1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Abelardo Moralejo 11/2003 <mailto:moralejo@pd.infn.it>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MStereoPar
|
---|
28 | //
|
---|
29 | // Storage Container for shower parameters estimated using the information
|
---|
30 | // from two telescopes (presently for MC studies)
|
---|
31 | //
|
---|
32 | //
|
---|
33 | /////////////////////////////////////////////////////////////////////////////
|
---|
34 | #include "MStereoPar.h"
|
---|
35 | #include <fstream>
|
---|
36 |
|
---|
37 | #include "MLog.h"
|
---|
38 | #include "MLogManip.h"
|
---|
39 |
|
---|
40 | #include "MHillas.h"
|
---|
41 | #include "MMcEvt.hxx"
|
---|
42 | #include "MGeomCam.h"
|
---|
43 |
|
---|
44 |
|
---|
45 | ClassImp(MStereoPar);
|
---|
46 |
|
---|
47 | using namespace std;
|
---|
48 |
|
---|
49 | // --------------------------------------------------------------------------
|
---|
50 | //
|
---|
51 | // Default constructor.
|
---|
52 | //
|
---|
53 | MStereoPar::MStereoPar(const char *name, const char *title)
|
---|
54 | {
|
---|
55 | fName = name ? name : "MStereoPar";
|
---|
56 | fTitle = title ? title : "Stereo image parameters";
|
---|
57 |
|
---|
58 |
|
---|
59 | }
|
---|
60 |
|
---|
61 |
|
---|
62 | // --------------------------------------------------------------------------
|
---|
63 | //
|
---|
64 | void MStereoPar::Reset()
|
---|
65 | {
|
---|
66 | fCoreX = 0.;
|
---|
67 | fCoreY = 0.;
|
---|
68 | fSourceX = 0.;
|
---|
69 | fSourceY = 0.;
|
---|
70 | }
|
---|
71 |
|
---|
72 |
|
---|
73 | // --------------------------------------------------------------------------
|
---|
74 | //
|
---|
75 | // Calculation of shower parameters
|
---|
76 | //
|
---|
77 | void MStereoPar::Calc(const MHillas &hillas1, const MMcEvt &mcevt1, const MGeomCam &mgeom1, const Float_t ct1_x, const Float_t ct1_y, const MHillas &hillas2, const MMcEvt &mcevt2, const MGeomCam &mgeom2, const Float_t ct2_x, const Float_t ct2_y)
|
---|
78 | {
|
---|
79 | //
|
---|
80 | // Get the direction corresponding to the c.o.g. of the image on
|
---|
81 | // the camera
|
---|
82 | //
|
---|
83 |
|
---|
84 | Float_t ct1_cosx_a;
|
---|
85 | Float_t ct1_cosy_a;
|
---|
86 | Float_t ct1_cosz_a; // Direction from ct1 to the shower c.o.g.
|
---|
87 |
|
---|
88 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), hillas1.GetMeanX(), hillas1.GetMeanY(), &ct1_cosx_a, &ct1_cosy_a, &ct1_cosz_a);
|
---|
89 |
|
---|
90 | //
|
---|
91 | // Now we get another (arbitrary) point along the image long axis,
|
---|
92 | // fMeanX + cosdelta, fMeanY + sindelta, and calculate the direction
|
---|
93 | // to which it corresponds.
|
---|
94 | //
|
---|
95 |
|
---|
96 | Float_t ct1_cosx_b;
|
---|
97 | Float_t ct1_cosy_b;
|
---|
98 | Float_t ct1_cosz_b;
|
---|
99 |
|
---|
100 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), hillas1.GetMeanX()+hillas1.GetCosDelta(), hillas1.GetMeanY()+hillas1.GetSinDelta(), &ct1_cosx_b, &ct1_cosy_b, &ct1_cosz_b);
|
---|
101 |
|
---|
102 | //
|
---|
103 | // The vectorial product of the latter two vectors is a vector
|
---|
104 | // perpendicular to the plane which contains the shower axis and
|
---|
105 | // passes through the telescope center (center of reflector).
|
---|
106 | // The vectorial product of that vector and (0,0,1) is a vector on
|
---|
107 | // the horizontal plane pointing from the telescope center to the
|
---|
108 | // shower core position on the z=0 plane (ground).
|
---|
109 | //
|
---|
110 |
|
---|
111 | Float_t ct1_coreVersorX = ct1_cosz_a*ct1_cosx_b - ct1_cosx_a*ct1_cosz_b;
|
---|
112 | Float_t ct1_coreVersorY = ct1_cosz_a*ct1_cosy_b - ct1_cosy_a*ct1_cosz_b;
|
---|
113 |
|
---|
114 | //
|
---|
115 | // Now we calculate again the versor, now assuming that the source
|
---|
116 | // direction is paralel to the telescope axis (camera position 0,0)
|
---|
117 | // This increases the precision of the core determination if the showers
|
---|
118 | // actually come from that direction (like for gammas from a point source)
|
---|
119 |
|
---|
120 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), 0., 0., &ct1_cosx_b, &ct1_cosy_b, &ct1_cosz_b);
|
---|
121 |
|
---|
122 | Float_t ct1_coreVersorX_best = ct1_cosz_a*ct1_cosx_b - ct1_cosx_a*ct1_cosz_b;
|
---|
123 | Float_t ct1_coreVersorY_best = ct1_cosz_a*ct1_cosy_b - ct1_cosy_a*ct1_cosz_b;
|
---|
124 |
|
---|
125 | //
|
---|
126 | // Now the second telescope
|
---|
127 | //
|
---|
128 |
|
---|
129 | Float_t ct2_cosx_a;
|
---|
130 | Float_t ct2_cosy_a;
|
---|
131 | Float_t ct2_cosz_a; // Direction from ct2 to the shower c.o.g.
|
---|
132 |
|
---|
133 |
|
---|
134 | Camera2direction(1e3*mgeom2.GetCameraDist(), mcevt2.GetTelescopePhi(), mcevt2.GetTelescopeTheta(), hillas2.GetMeanX(), hillas2.GetMeanY(), &ct2_cosx_a, &ct2_cosy_a, &ct2_cosz_a);
|
---|
135 |
|
---|
136 | Float_t ct2_cosx_b;
|
---|
137 | Float_t ct2_cosy_b;
|
---|
138 | Float_t ct2_cosz_b;
|
---|
139 |
|
---|
140 | Camera2direction(1e3*mgeom2.GetCameraDist(), mcevt2.GetTelescopePhi(), mcevt2.GetTelescopeTheta(), hillas2.GetMeanX()+hillas2.GetCosDelta(), hillas2.GetMeanY()+hillas2.GetSinDelta(), &ct2_cosx_b, &ct2_cosy_b, &ct2_cosz_b);
|
---|
141 |
|
---|
142 |
|
---|
143 | Float_t ct2_coreVersorX = ct2_cosz_a*ct2_cosx_b - ct2_cosx_a*ct2_cosz_b;
|
---|
144 | Float_t ct2_coreVersorY = ct2_cosz_a*ct2_cosy_b - ct2_cosy_a*ct2_cosz_b;
|
---|
145 |
|
---|
146 |
|
---|
147 | Camera2direction(1e3*mgeom2.GetCameraDist(), mcevt2.GetTelescopePhi(), mcevt2.GetTelescopeTheta(), 0., 0., &ct2_cosx_b, &ct2_cosy_b, &ct2_cosz_b);
|
---|
148 |
|
---|
149 | Float_t ct2_coreVersorX_best = ct2_cosz_a*ct2_cosx_b - ct2_cosx_a*ct2_cosz_b;
|
---|
150 | Float_t ct2_coreVersorY_best = ct2_cosz_a*ct2_cosy_b - ct2_cosy_a*ct2_cosz_b;
|
---|
151 |
|
---|
152 | //
|
---|
153 | // Estimate core position:
|
---|
154 | //
|
---|
155 | Float_t t = ct1_x - ct2_x - ct2_coreVersorX/ct2_coreVersorY*(ct1_y-ct2_y);
|
---|
156 | t /= (ct2_coreVersorX/ct2_coreVersorY*ct1_coreVersorY - ct1_coreVersorX);
|
---|
157 |
|
---|
158 | fCoreX = ct1_x + t * ct1_coreVersorX;
|
---|
159 | fCoreY = ct1_y + t * ct1_coreVersorY;
|
---|
160 |
|
---|
161 | // fCoreX, fCoreY, fCoreX2, fCoreY2 will have the same units
|
---|
162 | // as ct1_x, ct1_y, ct2_x, ct2_y
|
---|
163 |
|
---|
164 |
|
---|
165 | //
|
---|
166 | // Now the estimated core position assuming the source is located in
|
---|
167 | // the center of the camera:
|
---|
168 | //
|
---|
169 | t = ct1_x - ct2_x - ct2_coreVersorX_best /
|
---|
170 | ct2_coreVersorY_best*(ct1_y-ct2_y);
|
---|
171 | t /= (ct2_coreVersorX_best/ct2_coreVersorY_best*ct1_coreVersorY_best -
|
---|
172 | ct1_coreVersorX_best);
|
---|
173 |
|
---|
174 | fCoreX2 = ct1_x + t * ct1_coreVersorX_best;
|
---|
175 | fCoreY2 = ct1_y + t * ct1_coreVersorY_best;
|
---|
176 |
|
---|
177 | //
|
---|
178 | // Be careful, the coordinates in MMcEvt.fCoreX,fCoreY are actually
|
---|
179 | // those of the vector going *from the shower core to the telescope*.
|
---|
180 | // Ours are those of the vector which goes from telescope 1 to the
|
---|
181 | // core estimated core.
|
---|
182 | //
|
---|
183 |
|
---|
184 | /////////////////////////////////////////////////////////////////////
|
---|
185 | //
|
---|
186 | // Now estimate the source location on the camera by intersecting
|
---|
187 | // major axis of the ellipses. This assumes both telescopes are
|
---|
188 | // pointing paralel! We introduce the camera scale to account for
|
---|
189 | // the use of telescopes with different focal distances.
|
---|
190 | //
|
---|
191 |
|
---|
192 | Float_t scale1 = mgeom1.GetConvMm2Deg();
|
---|
193 | Float_t scale2 = mgeom2.GetConvMm2Deg();
|
---|
194 |
|
---|
195 | t = scale2*hillas2.GetMeanY() - scale1*hillas1.GetMeanY() +
|
---|
196 | (scale1*hillas1.GetMeanX() - scale2*hillas2.GetMeanX()) *
|
---|
197 | hillas2.GetSinDelta() / hillas2.GetCosDelta();
|
---|
198 |
|
---|
199 | t /= (hillas1.GetSinDelta() -
|
---|
200 | hillas2.GetSinDelta()/hillas2.GetCosDelta()*hillas1.GetCosDelta());
|
---|
201 |
|
---|
202 | fSourceX = scale1*hillas1.GetMeanX() + t * hillas1.GetCosDelta();
|
---|
203 | fSourceY = scale2*hillas1.GetMeanY() + t * hillas1.GetSinDelta();
|
---|
204 |
|
---|
205 | //
|
---|
206 | // Squared angular distance from reconstructed source position to
|
---|
207 | // camera center.
|
---|
208 | //
|
---|
209 | fTheta2 = fSourceX*fSourceX+fSourceY*fSourceY;
|
---|
210 |
|
---|
211 | //
|
---|
212 | // Get the direction corresponding to the intersection of axes
|
---|
213 | //
|
---|
214 |
|
---|
215 | Float_t source_direction[3];
|
---|
216 |
|
---|
217 | Camera2direction(1e3*mgeom1.GetCameraDist(), mcevt1.GetTelescopePhi(), mcevt1.GetTelescopeTheta(), fSourceX/scale1, fSourceY/scale1, &(source_direction[0]), &(source_direction[1]), &(source_direction[2]));
|
---|
218 |
|
---|
219 |
|
---|
220 | //
|
---|
221 | // Calculate impact parameters
|
---|
222 | //
|
---|
223 |
|
---|
224 | Float_t scalar = (fCoreX-ct1_x)*source_direction[0] +
|
---|
225 | (fCoreY-ct1_y)*source_direction[1];
|
---|
226 | fCT1Impact = sqrt( (fCoreX-ct1_x)*(fCoreX-ct1_x) +
|
---|
227 | (fCoreY-ct1_y)*(fCoreY-ct1_y) -
|
---|
228 | scalar * scalar );
|
---|
229 |
|
---|
230 | scalar = (fCoreX-ct2_x)*source_direction[0] +
|
---|
231 | (fCoreY-ct2_y)*source_direction[1];
|
---|
232 | fCT2Impact = sqrt( (fCoreX-ct2_x)*(fCoreX-ct2_x) +
|
---|
233 | (fCoreY-ct2_y)*(fCoreY-ct2_y) -
|
---|
234 | scalar * scalar );
|
---|
235 |
|
---|
236 | //
|
---|
237 | // Now calculate i.p. assuming source is point-like and placed in
|
---|
238 | // the center of the camera.
|
---|
239 | //
|
---|
240 | scalar = (fCoreX2-ct1_x)*(-sin(mcevt1.GetTelescopeTheta())*
|
---|
241 | cos(mcevt1.GetTelescopePhi())) +
|
---|
242 | (fCoreY2-ct1_y)*(-sin(mcevt1.GetTelescopeTheta())*
|
---|
243 | sin(mcevt1.GetTelescopePhi()));
|
---|
244 |
|
---|
245 | fCT1Impact2 = sqrt( (fCoreX2-ct1_x)*(fCoreX2-ct1_x) +
|
---|
246 | (fCoreY2-ct1_y)*(fCoreY2-ct1_y) -
|
---|
247 | scalar * scalar );
|
---|
248 |
|
---|
249 | scalar = (fCoreX2-ct2_x)*(-sin(mcevt2.GetTelescopeTheta())*
|
---|
250 | cos(mcevt2.GetTelescopePhi())) +
|
---|
251 | (fCoreY2-ct2_y)*(-sin(mcevt2.GetTelescopeTheta())*
|
---|
252 | sin(mcevt2.GetTelescopePhi()));
|
---|
253 |
|
---|
254 | fCT2Impact2 = sqrt( (fCoreX2-ct2_x)*(fCoreX2-ct2_x) +
|
---|
255 | (fCoreY2-ct2_y)*(fCoreY2-ct2_y) -
|
---|
256 | scalar * scalar );
|
---|
257 |
|
---|
258 |
|
---|
259 | SetReadyToSave();
|
---|
260 | }
|
---|
261 |
|
---|
262 | // --------------------------------------------------------------------------
|
---|
263 | //
|
---|
264 | // Transformation of coordinates, from a point on the camera x, y , to
|
---|
265 | // the director cosines of the corresponding direction, in the system of
|
---|
266 | // coordinates in which X-axis is North, Y-axis is west, and Z-axis
|
---|
267 | // points to the zenith. The transformation has been taken from TDAS 01-05,
|
---|
268 | // although the final system of coordinates is not the same defined there,
|
---|
269 | // but the one defined in Corsika (for convenience).
|
---|
270 | //
|
---|
271 | // rc is the distance from the reflector center to the camera. CTphi and
|
---|
272 | // CTtheta indicate the telescope orientation. The angle CTphi is the
|
---|
273 | // azimuth of the vector going along the telescope axis from the camera
|
---|
274 | // towards the reflector, measured from the North direction anticlockwise
|
---|
275 | // ( being West: phi=pi/2, South: phi=pi, East: phi=3pi/2 )
|
---|
276 | //
|
---|
277 | // rc and x,y must be given in the same units!
|
---|
278 | //
|
---|
279 |
|
---|
280 |
|
---|
281 | void MStereoPar::Camera2direction(Float_t rc, Float_t CTphi, Float_t CTtheta, Float_t x, Float_t y, Float_t* cosx, Float_t* cosy, Float_t* cosz)
|
---|
282 | {
|
---|
283 | //
|
---|
284 | // We convert phi to the convention defined in TDAS 01-05
|
---|
285 | //
|
---|
286 | Float_t sinphi = sin(2*TMath::Pi()-CTphi);
|
---|
287 | Float_t cosphi = cos(CTphi);
|
---|
288 | Float_t costheta = cos(CTtheta);
|
---|
289 | Float_t sintheta = sin(CTtheta);
|
---|
290 |
|
---|
291 | Float_t xc = x/rc;
|
---|
292 | Float_t yc = y/rc;
|
---|
293 |
|
---|
294 | Float_t norm = 1/sqrt(1+xc*xc+yc*yc);
|
---|
295 |
|
---|
296 | Float_t xref = xc * norm;
|
---|
297 | Float_t yref = yc * norm;
|
---|
298 | Float_t zref = -1 * norm;
|
---|
299 |
|
---|
300 | *cosx = xref * sinphi + yref * costheta*cosphi - zref * sintheta*cosphi;
|
---|
301 | *cosy = -xref * cosphi + yref * costheta*sinphi - zref * sintheta*sinphi;
|
---|
302 | *cosz = yref * sintheta + zref * costheta;
|
---|
303 |
|
---|
304 | // Now change from system A of TDAS 01-05 to Corsika system:
|
---|
305 |
|
---|
306 | *cosy *= -1;
|
---|
307 | *cosz *= -1;
|
---|
308 |
|
---|
309 | }
|
---|