| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Abelardo Moralejo 11/2003 <mailto:moralejo@pd.infn.it>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2003
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MStereoPar
|
|---|
| 28 | //
|
|---|
| 29 | // Storage Container for shower parameters estimated using the information
|
|---|
| 30 | // from two telescopes (presently for MC studies)
|
|---|
| 31 | //
|
|---|
| 32 | //
|
|---|
| 33 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 34 | #include "MStereoPar.h"
|
|---|
| 35 | #include <fstream>
|
|---|
| 36 |
|
|---|
| 37 | #include "MLog.h"
|
|---|
| 38 | #include "MLogManip.h"
|
|---|
| 39 |
|
|---|
| 40 | #include "MHillas.h"
|
|---|
| 41 | #include "MMcEvt.hxx"
|
|---|
| 42 | #include "MGeomCam.h"
|
|---|
| 43 |
|
|---|
| 44 |
|
|---|
| 45 | ClassImp(MStereoPar);
|
|---|
| 46 |
|
|---|
| 47 | using namespace std;
|
|---|
| 48 |
|
|---|
| 49 | // --------------------------------------------------------------------------
|
|---|
| 50 | //
|
|---|
| 51 | // Default constructor.
|
|---|
| 52 | //
|
|---|
| 53 | MStereoPar::MStereoPar(const char *name, const char *title)
|
|---|
| 54 | {
|
|---|
| 55 | fName = name ? name : "MStereoPar";
|
|---|
| 56 | fTitle = title ? title : "Stereo image parameters";
|
|---|
| 57 |
|
|---|
| 58 |
|
|---|
| 59 | }
|
|---|
| 60 |
|
|---|
| 61 |
|
|---|
| 62 | // --------------------------------------------------------------------------
|
|---|
| 63 | //
|
|---|
| 64 | void MStereoPar::Reset()
|
|---|
| 65 | {
|
|---|
| 66 | fCoreX = 0.;
|
|---|
| 67 | fCoreY = 0.;
|
|---|
| 68 | fSourceX = 0.;
|
|---|
| 69 | fSourceY = 0.;
|
|---|
| 70 | }
|
|---|
| 71 |
|
|---|
| 72 |
|
|---|
| 73 | // --------------------------------------------------------------------------
|
|---|
| 74 | //
|
|---|
| 75 | // Calculation of shower parameters
|
|---|
| 76 | //
|
|---|
| 77 | void MStereoPar::Calc(const MHillas &hillas1, const MMcEvt &mcevt1, const MGeomCam &mgeom1, const Float_t ct1_x, const Float_t ct1_y, const MHillas &hillas2, const MMcEvt &mcevt2, const MGeomCam &mgeom2, const Float_t ct2_x, const Float_t ct2_y)
|
|---|
| 78 | {
|
|---|
| 79 | //
|
|---|
| 80 | // Get the direction corresponding to the c.o.g. of the image on
|
|---|
| 81 | // the camera
|
|---|
| 82 | //
|
|---|
| 83 |
|
|---|
| 84 | Float_t ct1_cosx_a;
|
|---|
| 85 | Float_t ct1_cosy_a;
|
|---|
| 86 | Float_t ct1_cosz_a; // Direction from ct1 to the shower c.o.g.
|
|---|
| 87 |
|
|---|
| 88 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), hillas1.GetMeanX(), hillas1.GetMeanY(), &ct1_cosx_a, &ct1_cosy_a, &ct1_cosz_a);
|
|---|
| 89 |
|
|---|
| 90 | //
|
|---|
| 91 | // Now we get another (arbitrary) point along the image long axis,
|
|---|
| 92 | // fMeanX + cosdelta, fMeanY + sindelta, and calculate the direction
|
|---|
| 93 | // to which it corresponds.
|
|---|
| 94 | //
|
|---|
| 95 |
|
|---|
| 96 | Float_t ct1_cosx_b;
|
|---|
| 97 | Float_t ct1_cosy_b;
|
|---|
| 98 | Float_t ct1_cosz_b;
|
|---|
| 99 |
|
|---|
| 100 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), hillas1.GetMeanX()+hillas1.GetCosDelta(), hillas1.GetMeanY()+hillas1.GetSinDelta(), &ct1_cosx_b, &ct1_cosy_b, &ct1_cosz_b);
|
|---|
| 101 |
|
|---|
| 102 | //
|
|---|
| 103 | // The vectorial product of the latter two vectors is a vector
|
|---|
| 104 | // perpendicular to the plane which contains the shower axis and
|
|---|
| 105 | // passes through the telescope center (center of reflector).
|
|---|
| 106 | // The vectorial product of that vector and (0,0,1) is a vector on
|
|---|
| 107 | // the horizontal plane pointing from the telescope center to the
|
|---|
| 108 | // shower core position on the z=0 plane (ground).
|
|---|
| 109 | //
|
|---|
| 110 |
|
|---|
| 111 | Float_t ct1_coreVersorX = ct1_cosz_a*ct1_cosx_b - ct1_cosx_a*ct1_cosz_b;
|
|---|
| 112 | Float_t ct1_coreVersorY = ct1_cosz_a*ct1_cosy_b - ct1_cosy_a*ct1_cosz_b;
|
|---|
| 113 |
|
|---|
| 114 | //
|
|---|
| 115 | // Now we calculate again the versor, now assuming that the source
|
|---|
| 116 | // direction is paralel to the telescope axis (camera position 0,0)
|
|---|
| 117 | // This increases the precision of the core determination if the showers
|
|---|
| 118 | // actually come from that direction (like for gammas from a point source)
|
|---|
| 119 |
|
|---|
| 120 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), 0., 0., &ct1_cosx_b, &ct1_cosy_b, &ct1_cosz_b);
|
|---|
| 121 |
|
|---|
| 122 | Float_t ct1_coreVersorX_best = ct1_cosz_a*ct1_cosx_b - ct1_cosx_a*ct1_cosz_b;
|
|---|
| 123 | Float_t ct1_coreVersorY_best = ct1_cosz_a*ct1_cosy_b - ct1_cosy_a*ct1_cosz_b;
|
|---|
| 124 |
|
|---|
| 125 | //
|
|---|
| 126 | // Now the second telescope
|
|---|
| 127 | //
|
|---|
| 128 |
|
|---|
| 129 | Float_t ct2_cosx_a;
|
|---|
| 130 | Float_t ct2_cosy_a;
|
|---|
| 131 | Float_t ct2_cosz_a; // Direction from ct2 to the shower c.o.g.
|
|---|
| 132 |
|
|---|
| 133 |
|
|---|
| 134 | Camera2direction(1e3*mgeom2.GetCameraDist(), mcevt2.GetTelescopePhi(), mcevt2.GetTelescopeTheta(), hillas2.GetMeanX(), hillas2.GetMeanY(), &ct2_cosx_a, &ct2_cosy_a, &ct2_cosz_a);
|
|---|
| 135 |
|
|---|
| 136 | Float_t ct2_cosx_b;
|
|---|
| 137 | Float_t ct2_cosy_b;
|
|---|
| 138 | Float_t ct2_cosz_b;
|
|---|
| 139 |
|
|---|
| 140 | Camera2direction(1e3*mgeom2.GetCameraDist(), mcevt2.GetTelescopePhi(), mcevt2.GetTelescopeTheta(), hillas2.GetMeanX()+hillas2.GetCosDelta(), hillas2.GetMeanY()+hillas2.GetSinDelta(), &ct2_cosx_b, &ct2_cosy_b, &ct2_cosz_b);
|
|---|
| 141 |
|
|---|
| 142 |
|
|---|
| 143 | Float_t ct2_coreVersorX = ct2_cosz_a*ct2_cosx_b - ct2_cosx_a*ct2_cosz_b;
|
|---|
| 144 | Float_t ct2_coreVersorY = ct2_cosz_a*ct2_cosy_b - ct2_cosy_a*ct2_cosz_b;
|
|---|
| 145 |
|
|---|
| 146 |
|
|---|
| 147 | Camera2direction(1e3*mgeom2.GetCameraDist(), mcevt2.GetTelescopePhi(), mcevt2.GetTelescopeTheta(), 0., 0., &ct2_cosx_b, &ct2_cosy_b, &ct2_cosz_b);
|
|---|
| 148 |
|
|---|
| 149 | Float_t ct2_coreVersorX_best = ct2_cosz_a*ct2_cosx_b - ct2_cosx_a*ct2_cosz_b;
|
|---|
| 150 | Float_t ct2_coreVersorY_best = ct2_cosz_a*ct2_cosy_b - ct2_cosy_a*ct2_cosz_b;
|
|---|
| 151 |
|
|---|
| 152 | //
|
|---|
| 153 | // Estimate core position:
|
|---|
| 154 | //
|
|---|
| 155 | Float_t t = ct1_x - ct2_x - ct2_coreVersorX/ct2_coreVersorY*(ct1_y-ct2_y);
|
|---|
| 156 | t /= (ct2_coreVersorX/ct2_coreVersorY*ct1_coreVersorY - ct1_coreVersorX);
|
|---|
| 157 |
|
|---|
| 158 | fCoreX = ct1_x + t * ct1_coreVersorX;
|
|---|
| 159 | fCoreY = ct1_y + t * ct1_coreVersorY;
|
|---|
| 160 |
|
|---|
| 161 | // fCoreX, fCoreY, fCoreX2, fCoreY2 will have the same units
|
|---|
| 162 | // as ct1_x, ct1_y, ct2_x, ct2_y
|
|---|
| 163 |
|
|---|
| 164 |
|
|---|
| 165 | //
|
|---|
| 166 | // Now the estimated core position assuming the source is located in
|
|---|
| 167 | // the center of the camera:
|
|---|
| 168 | //
|
|---|
| 169 | t = ct1_x - ct2_x - ct2_coreVersorX_best /
|
|---|
| 170 | ct2_coreVersorY_best*(ct1_y-ct2_y);
|
|---|
| 171 | t /= (ct2_coreVersorX_best/ct2_coreVersorY_best*ct1_coreVersorY_best -
|
|---|
| 172 | ct1_coreVersorX_best);
|
|---|
| 173 |
|
|---|
| 174 | fCoreX2 = ct1_x + t * ct1_coreVersorX_best;
|
|---|
| 175 | fCoreY2 = ct1_y + t * ct1_coreVersorY_best;
|
|---|
| 176 |
|
|---|
| 177 | //
|
|---|
| 178 | // Be careful, the coordinates in MMcEvt.fCoreX,fCoreY are actually
|
|---|
| 179 | // those of the vector going *from the shower core to the telescope*.
|
|---|
| 180 | // Ours are those of the vector which goes from telescope 1 to the
|
|---|
| 181 | // core estimated core.
|
|---|
| 182 | //
|
|---|
| 183 |
|
|---|
| 184 | /////////////////////////////////////////////////////////////////////
|
|---|
| 185 | //
|
|---|
| 186 | // Now estimate the source location on the camera by intersecting
|
|---|
| 187 | // major axis of the ellipses. This assumes both telescopes are
|
|---|
| 188 | // pointing paralel! We introduce the camera scale to account for
|
|---|
| 189 | // the use of telescopes with different focal distances.
|
|---|
| 190 | //
|
|---|
| 191 |
|
|---|
| 192 | Float_t scale1 = mgeom1.GetConvMm2Deg();
|
|---|
| 193 | Float_t scale2 = mgeom2.GetConvMm2Deg();
|
|---|
| 194 |
|
|---|
| 195 | t = scale2*hillas2.GetMeanY() - scale1*hillas1.GetMeanY() +
|
|---|
| 196 | (scale1*hillas1.GetMeanX() - scale2*hillas2.GetMeanX()) *
|
|---|
| 197 | hillas2.GetSinDelta() / hillas2.GetCosDelta();
|
|---|
| 198 |
|
|---|
| 199 | t /= (hillas1.GetSinDelta() -
|
|---|
| 200 | hillas2.GetSinDelta()/hillas2.GetCosDelta()*hillas1.GetCosDelta());
|
|---|
| 201 |
|
|---|
| 202 | fSourceX = scale1*hillas1.GetMeanX() + t * hillas1.GetCosDelta();
|
|---|
| 203 | fSourceY = scale1*hillas1.GetMeanY() + t * hillas1.GetSinDelta();
|
|---|
| 204 |
|
|---|
| 205 | //
|
|---|
| 206 | // Squared angular distance from reconstructed source position to
|
|---|
| 207 | // camera center.
|
|---|
| 208 | //
|
|---|
| 209 | fTheta2 = fSourceX*fSourceX+fSourceY*fSourceY;
|
|---|
| 210 |
|
|---|
| 211 | //
|
|---|
| 212 | // Get the direction corresponding to the intersection of axes
|
|---|
| 213 | //
|
|---|
| 214 |
|
|---|
| 215 | Float_t source_direction[3];
|
|---|
| 216 |
|
|---|
| 217 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), fSourceX/scale1, fSourceY/scale1, &(source_direction[0]), &(source_direction[1]), &(source_direction[2]));
|
|---|
| 218 |
|
|---|
| 219 |
|
|---|
| 220 | //
|
|---|
| 221 | // Calculate impact parameters
|
|---|
| 222 | //
|
|---|
| 223 |
|
|---|
| 224 | Float_t scalar = (fCoreX-ct1_x)*source_direction[0] +
|
|---|
| 225 | (fCoreY-ct1_y)*source_direction[1];
|
|---|
| 226 | fCT1Impact = sqrt( (fCoreX-ct1_x)*(fCoreX-ct1_x) +
|
|---|
| 227 | (fCoreY-ct1_y)*(fCoreY-ct1_y) -
|
|---|
| 228 | scalar * scalar );
|
|---|
| 229 |
|
|---|
| 230 | scalar = (fCoreX-ct2_x)*source_direction[0] +
|
|---|
| 231 | (fCoreY-ct2_y)*source_direction[1];
|
|---|
| 232 | fCT2Impact = sqrt( (fCoreX-ct2_x)*(fCoreX-ct2_x) +
|
|---|
| 233 | (fCoreY-ct2_y)*(fCoreY-ct2_y) -
|
|---|
| 234 | scalar * scalar );
|
|---|
| 235 |
|
|---|
| 236 | //
|
|---|
| 237 | // Now calculate i.p. assuming source is point-like and placed in
|
|---|
| 238 | // the center of the camera.
|
|---|
| 239 | //
|
|---|
| 240 | scalar = (fCoreX2-ct1_x)*(-sin(mcevt1.GetTelescopeTheta())*
|
|---|
| 241 | cos(mcevt1.GetTelescopePhi())) +
|
|---|
| 242 | (fCoreY2-ct1_y)*(-sin(mcevt1.GetTelescopeTheta())*
|
|---|
| 243 | sin(mcevt1.GetTelescopePhi()));
|
|---|
| 244 |
|
|---|
| 245 | fCT1Impact2 = sqrt( (fCoreX2-ct1_x)*(fCoreX2-ct1_x) +
|
|---|
| 246 | (fCoreY2-ct1_y)*(fCoreY2-ct1_y) -
|
|---|
| 247 | scalar * scalar );
|
|---|
| 248 |
|
|---|
| 249 | scalar = (fCoreX2-ct2_x)*(-sin(mcevt2.GetTelescopeTheta())*
|
|---|
| 250 | cos(mcevt2.GetTelescopePhi())) +
|
|---|
| 251 | (fCoreY2-ct2_y)*(-sin(mcevt2.GetTelescopeTheta())*
|
|---|
| 252 | sin(mcevt2.GetTelescopePhi()));
|
|---|
| 253 |
|
|---|
| 254 | fCT2Impact2 = sqrt( (fCoreX2-ct2_x)*(fCoreX2-ct2_x) +
|
|---|
| 255 | (fCoreY2-ct2_y)*(fCoreY2-ct2_y) -
|
|---|
| 256 | scalar * scalar );
|
|---|
| 257 |
|
|---|
| 258 |
|
|---|
| 259 | SetReadyToSave();
|
|---|
| 260 | }
|
|---|
| 261 |
|
|---|
| 262 | // --------------------------------------------------------------------------
|
|---|
| 263 | //
|
|---|
| 264 | // Transformation of coordinates, from a point on the camera x, y , to
|
|---|
| 265 | // the director cosines of the corresponding direction, in the system of
|
|---|
| 266 | // coordinates in which X-axis is North, Y-axis is west, and Z-axis
|
|---|
| 267 | // points to the zenith. The transformation has been taken from TDAS 01-05,
|
|---|
| 268 | // although the final system of coordinates is not the same defined there,
|
|---|
| 269 | // but the one defined in Corsika (for convenience).
|
|---|
| 270 | //
|
|---|
| 271 | // rc is the distance from the reflector center to the camera. CTphi and
|
|---|
| 272 | // CTtheta indicate the telescope orientation. The angle CTphi is the
|
|---|
| 273 | // azimuth of the vector going along the telescope axis from the camera
|
|---|
| 274 | // towards the reflector, measured from the North direction anticlockwise
|
|---|
| 275 | // ( being West: phi=pi/2, South: phi=pi, East: phi=3pi/2 )
|
|---|
| 276 | //
|
|---|
| 277 | // rc and x,y must be given in the same units!
|
|---|
| 278 | //
|
|---|
| 279 |
|
|---|
| 280 |
|
|---|
| 281 | void MStereoPar::Camera2direction(Float_t rc, Float_t CTphi, Float_t CTtheta, Float_t x, Float_t y, Float_t* cosx, Float_t* cosy, Float_t* cosz)
|
|---|
| 282 | {
|
|---|
| 283 | //
|
|---|
| 284 | // We convert phi to the convention defined in TDAS 01-05
|
|---|
| 285 | //
|
|---|
| 286 | Float_t sinphi = sin(2*TMath::Pi()-CTphi);
|
|---|
| 287 | Float_t cosphi = cos(CTphi);
|
|---|
| 288 | Float_t costheta = cos(CTtheta);
|
|---|
| 289 | Float_t sintheta = sin(CTtheta);
|
|---|
| 290 |
|
|---|
| 291 | Float_t xc = x/rc;
|
|---|
| 292 | Float_t yc = y/rc;
|
|---|
| 293 |
|
|---|
| 294 | Float_t norm = 1/sqrt(1+xc*xc+yc*yc);
|
|---|
| 295 |
|
|---|
| 296 | Float_t xref = xc * norm;
|
|---|
| 297 | Float_t yref = yc * norm;
|
|---|
| 298 | Float_t zref = -1 * norm;
|
|---|
| 299 |
|
|---|
| 300 | *cosx = xref * sinphi + yref * costheta*cosphi - zref * sintheta*cosphi;
|
|---|
| 301 | *cosy = -xref * cosphi + yref * costheta*sinphi - zref * sintheta*sinphi;
|
|---|
| 302 | *cosz = yref * sintheta + zref * costheta;
|
|---|
| 303 |
|
|---|
| 304 | // Now change from system A of TDAS 01-05 to Corsika system:
|
|---|
| 305 |
|
|---|
| 306 | *cosy *= -1;
|
|---|
| 307 | *cosz *= -1;
|
|---|
| 308 |
|
|---|
| 309 | }
|
|---|