| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Abelardo Moralejo 11/2003 <mailto:moralejo@pd.infn.it> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2000-2003 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | // MStereoPar | 
|---|
| 28 | // | 
|---|
| 29 | // Storage Container for shower parameters estimated using the information | 
|---|
| 30 | // from two telescopes (presently for MC studies) | 
|---|
| 31 | // | 
|---|
| 32 | // | 
|---|
| 33 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 34 | #include "MStereoPar.h" | 
|---|
| 35 | #include <fstream> | 
|---|
| 36 |  | 
|---|
| 37 | #include "MLog.h" | 
|---|
| 38 | #include "MLogManip.h" | 
|---|
| 39 |  | 
|---|
| 40 | #include "MHillas.h" | 
|---|
| 41 | #include "MMcEvt.hxx" | 
|---|
| 42 | #include "MGeomCam.h" | 
|---|
| 43 |  | 
|---|
| 44 |  | 
|---|
| 45 | ClassImp(MStereoPar); | 
|---|
| 46 |  | 
|---|
| 47 | using namespace std; | 
|---|
| 48 |  | 
|---|
| 49 | // -------------------------------------------------------------------------- | 
|---|
| 50 | // | 
|---|
| 51 | // Default constructor. | 
|---|
| 52 | // | 
|---|
| 53 | MStereoPar::MStereoPar(const char *name, const char *title) | 
|---|
| 54 | { | 
|---|
| 55 | fName  = name  ? name  : "MStereoPar"; | 
|---|
| 56 | fTitle = title ? title : "Stereo image parameters"; | 
|---|
| 57 |  | 
|---|
| 58 |  | 
|---|
| 59 | } | 
|---|
| 60 |  | 
|---|
| 61 |  | 
|---|
| 62 | // -------------------------------------------------------------------------- | 
|---|
| 63 | // | 
|---|
| 64 | void MStereoPar::Reset() | 
|---|
| 65 | { | 
|---|
| 66 | fCoreX = 0.; | 
|---|
| 67 | fCoreY = 0.; | 
|---|
| 68 | fSourceX = 0.; | 
|---|
| 69 | fSourceY = 0.; | 
|---|
| 70 | } | 
|---|
| 71 |  | 
|---|
| 72 |  | 
|---|
| 73 | // -------------------------------------------------------------------------- | 
|---|
| 74 | // | 
|---|
| 75 | //  Calculation of shower parameters | 
|---|
| 76 | // | 
|---|
| 77 | void MStereoPar::Calc(const MHillas &hillas1, const MMcEvt &mcevt1, const MGeomCam &mgeom1, const Float_t ct1_x, const Float_t ct1_y, const MHillas &hillas2, const MMcEvt &mcevt2, const MGeomCam &mgeom2, const Float_t ct2_x, const Float_t ct2_y) | 
|---|
| 78 | { | 
|---|
| 79 | // | 
|---|
| 80 | // Get the direction corresponding to the c.o.g. of the image on | 
|---|
| 81 | // the camera | 
|---|
| 82 | // | 
|---|
| 83 |  | 
|---|
| 84 | Float_t ct1_cosx_a; | 
|---|
| 85 | Float_t ct1_cosy_a; | 
|---|
| 86 | Float_t ct1_cosz_a; // Direction from ct1 to the shower c.o.g. | 
|---|
| 87 |  | 
|---|
| 88 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), hillas1.GetMeanX(), hillas1.GetMeanY(), &ct1_cosx_a, &ct1_cosy_a, &ct1_cosz_a); | 
|---|
| 89 |  | 
|---|
| 90 | // | 
|---|
| 91 | // Now we get another (arbitrary) point along the image long axis, | 
|---|
| 92 | // fMeanX + cosdelta, fMeanY + sindelta, and calculate the direction | 
|---|
| 93 | // to which it corresponds. | 
|---|
| 94 | // | 
|---|
| 95 |  | 
|---|
| 96 | Float_t ct1_cosx_b; | 
|---|
| 97 | Float_t ct1_cosy_b; | 
|---|
| 98 | Float_t ct1_cosz_b; | 
|---|
| 99 |  | 
|---|
| 100 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), hillas1.GetMeanX()+hillas1.GetCosDelta(), hillas1.GetMeanY()+hillas1.GetSinDelta(), &ct1_cosx_b, &ct1_cosy_b, &ct1_cosz_b); | 
|---|
| 101 |  | 
|---|
| 102 | // | 
|---|
| 103 | // The vectorial product of the latter two vectors is a vector | 
|---|
| 104 | // perpendicular to the plane which contains the shower axis and | 
|---|
| 105 | // passes through the telescope center (center of reflector). | 
|---|
| 106 | // The vectorial product of that vector and (0,0,1) is a vector on | 
|---|
| 107 | // the horizontal plane pointing from the telescope center to the | 
|---|
| 108 | // shower core position on the z=0 plane (ground). | 
|---|
| 109 | // | 
|---|
| 110 |  | 
|---|
| 111 | Float_t ct1_coreVersorX = ct1_cosz_a*ct1_cosx_b - ct1_cosx_a*ct1_cosz_b; | 
|---|
| 112 | Float_t ct1_coreVersorY = ct1_cosz_a*ct1_cosy_b - ct1_cosy_a*ct1_cosz_b; | 
|---|
| 113 |  | 
|---|
| 114 | // | 
|---|
| 115 | // Now we calculate again the versor, now assuming that the source | 
|---|
| 116 | // direction is paralel to the telescope axis (camera position 0,0) | 
|---|
| 117 | // This increases the precision of the core determination if the showers | 
|---|
| 118 | // actually come from that direction (like for gammas from a point source) | 
|---|
| 119 |  | 
|---|
| 120 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), 0., 0., &ct1_cosx_b, &ct1_cosy_b, &ct1_cosz_b); | 
|---|
| 121 |  | 
|---|
| 122 | Float_t ct1_coreVersorX_best = ct1_cosz_a*ct1_cosx_b - ct1_cosx_a*ct1_cosz_b; | 
|---|
| 123 | Float_t ct1_coreVersorY_best = ct1_cosz_a*ct1_cosy_b - ct1_cosy_a*ct1_cosz_b; | 
|---|
| 124 |  | 
|---|
| 125 | // | 
|---|
| 126 | // Now the second telescope | 
|---|
| 127 | // | 
|---|
| 128 |  | 
|---|
| 129 | Float_t ct2_cosx_a; | 
|---|
| 130 | Float_t ct2_cosy_a; | 
|---|
| 131 | Float_t ct2_cosz_a; // Direction from ct2 to the shower c.o.g. | 
|---|
| 132 |  | 
|---|
| 133 |  | 
|---|
| 134 | Camera2direction(1e3*mgeom2.GetCameraDist(), mcevt2.GetTelescopePhi(), mcevt2.GetTelescopeTheta(), hillas2.GetMeanX(), hillas2.GetMeanY(), &ct2_cosx_a, &ct2_cosy_a, &ct2_cosz_a); | 
|---|
| 135 |  | 
|---|
| 136 | Float_t ct2_cosx_b; | 
|---|
| 137 | Float_t ct2_cosy_b; | 
|---|
| 138 | Float_t ct2_cosz_b; | 
|---|
| 139 |  | 
|---|
| 140 | Camera2direction(1e3*mgeom2.GetCameraDist(), mcevt2.GetTelescopePhi(), mcevt2.GetTelescopeTheta(), hillas2.GetMeanX()+hillas2.GetCosDelta(), hillas2.GetMeanY()+hillas2.GetSinDelta(), &ct2_cosx_b, &ct2_cosy_b, &ct2_cosz_b); | 
|---|
| 141 |  | 
|---|
| 142 |  | 
|---|
| 143 | Float_t ct2_coreVersorX = ct2_cosz_a*ct2_cosx_b - ct2_cosx_a*ct2_cosz_b; | 
|---|
| 144 | Float_t ct2_coreVersorY = ct2_cosz_a*ct2_cosy_b - ct2_cosy_a*ct2_cosz_b; | 
|---|
| 145 |  | 
|---|
| 146 |  | 
|---|
| 147 | Camera2direction(1e3*mgeom2.GetCameraDist(), mcevt2.GetTelescopePhi(), mcevt2.GetTelescopeTheta(), 0., 0., &ct2_cosx_b, &ct2_cosy_b, &ct2_cosz_b); | 
|---|
| 148 |  | 
|---|
| 149 | Float_t ct2_coreVersorX_best = ct2_cosz_a*ct2_cosx_b - ct2_cosx_a*ct2_cosz_b; | 
|---|
| 150 | Float_t ct2_coreVersorY_best = ct2_cosz_a*ct2_cosy_b - ct2_cosy_a*ct2_cosz_b; | 
|---|
| 151 |  | 
|---|
| 152 | // | 
|---|
| 153 | // Estimate core position: | 
|---|
| 154 | // | 
|---|
| 155 | Float_t t = ct1_x - ct2_x - ct2_coreVersorX/ct2_coreVersorY*(ct1_y-ct2_y); | 
|---|
| 156 | t /= (ct2_coreVersorX/ct2_coreVersorY*ct1_coreVersorY - ct1_coreVersorX); | 
|---|
| 157 |  | 
|---|
| 158 | fCoreX = ct1_x + t * ct1_coreVersorX; | 
|---|
| 159 | fCoreY = ct1_y + t * ct1_coreVersorY; | 
|---|
| 160 |  | 
|---|
| 161 | // fCoreX, fCoreY, fCoreX2, fCoreY2 will have the same units | 
|---|
| 162 | // as ct1_x, ct1_y, ct2_x, ct2_y | 
|---|
| 163 |  | 
|---|
| 164 |  | 
|---|
| 165 | // | 
|---|
| 166 | // Now the estimated core position assuming the source is located in | 
|---|
| 167 | // the center of the camera: | 
|---|
| 168 | // | 
|---|
| 169 | t = ct1_x - ct2_x - ct2_coreVersorX_best / | 
|---|
| 170 | ct2_coreVersorY_best*(ct1_y-ct2_y); | 
|---|
| 171 | t /= (ct2_coreVersorX_best/ct2_coreVersorY_best*ct1_coreVersorY_best - | 
|---|
| 172 | ct1_coreVersorX_best); | 
|---|
| 173 |  | 
|---|
| 174 | fCoreX2 = ct1_x + t * ct1_coreVersorX_best; | 
|---|
| 175 | fCoreY2 = ct1_y + t * ct1_coreVersorY_best; | 
|---|
| 176 |  | 
|---|
| 177 | // | 
|---|
| 178 | // Be careful, the coordinates in MMcEvt.fCoreX,fCoreY are actually | 
|---|
| 179 | // those of the vector going *from the shower core to the telescope*. | 
|---|
| 180 | // Ours are those of the vector which goes from telescope 1 to the | 
|---|
| 181 | // core estimated core. | 
|---|
| 182 | // | 
|---|
| 183 |  | 
|---|
| 184 | ///////////////////////////////////////////////////////////////////// | 
|---|
| 185 | // | 
|---|
| 186 | // Now estimate the source location on the camera by intersecting | 
|---|
| 187 | // major axis of the ellipses. This assumes both telescopes are | 
|---|
| 188 | // pointing paralel! We introduce the camera scale to account for | 
|---|
| 189 | // the use of telescopes with different focal distances. | 
|---|
| 190 | // | 
|---|
| 191 |  | 
|---|
| 192 | Float_t scale1 = mgeom1.GetConvMm2Deg(); | 
|---|
| 193 | Float_t scale2 = mgeom2.GetConvMm2Deg(); | 
|---|
| 194 |  | 
|---|
| 195 | t = scale2*hillas2.GetMeanY() - scale1*hillas1.GetMeanY() + | 
|---|
| 196 | (scale1*hillas1.GetMeanX() - scale2*hillas2.GetMeanX()) * | 
|---|
| 197 | hillas2.GetSinDelta() / hillas2.GetCosDelta(); | 
|---|
| 198 |  | 
|---|
| 199 | t /= (hillas1.GetSinDelta() - | 
|---|
| 200 | hillas2.GetSinDelta()/hillas2.GetCosDelta()*hillas1.GetCosDelta()); | 
|---|
| 201 |  | 
|---|
| 202 | fSourceX = scale1*hillas1.GetMeanX() + t * hillas1.GetCosDelta(); | 
|---|
| 203 | fSourceY = scale1*hillas1.GetMeanY() + t * hillas1.GetSinDelta(); | 
|---|
| 204 |  | 
|---|
| 205 | // | 
|---|
| 206 | // Squared angular distance from reconstructed source position to | 
|---|
| 207 | // camera center. | 
|---|
| 208 | // | 
|---|
| 209 | fTheta2 = fSourceX*fSourceX+fSourceY*fSourceY; | 
|---|
| 210 |  | 
|---|
| 211 | // | 
|---|
| 212 | // Get the direction corresponding to the intersection of axes | 
|---|
| 213 | // | 
|---|
| 214 |  | 
|---|
| 215 | Float_t source_direction[3]; | 
|---|
| 216 |  | 
|---|
| 217 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), fSourceX/scale1, fSourceY/scale1, &(source_direction[0]), &(source_direction[1]), &(source_direction[2])); | 
|---|
| 218 |  | 
|---|
| 219 |  | 
|---|
| 220 | // | 
|---|
| 221 | // Calculate impact parameters | 
|---|
| 222 | // | 
|---|
| 223 |  | 
|---|
| 224 | Float_t scalar = (fCoreX-ct1_x)*source_direction[0] + | 
|---|
| 225 | (fCoreY-ct1_y)*source_direction[1]; | 
|---|
| 226 | fCT1Impact = sqrt( (fCoreX-ct1_x)*(fCoreX-ct1_x) + | 
|---|
| 227 | (fCoreY-ct1_y)*(fCoreY-ct1_y) - | 
|---|
| 228 | scalar * scalar ); | 
|---|
| 229 |  | 
|---|
| 230 | scalar = (fCoreX-ct2_x)*source_direction[0] + | 
|---|
| 231 | (fCoreY-ct2_y)*source_direction[1]; | 
|---|
| 232 | fCT2Impact = sqrt( (fCoreX-ct2_x)*(fCoreX-ct2_x) + | 
|---|
| 233 | (fCoreY-ct2_y)*(fCoreY-ct2_y) - | 
|---|
| 234 | scalar * scalar ); | 
|---|
| 235 |  | 
|---|
| 236 | // | 
|---|
| 237 | // Now calculate i.p. assuming source is point-like and placed in | 
|---|
| 238 | // the center of the camera. | 
|---|
| 239 | // | 
|---|
| 240 | scalar = (fCoreX2-ct1_x)*(-sin(mcevt1.GetTelescopeTheta())* | 
|---|
| 241 | cos(mcevt1.GetTelescopePhi()))  + | 
|---|
| 242 | (fCoreY2-ct1_y)*(-sin(mcevt1.GetTelescopeTheta())* | 
|---|
| 243 | sin(mcevt1.GetTelescopePhi())); | 
|---|
| 244 |  | 
|---|
| 245 | fCT1Impact2 = sqrt( (fCoreX2-ct1_x)*(fCoreX2-ct1_x) + | 
|---|
| 246 | (fCoreY2-ct1_y)*(fCoreY2-ct1_y) - | 
|---|
| 247 | scalar * scalar ); | 
|---|
| 248 |  | 
|---|
| 249 | scalar = (fCoreX2-ct2_x)*(-sin(mcevt2.GetTelescopeTheta())* | 
|---|
| 250 | cos(mcevt2.GetTelescopePhi()))  + | 
|---|
| 251 | (fCoreY2-ct2_y)*(-sin(mcevt2.GetTelescopeTheta())* | 
|---|
| 252 | sin(mcevt2.GetTelescopePhi())); | 
|---|
| 253 |  | 
|---|
| 254 | fCT2Impact2 = sqrt( (fCoreX2-ct2_x)*(fCoreX2-ct2_x) + | 
|---|
| 255 | (fCoreY2-ct2_y)*(fCoreY2-ct2_y) - | 
|---|
| 256 | scalar * scalar ); | 
|---|
| 257 |  | 
|---|
| 258 |  | 
|---|
| 259 | SetReadyToSave(); | 
|---|
| 260 | } | 
|---|
| 261 |  | 
|---|
| 262 | // -------------------------------------------------------------------------- | 
|---|
| 263 | // | 
|---|
| 264 | // Transformation of coordinates, from a point on the camera x, y , to | 
|---|
| 265 | // the director cosines of the corresponding direction, in the system of | 
|---|
| 266 | // coordinates in which X-axis is North, Y-axis is west, and Z-axis | 
|---|
| 267 | // points to the zenith. The transformation has been taken from TDAS 01-05, | 
|---|
| 268 | // although the final system of coordinates is not the same defined there, | 
|---|
| 269 | // but the one defined in Corsika (for convenience). | 
|---|
| 270 | // | 
|---|
| 271 | // rc is the distance from the reflector center to the camera. CTphi and | 
|---|
| 272 | // CTtheta indicate the telescope orientation. The angle CTphi is the | 
|---|
| 273 | // azimuth of the vector going along the telescope axis from the camera | 
|---|
| 274 | // towards the reflector, measured from the North direction anticlockwise | 
|---|
| 275 | // ( being West: phi=pi/2, South: phi=pi, East: phi=3pi/2 ) | 
|---|
| 276 | // | 
|---|
| 277 | // rc and x,y must be given in the same units! | 
|---|
| 278 | // | 
|---|
| 279 |  | 
|---|
| 280 |  | 
|---|
| 281 | void MStereoPar::Camera2direction(Float_t rc, Float_t CTphi, Float_t CTtheta, Float_t x, Float_t y, Float_t* cosx, Float_t* cosy, Float_t* cosz) | 
|---|
| 282 | { | 
|---|
| 283 | // | 
|---|
| 284 | // We convert phi to the convention defined in TDAS 01-05 | 
|---|
| 285 | // | 
|---|
| 286 | Float_t sinphi = sin(2*TMath::Pi()-CTphi); | 
|---|
| 287 | Float_t cosphi = cos(CTphi); | 
|---|
| 288 | Float_t costheta = cos(CTtheta); | 
|---|
| 289 | Float_t sintheta = sin(CTtheta); | 
|---|
| 290 |  | 
|---|
| 291 | Float_t xc = x/rc; | 
|---|
| 292 | Float_t yc = y/rc; | 
|---|
| 293 |  | 
|---|
| 294 | Float_t norm = 1/sqrt(1+xc*xc+yc*yc); | 
|---|
| 295 |  | 
|---|
| 296 | Float_t xref = xc * norm; | 
|---|
| 297 | Float_t yref = yc * norm; | 
|---|
| 298 | Float_t zref = -1 * norm; | 
|---|
| 299 |  | 
|---|
| 300 | *cosx =  xref * sinphi + yref * costheta*cosphi - zref * sintheta*cosphi; | 
|---|
| 301 | *cosy = -xref * cosphi + yref * costheta*sinphi - zref * sintheta*sinphi; | 
|---|
| 302 | *cosz =                  yref * sintheta        + zref * costheta; | 
|---|
| 303 |  | 
|---|
| 304 | //  Now change from system A of TDAS 01-05 to Corsika system: | 
|---|
| 305 |  | 
|---|
| 306 | *cosy *= -1; | 
|---|
| 307 | *cosz *= -1; | 
|---|
| 308 |  | 
|---|
| 309 | } | 
|---|