source: trunk/MagicSoft/Mars/mimage/MImgCleanTGB.cc@ 2342

Last change on this file since 2342 was 2296, checked in by tbretz, 21 years ago
*** empty log message ***
File size: 20.8 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19! Author(s): Harald Kornmayer, 1/2001
20! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MImgCleanTGB
30//
31// The Image Cleaning task selects the pixels you use for the Hillas
32// parameters calculation.
33//
34// There are two methods to make the selection: the standard one, as done
35// in the analysis of CT1 data, and the democratic one, as suggested by
36// W.Wittek. The number of photo-electrons of a pixel is compared with the
37// pedestal RMS of the pixel itself (standard method) or with the average
38// RMS of the inner pixels (democratic method).
39// In both cases, the possibility to have a camera with pixels of
40// different area is taken into account.
41// The too noisy pixels can be recognized and eventally switched off
42// (Unmap: set blind pixels to UNUSED) separately, using the
43// MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
44// function to replace the value of the noisy pixels with the interpolation
45// of the content of the neighbors (SetUseInterpolation).
46//
47// Example:
48// ...
49// MBlindPixelCalc blind;
50// blind.SetUseInterpolation();
51// blind.SetUseBlindPixels();
52//
53// MImgCleanTGB clean;
54// ...
55// tlist.AddToList(&blind);
56// tlist.AddToList(&clean);
57//
58// Look at the MBlindPixelCalc Class for more details.
59//
60// Starting point: default values ----------------------------------------
61//
62// When an event is read, before the image cleaning, all the pixels that
63// are in MCerPhotEvt are set as USED and NOT CORE. All the pixels belong
64// to RING number 1 (like USED pixels).
65// Look at MCerPhotPix.h to see how these informations of the pixel are
66// stored.
67// The default cleaning METHOD is the STANDARD one and the number of the
68// rings around the CORE pixel it analyzes is 1. Look at the Constructor
69// of the class in MImgCleanTGB.cc to see (or change) the default values.
70//
71// Example: To modify this setting, use the member functions
72// SetMethod(MImgCleanTGB::kDemocratic) and SetCleanRings(UShort_t n).
73//
74// MImgCleanTGB:CleanStep1 -----------------------------------------------
75//
76// The first step of cleaning defines the CORE pixels. The CORE pixels are
77// the ones which contain the informations about the core of the electro-
78// magnetic shower.
79// The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
80// the area of the central pixel of the camera, A_i is the area of the
81// examined pixel. In this way, if we have a MAGIC-like camera, with the
82// outer pixels bigger than the inner ones, the level of cleaning in the
83// two different regions is weighted.
84// This avoids problems of deformations of the shower images.
85// The signal S_i and the pedestal RMS Prms_i of the pixel are called from
86// the object MCerPhotPix.
87// If (default method = kStandard)
88//Begin_Html
89//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanTGB-f1.png">
90//End_Html
91// the pixel is set as CORE pixel. L_1 (n=1) is called "first level of
92// cleaning" (default: fCleanLvl1 = 3).
93// All the other pixels are set as UNUSED and belong to RING 0.
94// After this point, only the CORE pixels are set as USED, with RING
95// number 1.
96//
97// MImgCleanTGB:CleanStep2 ----------------------------------------------
98//
99// The second step of cleaning looks at the isolated CORE pixels and sets
100// them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
101// At the end of this point, we have set as USED only CORE pixels with at
102// least one CORE neighbor.
103//
104// MImgCleanTGB:CleanStep3 ----------------------------------------------
105//
106// The third step of cleaning looks at all the pixels (USED or UNUSED) that
107// surround the USED pixels.
108// If the content of the analyzed pixel survives at the second level of
109// cleaning, i.e. if
110//Begin_Html
111//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanTGB-f1.png">
112//End_Html
113// the pixel is set as USED. L_2 (n=2) is called "second level of cleaning"
114// (default:fCleanLvl2 = 2.5).
115//
116// When the number of RINGS to analyze is 1 (default value), only the
117// pixels that have a neighbor CORE pixel are analyzed.
118//
119// There is the option to decide the number of times you want to repeat
120// this procedure (number of RINGS analyzed around the core pixels = n).
121// Every time the level of cleaning is the same (fCleanLvl2) and the pixel
122// will belong to ring r+1, 1 < r < n+1. This is described in
123// MImgCleanTGB:CleanStep4 .
124//
125// Dictionary and member functions ---------------------------------------
126//
127// Here there is the detailed description of the member functions and of
128// the terms commonly used in the class.
129//
130// STANDARD CLEANING:
131// =================
132// This is the method used for the CT1 data analysis. It is the default
133// method of the class.
134// The number of photo-electrons of a pixel (S_i) is compared to the
135// pedestal RMS of the pixel itself (Prms_i). To have the comparison to
136// the same photon density for all the pixels, taking into account they
137// can have different areas, we have to keep in mind that the number of
138// photons that hit each pixel, goes linearly with the area of the pixel.
139// The fluctuations of the LONS are proportional to sqrt(A_i), so when we
140// compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
141// have the same (N.photons/Area) threshold for all the pixels.
142//
143// !!WARNING: if noise independent from the
144// pixel size (example: electronic noise) is introduced,
145// then the noise fluctuations are no longer proportional
146// to sqrt(A_i), and then the cut value (for a camera with
147// pixels of different sizes) resulting from the above
148// procedure would not be proportional to pixel size as we
149// intend. In that case, democratic cleaning is preferred.
150//
151// If
152//Begin_Html
153//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanTGB-f1.png">
154//End_Html
155// the pixel survives the cleaning and it is set as CORE (when L_n is the
156// first level of cleaning, fCleanLvl1) or USED (when L_n is the second
157// level of cleaning, fCleanLvl2).
158//
159// Example:
160//
161// MImgCleanTGB clean;
162// //creates a default Cleaning object, with default setting
163// ...
164// tlist.AddToList(&clean);
165// // add the image cleaning to the main task list
166//
167// DEMOCRATIC CLEANING:
168// ===================
169// You use this cleaning method when you want to compare the number of
170// photo-electons of each pixel with the average pedestal RMS
171// (fInnerNoise = fSgb->GetSigmabarInner()) of the inner pixels (for the
172// MAGIC camera they are the smaller ones):
173//Begin_Html
174//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanTGB-f2.png">
175//End_Html
176// In this case, the simple ratio (A_0/A_i) is used to weight the level of
177// cleaning, because both the inner and the outer pixels (that in MAGIC
178// have a different area) are compared to the same pedestal RMS, coming
179// from the inner pixels.
180// To calculate the average pedestal RMS of the inner pixels, you have to
181// add to the main task list an object of type MSigmabarCalc before the
182// MImgCleanTGB object. To know how the calculation of fInnerNoise is done
183// look at the MSigmabarCalc Class.
184//
185// Example:
186//
187// MSigmabarCalc sbcalc;
188// //creates an object that calcutates the average pedestal RMS
189// MImgCleanTGB clean;
190// ...
191// tlist.AddToList(&sbcalc);
192// tlist.AddToList(&clean);
193//
194// Member Function: SetMethod()
195// ============================
196// When you call the MImgCleanTGB task, the default method is kStandard.
197//
198// If you want to switch to the kDemocratic method you have to
199// call this member function.
200//
201// Example:
202//
203// MImgCleanTGB clean;
204// //creates a default Cleaning object, with default setting
205//
206// clean.SetMethod(MImgCleanTGB::kDemocratic);
207// //now the method of cleaning is changed to Democratic
208//
209// FIRST AND SECOND CLEANING LEVEL
210// ===============================
211// When you call the MImgCleanTGB task, the default cleaning levels are
212// fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
213// create the MImgCleanTGB object.
214//
215// Example:
216//
217// MImgCleanTGB clean(Float_t lvl1,Float_t lvl2);
218// //creates a default cleaning object, but the cleaning levels are now
219// //lvl1 and lvl2.
220//
221// RING NUMBER
222// ===========
223// The standard cleaning procedure is such that it looks for the
224// informations of the boundary part of the shower only on the first
225// neighbors of the CORE pixels.
226// There is the possibility now to look not only at the firs neighbors
227// (first ring),but also further away, around the CORE pixels. All the new
228// pixels you can find with this method, are tested with the second level
229// of cleaning and have to have at least an USED neighbor.
230//
231// They will be also set as USED and will be taken into account during the
232// calculation of the image parameters.
233// The only way to distinguish them from the other USED pixels, is the
234// Ring number, that is bigger than 1.
235//
236// Example: You can decide how many rings you want to analyze using:
237//
238// MImgCleanTGB clean;
239// //creates a default cleaning object (default number of rings =1)
240// clean.SetCleanRings(UShort_t r);
241// //now it looks r times around the CORE pixels to find new pixels with
242// //signal.
243//
244//
245// Input Containers:
246// MGeomCam, MCerPhotEvt, MSigmabar
247//
248// Output Containers:
249// MCerPhotEvt
250//
251/////////////////////////////////////////////////////////////////////////////
252#include "MImgCleanTGB.h"
253
254#include <stdlib.h> // atof
255#include <fstream> // ofstream, SavePrimitive
256
257#include <TGFrame.h> // TGFrame
258#include <TGLabel.h> // TGLabel
259#include <TGTextEntry.h> // TGTextEntry
260
261#include "MLog.h"
262#include "MLogManip.h"
263
264#include "MParList.h"
265#include "MSigmabar.h"
266
267#include "MGeomPix.h"
268#include "MGeomCam.h"
269
270#include "MCerPhotPix.h"
271#include "MCerPhotEvt.h"
272
273#include "MPedestalPix.h"
274#include "MPedestalCam.h"
275
276#include "MGGroupFrame.h" // MGGroupFrame
277
278ClassImp(MImgCleanTGB);
279
280using namespace std;
281
282enum {
283 kImgCleanLvl1,
284 kImgCleanLvl2
285};
286
287static const TString gsDefName = "MImgCleanTGB";
288static const TString gsDefTitle = "Task to perform image cleaning";
289
290// --------------------------------------------------------------------------
291//
292// Default constructor. Here you can specify the cleaning method and levels.
293// If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
294// above mean) are used.
295// Here you can also specify how many rings around the core pixels you want
296// to analyze (with the fixed lvl2). The default value for "rings" is 1.
297//
298MImgCleanTGB::MImgCleanTGB(const Float_t lvl1, const Float_t lvl2,
299 const char *name, const char *title)
300 : fSgb(NULL), fCleaningMethod(kStandard), fCleanLvl1(lvl1),
301 fCleanLvl2(lvl2), fCleanRings(1)
302
303{
304 fName = name ? name : gsDefName.Data();
305 fTitle = title ? title : gsDefTitle.Data();
306
307 Print();
308}
309
310
311Int_t MImgCleanTGB::CleanStep3b(MCerPhotPix &pix)
312{
313 const Int_t id = pix.GetPixId();
314
315 //
316 // check if the pixel's next neighbor is a core pixel.
317 // if it is a core pixel set pixel state to: used.
318 //
319 MGeomPix &gpix = (*fCam)[id];
320 const Int_t nnmax = gpix.GetNumNeighbors();
321
322 Int_t rc = 0;
323
324 for (Int_t j=0; j<nnmax; j++)
325 {
326 const Int_t id2 = gpix.GetNeighbor(j);
327
328 if (fEvt->GetPixById(id2) && fEvt->IsPixelUsed(id2))
329 rc++;
330 }
331 return rc;
332}
333
334// --------------------------------------------------------------------------
335//
336// Look for the boundary pixels around the core pixels
337// if a pixel has more than 2.5 (clean level 2.5) sigma, and
338// a core neigbor, it is declared as used.
339//
340void MImgCleanTGB::CleanStep3(Int_t num1, Int_t num2)
341{
342 const Int_t entries = fEvt->GetNumPixels();
343
344 Int_t *u = new Int_t[entries];
345
346 for (Int_t i=0; i<entries; i++)
347 {
348 //
349 // get pixel as entry il from list
350 //
351 MCerPhotPix &pix = (*fEvt)[i];
352 u[i] = CleanStep3b(pix);
353 }
354
355 for (Int_t i=0; i<entries; i++)
356 {
357 MCerPhotPix &pix = (*fEvt)[i];
358 if (u[i]<num1)
359 pix.SetPixelUnused();
360 if (u[i]>num2)
361 pix.SetPixelUsed();
362 }
363
364 delete u;
365}
366
367void MImgCleanTGB::CleanStep3(Byte_t *nb, Int_t num1, Int_t num2)
368{
369 const Int_t entries = fEvt->GetNumPixels();
370
371 for (Int_t i=0; i<entries; i++)
372 {
373 MCerPhotPix &pix = (*fEvt)[i];
374
375 const Int_t idx = pix.GetPixId();
376
377 if (nb[idx]<num1 && pix.IsPixelUsed())
378 {
379 const MGeomPix &gpix = (*fCam)[idx];
380 const Int_t nnmax = gpix.GetNumNeighbors();
381 for (Int_t j=0; j<nnmax; j++)
382 nb[gpix.GetNeighbor(j)]--;
383
384 pix.SetPixelUnused();
385 }
386 }
387
388 for (Int_t i=0; i<entries; i++)
389 {
390 MCerPhotPix &pix = (*fEvt)[i];
391
392 const Int_t idx = pix.GetPixId();
393 if (nb[idx]>num2 && !pix.IsPixelUsed())
394 {
395 const MGeomPix &gpix = (*fCam)[idx];
396 const Int_t nnmax = gpix.GetNumNeighbors();
397 for (Int_t j=0; j<nnmax; j++)
398 nb[gpix.GetNeighbor(j)]++;
399
400 pix.SetPixelUsed();
401 }
402 }
403}
404
405// --------------------------------------------------------------------------
406//
407// Check if MEvtHeader exists in the Parameter list already.
408// if not create one and add them to the list
409//
410Int_t MImgCleanTGB::PreProcess (MParList *pList)
411{
412 fCam = (MGeomCam*)pList->FindObject("MGeomCam");
413 if (!fCam)
414 {
415 *fLog << dbginf << "MGeomCam not found (no geometry information available)... aborting." << endl;
416 return kFALSE;
417 }
418
419 fEvt = (MCerPhotEvt*)pList->FindObject("MCerPhotEvt");
420 if (!fEvt)
421 {
422 *fLog << dbginf << "MCerPhotEvt not found... aborting." << endl;
423 return kFALSE;
424 }
425
426 if (fCleaningMethod == kDemocratic)
427 {
428 fSgb = (MSigmabar*)pList->FindObject("MSigmabar");
429 if (!fSgb)
430 {
431 *fLog << dbginf << "MSigmabar not found... aborting." << endl;
432 return kFALSE;
433 }
434 }
435 else
436 {
437 fPed = (MPedestalCam*)pList->FindObject("MPedestalCam");
438 if (!fPed)
439 {
440 *fLog << dbginf << "MPedestalCam not found... aborting." << endl;
441 return kFALSE;
442 }
443 }
444
445 return kTRUE;
446}
447
448// --------------------------------------------------------------------------
449//
450// Cleans the image.
451//
452Int_t MImgCleanTGB::Process()
453{
454 const Int_t entries = fEvt->GetNumPixels();
455
456 Double_t sum = 0;
457 Double_t sq = 0;
458 Double_t w = 0;
459 Double_t w2 = 0;
460 for (Int_t i=0; i<entries; i++)
461 {
462 //
463 // get pixel as entry il from list
464 //
465 MCerPhotPix &pix = (*fEvt)[i];
466
467 const Double_t entry = pix.GetNumPhotons();
468 const Double_t factor = fCam->GetPixRatio(pix.GetPixId());
469 const Float_t noise = (*fPed)[pix.GetPixId()].GetPedestalRms();
470
471 if (entry * TMath::Sqrt(factor) <= fCleanLvl2 * noise)
472 {
473 sum += entry*factor;
474 sq += entry*entry*factor*factor;
475 w += factor;
476 w2 += factor*factor;
477 }
478 }
479
480 Double_t mean = sum/w;
481 Double_t sdev = sqrt(sq/w2 - mean*mean);
482
483 Byte_t *nb = new Byte_t[1000];
484 memset(nb, 0, 577);
485
486 for (Int_t i=0; i<entries; i++)
487 {
488 //
489 // get pixel as entry il from list
490 //
491 MCerPhotPix &pix = (*fEvt)[i];
492 const Int_t idx = pix.GetPixId();
493
494 const Double_t entry = pix.GetNumPhotons();
495 const Double_t factor = fCam->GetPixRatio(idx);
496
497 if (entry*factor > fCleanLvl1*sdev)
498 {
499 pix.SetPixelUsed();
500
501 const MGeomPix &gpix = (*fCam)[idx];
502 const Int_t nnmax = gpix.GetNumNeighbors();
503 for (Int_t j=0; j<nnmax; j++)
504 nb[gpix.GetNeighbor(j)]++;
505 }
506 else
507 pix.SetPixelUnused();
508 }
509
510 CleanStep3(nb, 2, 3);
511 //CleanStep3(nb, 2, 3);
512 //CleanStep3(nb, 2, 3);
513
514 delete nb;
515
516 return kTRUE;
517}
518
519// --------------------------------------------------------------------------
520//
521// Print descriptor and cleaning levels.
522//
523void MImgCleanTGB::Print(Option_t *o) const
524{
525 *fLog << all << GetDescriptor() << " using ";
526 switch (fCleaningMethod)
527 {
528 case kDemocratic:
529 *fLog << "democratic";
530 break;
531 case kStandard:
532 *fLog << "standard";
533 break;
534 }
535 *fLog << " cleaning initialized with noise level " << fCleanLvl1 << " and " << fCleanLvl2;
536 *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
537}
538
539// --------------------------------------------------------------------------
540//
541// Create two text entry fields, one for each cleaning level and a
542// describing text line.
543//
544void MImgCleanTGB::CreateGuiElements(MGGroupFrame *f)
545{
546 //
547 // Create a frame for line 3 and 4 to be able
548 // to align entry field and label in one line
549 //
550 TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
551 TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
552
553 /*
554 * --> use with root >=3.02 <--
555 *
556
557 TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
558 TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
559
560 */
561 TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
562 TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
563
564 // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
565 // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
566
567 entry1->SetText("3.0");
568 entry2->SetText("2.5");
569
570 entry1->Associate(f);
571 entry2->Associate(f);
572
573 TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
574 TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
575
576 l1->SetTextJustify(kTextLeft);
577 l2->SetTextJustify(kTextLeft);
578
579 //
580 // Align the text of the label centered, left in the row
581 // with a left padding of 10
582 //
583 TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
584 TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
585
586 //
587 // Add one entry field and the corresponding label to each line
588 //
589 f1->AddFrame(entry1);
590 f2->AddFrame(entry2);
591
592 f1->AddFrame(l1, laylabel);
593 f2->AddFrame(l2, laylabel);
594
595 f->AddFrame(f1, layframe);
596 f->AddFrame(f2, layframe);
597
598 f->AddToList(entry1);
599 f->AddToList(entry2);
600 f->AddToList(l1);
601 f->AddToList(l2);
602 f->AddToList(laylabel);
603 f->AddToList(layframe);
604}
605
606// --------------------------------------------------------------------------
607//
608// Process the GUI Events comming from the two text entry fields.
609//
610Bool_t MImgCleanTGB::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
611{
612 if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
613 return kTRUE;
614
615 TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
616
617 if (!txt)
618 return kTRUE;
619
620 Float_t lvl = atof(txt->GetText());
621
622 switch (param1)
623 {
624 case kImgCleanLvl1:
625 fCleanLvl1 = lvl;
626 *fLog << "Cleaning level 1 set to " << lvl << " sigma." << endl;
627 return kTRUE;
628
629 case kImgCleanLvl2:
630 fCleanLvl2 = lvl;
631 *fLog << "Cleaning level 2 set to " << lvl << " sigma." << endl;
632 return kTRUE;
633 }
634
635 return kTRUE;
636}
637
638// --------------------------------------------------------------------------
639//
640// Implementation of SavePrimitive. Used to write the call to a constructor
641// to a macro. In the original root implementation it is used to write
642// gui elements to a macro-file.
643//
644void MImgCleanTGB::StreamPrimitive(ofstream &out) const
645{
646 out << " MImgCleanTGB " << GetUniqueName() << "(";
647 out << fCleanLvl1 << ", " << fCleanLvl2;
648
649 if (fName!=gsDefName || fTitle!=gsDefTitle)
650 {
651 out << ", \"" << fName << "\"";
652 if (fTitle!=gsDefTitle)
653 out << ", \"" << fTitle << "\"";
654 }
655 out << ");" << endl;
656
657 if (fCleaningMethod!=kDemocratic)
658 return;
659
660 out << " " << GetUniqueName() << ".SetMethod(MImgCleanTGB::kDemocratic);" << endl;
661
662 if (fCleanRings==1)
663 return;
664
665 out << " " << GetUniqueName() << ".SetCleanRings(" << fCleanRings << ");" << endl;
666}
Note: See TracBrowser for help on using the repository browser.