning object, with default setting
164// ...
165// tlist.AddToList(&clean);
166// // add the image cleaning to the main task list
167//
168//
169// DEMOCRATIC CLEANING:
170// ===================
171// You use this cleaning method when you want to compare the number of
172// photo-electons of each pixel with the average pedestal RMS of the
173// inner pixels (for the MAGIC camera they are the smaller ones):
174//Begin_Html
175//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f2.png">
176//End_Html
177// In this case, the simple ratio (A_0/A_i) is used to weight the level of
178// cleaning, because both the inner and the outer pixels (that in MAGIC
179// have a different area) are compared to the same pedestal RMS, coming
180// from the inner pixels.
181//
182// Make sure that you used a class calculating the MPedPhotCam which also
183// updated the contents of the mean values (Recalc) correctly.
184//
185//
186// Member Function: SetMethod()
187// ============================
188// When you call the MImgCleanStd task, the default method is kStandard.
189//
190// If you want to switch to the kDemocratic method you have to
191// call this member function.
192//
193// Example:
194//
195// MImgCleanStd clean;
196// //creates a default Cleaning object, with default setting
197//
198// clean.SetMethod(MImgCleanStd::kDemocratic);
199// //now the method of cleaning is changed to Democratic
200//
201//
202// FIRST AND SECOND CLEANING LEVEL
203// ===============================
204// When you call the MImgCleanStd task, the default cleaning levels are
205// fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
206// create the MImgCleanStd object.
207//
208// Example:
209//
210// MImgCleanStd clean(Float_t lvl1,Float_t lvl2);
211// //creates a default cleaning object, but the cleaning levels are now
212// //lvl1 and lvl2.
213//
214// RING NUMBER
215// ===========
216// The standard cleaning procedure is such that it looks for the
217// informations of the boundary part of the shower only on the first
218// neighbors of the CORE pixels.
219// There is the possibility now to look not only at the firs neighbors
220// (first ring),but also further away, around the CORE pixels. All the new
221// pixels you can find with this method, are tested with the second level
222// of cleaning and have to have at least an USED neighbor.
223//
224// They will be also set as USED and will be taken into account during the
225// calculation of the image parameters.
226// The only way to distinguish them from the other USED pixels, is the
227// Ring number, that is bigger than 1.
228//
229// Example: You can decide how many rings you want to analyze using:
230//
231// MImgCleanStd clean;
232// //creates a default cleaning object (default number of rings =1)
233// clean.SetCleanRings(UShort_t r);
234// //now it looks r times around the CORE pixels to find new pixels with
235// //signal.
236//
237//
238// Input Containers:
239// MGeomCam
240// MPedPhotCam
241// MCerPhotEvt
242//
243// Output Containers:
244// MCerPhotEvt
245//
246/////////////////////////////////////////////////////////////////////////////
247#include "MImgCleanStd.h"
248
249#include <stdlib.h> // atof
250#include <fstream> // ofstream, SavePrimitive
251
252#include <TGFrame.h> // TGFrame
253#include <TGLabel.h> // TGLabel
254#include <TGTextEntry.h> // TGTextEntry
255
256#include "MLog.h"
257#include "MLogManip.h"
258
259#include "MParList.h"
260#include "MCameraData.h"
261
262#include "MGeomPix.h"
263#include "MGeomCam.h"
264
265#include "MCerPhotPix.h"
266#include "MCerPhotEvt.h"
267
268#include "MGGroupFrame.h" // MGGroupFrame
269
270ClassImp(MImgCleanStd);
271
272using namespace std;
273
274enum {
275 kImgCleanLvl1,
276 kImgCleanLvl2
277};
278
279static const TString gsDefName = "MImgCleanStd";
280static const TString gsDefTitle = "Task to perform image cleaning";
281
282// --------------------------------------------------------------------------
283//
284// Default constructor. Here you can specify the cleaning method and levels.
285// If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
286// above mean) are used.
287// Here you can also specify how many rings around the core pixels you want
288// to analyze (with the fixed lvl2). The default value for "rings" is 1.
289//
290MImgCleanStd::MImgCleanStd(const Float_t lvl1, const Float_t lvl2,
291 const char *name, const char *title)
292 : fCleaningMethod(kStandard), fCleanLvl1(lvl1),
293 fCleanLvl2(lvl2), fCleanRings(1)
294
295{
296 fName = name ? name : gsDefName.Data();
297 fTitle = title ? title : gsDefTitle.Data();
298
299 Print();
300}
301
302// --------------------------------------------------------------------------
303//
304// The first step of cleaning defines the CORE pixels. All the other pixels
305// are set as UNUSED and belong to RING 0.
306// After this point, only the CORE pixels are set as USED, with RING
307// number 1.
308//
309// NT 28/04/2003: now the option to use the standard method or the
310// democratic method is implemented:
311//
312// kStandard: This method looks for all pixels with an entry (photons)
313// that is three times bigger than the noise of the pixel
314// (default: 3 sigma, clean level 1)
315//
316// kDemocratic: this method looks for all pixels with an entry (photons)
317// that is n times bigger than the noise of the mean of the
318// inner pixels (default: 3 sigmabar, clean level 1)
319//
320//
321void MImgCleanStd::CleanStep1()
322{
323 const TArrayD &data = fData->GetData();
324
325 //
326 // check the number of all pixels against the noise level and
327 // set them to 'unused' state if necessary
328 //
329 MCerPhotPix *pix;
330
331 // Loop over all pixels
332 MCerPhotEvtIter Next(fEvt, kFALSE);
333 while ((pix=static_cast<MCerPhotPix*>(Next())))
334 if (!pix->IsPixelUnmapped() && data[pix->GetPixId()] <= fCleanLvl1)
335 pix->SetPixelUnused();
336}
337
338// --------------------------------------------------------------------------
339//
340// Check if the survived pixel have a neighbor, that also
341// survived, otherwise set pixel to unused (removes pixels without
342// neighbors).
343//
344void MImgCleanStd::CleanStep2()
345{
346 MCerPhotPix *pix;
347
348 // Loop over used pixels only
349 TIter Next(*fEvt);
350
351 while ((pix=static_cast<MCerPhotPix*>(Next())))
352 {
353 // get pixel id of this entry
354 const Int_t idx = pix->GetPixId();
355
356 // check for 'used' neighbors of this pixel
357 const MGeomPix &gpix = (*fCam)[idx];
358 const Int_t nnmax = gpix.GetNumNeighbors();
359
360 Bool_t hasNeighbor = kFALSE;
361
362 //loop on the neighbors to check if they are used
363 for (Int_t j=0; j<nnmax; j++)
364 {
365 const Int_t idx2 = gpix.GetNeighbor(j);
366
367 // when you find an used neighbor, break the loop
368 if (fEvt->IsPixelUsed(idx2))
369 {
370 hasNeighbor = kTRUE;
371 break;
372 }
373 }
374
375 if (hasNeighbor == kFALSE)
376 pix->SetPixelUnused();
377 }
378
379 //
380 // now we declare all pixels that survive as CorePixels
381 //
382
383 Next.Reset();
384 while ((pix=static_cast<MCerPhotPix*>(Next())))
385 {
386 if (pix->IsPixelUsed())
387 pix->SetPixelCore();
388 }
389}
390
391void MImgCleanStd::CleanStep3b(MCerPhotPix &pix)
392{
393 const Int_t idx = pix.GetPixId();
394
395 //
396 // check if the pixel's next neighbor is a core pixel.
397 // if it is a core pixel set pixel state to: used.
398 //
399 MGeomPix &gpix = (*fCam)[idx];
400 const Int_t nnmax = gpix.GetNumNeighbors();
401
402 for (Int_t j=0; j<nnmax; j++)
403 {
404 const Int_t idx2 = gpix.GetNeighbor(j);
405
406 if (!fEvt->IsPixelCore(idx2))
407 continue;
408
409 pix.SetPixelUsed();
410 break;
411 }
412}
413
414// --------------------------------------------------------------------------
415//
416// NT: Add option "rings": default value = 1.
417// Look n (n>1) times for the boundary pixels around the used pixels.
418// If a pixel has more than 2.5 (clean level 2.5) sigma,
419// it is declared as used.
420//
421// If a value<2 for fCleanRings is used, no CleanStep4 is done.
422//
423void MImgCleanStd::CleanStep4(UShort_t r, MCerPhotPix &pix)
424{
425 //
426 // Skip events that have already a defined status;
427 //
428 if (pix.GetRing() != 0)
429 return;
430
431 //
432 // check if the pixel's next neighbor is a used pixel.
433 // if it is a used pixel set pixel state to: used,
434 // and tell to which ring it belongs to.
435 //
436 const Int_t idx = pix.GetPixId();
437
438 MGeomPix &gpix = (*fCam)[idx];
439
440 const Int_t nnmax = gpix.GetNumNeighbors();
441
442 for (Int_t j=0; j<nnmax; j++)
443 {
444 const Int_t idx2 = gpix.GetNeighbor(j);
445
446 MCerPhotPix *npix = fEvt->GetPixById(idx2);
447 if (!npix || !npix->IsPixelUsed() || npix->GetRing()>r-1 )
448 continue;
449
450 pix.SetRing(r);
451 break;
452 }
453}
454
455// --------------------------------------------------------------------------
456//
457// Look for the boundary pixels around the core pixels
458// if a pixel has more than 2.5 (clean level 2.5) sigma, and
459// a core neigbor, it is declared as used.
460//
461void MImgCleanStd::CleanStep3()
462{
463 const TArrayD &data = fData->GetData();
464
465 for (UShort_t r=1; r<fCleanRings+1; r++)
466 {
467 MCerPhotPix *pix;
468
469 // Loop over all pixels
470
471 MCerPhotEvtIter NextAll(fEvt, kFALSE);
472 while ((pix=static_cast<MCerPhotPix*>(NextAll())))
473 {
474 //
475 // if pixel is a core pixel or unmapped, go to the next pixel
476 //
477 if (pix->IsPixelCore() || pix->IsPixelUnmapped())
478 continue;
479
480 if (data[pix->GetPixId()] <= fCleanLvl2)
481 continue;
482
483 if (r==1)
484 CleanStep3b(*pix);
485 else
486 CleanStep4(r, *pix);
487 }
488 }
489}
490
491// --------------------------------------------------------------------------
492//
493// Check if MEvtHeader exists in the Parameter list already.
494// if not create one and add them to the list
495//
496Int_t MImgCleanStd::PreProcess (MParList *pList)
497{
498 fCam = (MGeomCam*)pList->FindObject(AddSerialNumber("MGeomCam"));
499 if (!fCam)
500 {
501 *fLog << dbginf << "MGeomCam not found (no geometry information available)... aborting." << endl;
502 return kFALSE;
503 }
504
505 fEvt = (MCerPhotEvt*)pList->FindObject(AddSerialNumber("MCerPhotEvt"));
506 if (!fEvt)
507 {
508 *fLog << dbginf << "MCerPhotEvt not found... aborting." << endl;
509 return kFALSE;
510 }
511
512 fPed = (MPedPhotCam*)pList->FindObject(AddSerialNumber("MPedPhotCam"));
513 if (!fPed)
514 {
515 *fLog << dbginf << "MPedPhotCam not found... aborting." << endl;
516 return kFALSE;
517 }
518
519 fData = (MCameraData*)pList->FindCreateObj(AddSerialNumber("MCameraData"));
520 if (!fData)
521 return kFALSE;
522
523 return kTRUE;
524}
525
526// --------------------------------------------------------------------------
527//
528// Cleans the image.
529//
530Int_t MImgCleanStd::Process()
531{
532 switch (fCleaningMethod)
533 {
534 case kStandard:
535 fData->CalcCleaningLevel(*fEvt, *fPed, *fCam);
536 break;
537 case kScaled:
538 fData->CalcCleaningLevel2(*fEvt, *fPed, *fCam);
539 break;
540 case kDemocratic:
541 fData->CalcCleaningLevelDemocratic(*fEvt, *fPed, *fCam);
542 break;
543 }
544
545#ifdef DEBUG
546 *fLog << all << "CleanStep 1" << endl;
547#endif
548 CleanStep1();
549
550 // For speed reasons skip the rest of the cleaning if no
551 // action will be taken!
552 if (fCleanLvl1>=fCleanLvl2)
553 return kTRUE;
554
555#ifdef DEBUG
556 *fLog << all << "CleanStep 2" << endl;
557#endif
558 CleanStep2();
559#ifdef DEBUG
560 *fLog << all << "CleanStep 3" << endl;
561#endif
562 CleanStep3();
563#ifdef DEBUG
564 *fLog << all << "Done." << endl;
565#endif
566
567 return kTRUE;
568}
569
570// --------------------------------------------------------------------------
571//
572// Print descriptor and cleaning levels.
573//
574void MImgCleanStd::Print(Option_t *o) const
575{
576 *fLog << all << GetDescriptor() << " using ";
577 switch (fCleaningMethod)
578 {
579 case kDemocratic:
580 *fLog << "democratic";
581 break;
582 case kStandard:
583 *fLog << "standard";
584 break;
585 case kScaled:
586 *fLog << "scaled";
587 break;
588 }
589 *fLog << " cleaning initialized with noise level " << fCleanLvl1 << " and " << fCleanLvl2;
590 *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
591}
592
593// --------------------------------------------------------------------------
594//
595// Create two text entry fields, one for each cleaning level and a
596// describing text line.
597//
598void MImgCleanStd::CreateGuiElements(MGGroupFrame *f)
599{
600 //
601 // Create a frame for line 3 and 4 to be able
602 // to align entry field and label in one line
603 //
604 TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
605 TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
606
607 /*
608 * --> use with root >=3.02 <--
609 *
610
611 TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
612 TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
613
614 */
615 TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
616 TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
617
618 // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
619 // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
620
621 entry1->SetText("3.0");
622 entry2->SetText("2.5");
623
624 entry1->Associate(f);
625 entry2->Associate(f);
626
627 TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
628 TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
629
630 l1->SetTextJustify(kTextLeft);
631 l2->SetTextJustify(kTextLeft);
632
633 //
634 // Align the text of the label centered, left in the row
635 // with a left padding of 10
636 //
637 TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
638 TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
639
640 //
641 // Add one entry field and the corresponding label to each line
642 //
643 f1->AddFrame(entry1);
644 f2->AddFrame(entry2);
645
646 f1->AddFrame(l1, laylabel);
647 f2->AddFrame(l2, laylabel);
648
649 f->AddFrame(f1, layframe);
650 f->AddFrame(f2, layframe);
651
652 f->AddToList(entry1);
653 f->AddToList(entry2);
654 f->AddToList(l1);
655 f->AddToList(l2);
656 f->AddToList(laylabel);
657 f->AddToList(layframe);
658}
659
660// --------------------------------------------------------------------------
661//
662// Process the GUI Events comming from the two text entry fields.
663//
664Bool_t MImgCleanStd::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
665{
666 if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
667 return kTRUE;
668
669 TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
670
671 if (!txt)
672 return kTRUE;
673
674 Float_t lvl = atof(txt->GetText());
675
676 switch (param1)
677 {
678 case kImgCleanLvl1:
679 fCleanLvl1 = lvl;
680 *fLog << "Cleaning level 1 set to " << lvl << " sigma." << endl;
681 return kTRUE;
682
683 case kImgCleanLvl2:
684 fCleanLvl2 = lvl;
685 *fLog << "Cleaning level 2 set to " << lvl << " sigma." << endl;
686 return kTRUE;
687 }
688
689 return kTRUE;
690}
691
692// --------------------------------------------------------------------------
693//
694// Implementation of SavePrimitive. Used to write the call to a constructor
695// to a macro. In the original root implementation it is used to write
696// gui elements to a macro-file.
697//
698void MImgCleanStd::StreamPrimitive(ofstream &out) const
699{
700 out << " MImgCleanStd " << GetUniqueName() << "(";
701 out << fCleanLvl1 << ", " << fCleanLvl2;
702
703 if (fName!=gsDefName || fTitle!=gsDefTitle)
704 {
705 out << ", \"" << fName << "\"";
706 if (fTitle!=gsDefTitle)
707 out << ", \"" << fTitle << "\"";
708 }
709 out << ");" << endl;
710
711 if (fCleaningMethod!=kDemocratic)
712 return;
713
714 out << " " << GetUniqueName() << ".SetMethod(MImgCleanStd::kDemocratic);" << endl;
715
716 if (fCleanRings==1)
717 return;
718
719 out << " " << GetUniqueName() << ".SetCleanRings(" << fCleanRings << ");" << endl;
720}
Note: See TracBrowser for help on using the repository browser.