/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 1/2004 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MJCalibration // ///////////////////////////////////////////////////////////////////////////// #include "MJCalibration.h" #include #include #include #include #include #include "MLog.h" #include "MLogManip.h" #include "MRunIter.h" #include "MParList.h" #include "MTaskList.h" #include "MEvtLoop.h" #include "MHCamera.h" #include "MPedestalCam.h" #include "MCalibrationCam.h" #include "MReadMarsFile.h" #include "MGeomApply.h" #include "MBadPixelsMerge.h" #include "MExtractSignal.h" #include "MExtractPINDiode.h" #include "MExtractBlindPixel.h" #include "MExtractSignal2.h" #include "MCalibrationCalc.h" #include "MFCosmics.h" #include "MContinue.h" #include "MFillH.h" #include "MJCalibration.h" #include "MStatusDisplay.h" ClassImp(MJCalibration); using namespace std; MJCalibration::MJCalibration(const char *name, const char *title) : fRuns(0) { fName = name ? name : "MJCalibration"; fTitle = title ? title : "Tool to create a pedestal file (MPedestalCam)"; } void MJCalibration::DrawProjection(MHCamera *obj1, Int_t fit) const { TH1D *obj2 = (TH1D*)obj1->Projection(); obj2->Draw(); obj2->SetBit(kCanDelete); const Double_t min = obj2->GetBinCenter(obj2->GetXaxis()->GetFirst()); const Double_t max = obj2->GetBinCenter(obj2->GetXaxis()->GetLast()); const Double_t integ = obj2->Integral("width")/2.5; const Double_t mean = obj2->GetMean(); const Double_t rms = obj2->GetRMS(); const Double_t width = max-min; const TString dgausformula = "([0]-[3])/[2]*exp(-0.5*(x-[1])*(x-[1])/[2]/[2])" "+[3]/[5]*exp(-0.5*(x-[4])*(x-[4])/[5]/[5])"; const TString tgausformula = "([0]-[3]-[6])/[2]*exp(-0.5*(x-[1])*(x-[1])/[2]/[2])" "+[3]/[5]*exp(-0.5*(x-[4])*(x-[4])/[5]/[5])" "+[6]/[8]*exp(-0.5*(x-[7])*(x-[7])/[8]/[8])"; TF1 *f=0; switch (fit) { case 1: f = new TF1("sgaus", "gaus(0)", min, max); f->SetLineColor(kYellow); f->SetBit(kCanDelete); f->SetParNames("Area", "#mu", "#sigma"); f->SetParameters(integ/rms, mean, rms); f->SetParLimits(0, 0, integ); f->SetParLimits(1, min, max); f->SetParLimits(2, 0, width/1.5); obj2->Fit(f, "QLR"); break; case 2: f = new TF1("dgaus",dgausformula.Data(),min,max); f->SetLineColor(kYellow); f->SetBit(kCanDelete); f->SetParNames("A_{tot}", "#mu1", "#sigma1", "A2", "#mu2", "#sigma2"); f->SetParameters(integ,(min+mean)/2.,width/4., integ/width/2.,(max+mean)/2.,width/4.); // The left-sided Gauss f->SetParLimits(0,integ-1.5 , integ+1.5); f->SetParLimits(1,min+(width/10.), mean); f->SetParLimits(2,0 , width/2.); // The right-sided Gauss f->SetParLimits(3,0 , integ); f->SetParLimits(4,mean, max-(width/10.)); f->SetParLimits(5,0 , width/2.); obj2->Fit(f,"QLRM"); break; case 3: f = new TF1("tgaus",tgausformula.Data(),min,max); f->SetLineColor(kYellow); f->SetBit(kCanDelete); f->SetParNames("A_{tot}","#mu_{1}","#sigma_{1}", "A_{2}","#mu_{2}","#sigma_{2}", "A_{3}","#mu_{3}","#sigma_{3}"); f->SetParameters(integ,(min+mean)/2,width/4., integ/width/3.,(max+mean)/2.,width/4., integ/width/3.,mean,width/2.); // The left-sided Gauss f->SetParLimits(0,integ-1.5,integ+1.5); f->SetParLimits(1,min+(width/10.),mean); f->SetParLimits(2,width/15.,width/2.); // The right-sided Gauss f->SetParLimits(3,0.,integ); f->SetParLimits(4,mean,max-(width/10.)); f->SetParLimits(5,width/15.,width/2.); // The Gauss describing the outliers f->SetParLimits(6,0.,integ); f->SetParLimits(7,min,max); f->SetParLimits(8,width/4.,width/1.5); obj2->Fit(f,"QLRM"); break; case 4: obj2->Fit("pol0", "Q"); obj2->GetFunction("pol0")->SetLineColor(kYellow); break; case 9: break; default: obj2->Fit("gaus", "Q"); obj2->GetFunction("gaus")->SetLineColor(kYellow); break; } } void MJCalibration::CamDraw(TCanvas &c, const Int_t x, const Int_t y, const MHCamera &cam1, const Int_t fit) { c.cd(x); gPad->SetBorderMode(0); MHCamera *obj1=(MHCamera*)cam1.DrawCopy("hist"); obj1->AddNotify(&fCalibrationCam); c.cd(x+y); gPad->SetBorderMode(0); obj1->Draw(); if (!fit) return; c.cd(x+2*y); gPad->SetBorderMode(0); DrawProjection(obj1, fit); } void MJCalibration::DisplayResult(MParList &plist) { if (!fDisplay) return; // // Update display // TString title = fDisplay->GetTitle(); title += "-- Calibration "; title += fRuns->GetRunsAsString(); title += " --"; fDisplay->SetTitle(title); // // Get container from list // MGeomCam &geomcam = *(MGeomCam*)plist.FindObject("MGeomCam"); // Create histograms to display MHCamera disp1 (geomcam, "Cal;Charge", "Fitted Mean Charges"); MHCamera disp2 (geomcam, "Cal;SigmaCharge", "Sigma of Fitted Charges"); MHCamera disp3 (geomcam, "Cal;FitProb", "Probability of Fit"); MHCamera disp4 (geomcam, "Cal;RSigma", "Reduced Sigmas"); MHCamera disp5 (geomcam, "Cal;RSigma/Charge", "Reduced Sigma per Charge"); MHCamera disp6 (geomcam, "Cal;FFactorPhe", "Nr. of Phe's (F-Factor Method)"); MHCamera disp7 (geomcam, "Cal;FFactorConv", "Conversion Factor (F-Factor Method)"); MHCamera disp8 (geomcam, "Cal;FFactorFFactor", "Total F-Factor (F-Factor Method)"); MHCamera disp9 (geomcam, "Cal;BlindPixPh", "Photon flux inside plexiglass (Blind Pixel Method)"); MHCamera disp10(geomcam, "Cal;BlindPixConv", "Conversion Factor (Blind Pixel Method)"); MHCamera disp11(geomcam, "Cal;BlindPixFFactor","Total F-Factor (Blind Pixel Method)"); MHCamera disp12(geomcam, "Cal;PINDiodePh", "Photons flux outside plexiglass (PIN Diode Method)"); MHCamera disp13(geomcam, "Cal;PINDiodeConv", "Conversion Factor (PIN Diode Method)"); MHCamera disp14(geomcam, "Cal;PINDiodeFFactor","Total F-Factor (PIN Diode Method)"); MHCamera disp15(geomcam, "Cal;Excluded", "Pixels previously excluded"); MHCamera disp16(geomcam, "Cal;NotFitted", "Pixels that could not be fitted"); MHCamera disp17(geomcam, "Cal;NotFitValid", "Pixels with not valid fit results"); MHCamera disp18(geomcam, "Cal;Oscillation", "Oscillating Pixels"); MHCamera disp19(geomcam, "Cal;Saturation", "Pixels with saturated Hi Gain"); // Fitted charge means and sigmas disp1.SetCamContent(fCalibrationCam, 0); disp1.SetCamError( fCalibrationCam, 1); disp2.SetCamContent(fCalibrationCam, 2); disp2.SetCamError( fCalibrationCam, 3); // Fit probabilities disp3.SetCamContent(fCalibrationCam, 4); // Reduced Sigmas and reduced sigmas per charge disp4.SetCamContent(fCalibrationCam, 5); disp4.SetCamError( fCalibrationCam, 6); disp5.SetCamContent(fCalibrationCam, 7); disp5.SetCamError( fCalibrationCam, 8); // F-Factor Method disp6.SetCamContent(fCalibrationCam, 9); disp6.SetCamError( fCalibrationCam, 10); disp7.SetCamContent(fCalibrationCam, 11); disp7.SetCamError( fCalibrationCam, 12); disp8.SetCamContent(fCalibrationCam, 13); disp8.SetCamError( fCalibrationCam, 14); /// Blind Pixel Method disp9.SetCamContent(fCalibrationCam, 15); disp9.SetCamError( fCalibrationCam, 16); disp10.SetCamContent(fCalibrationCam,17); disp10.SetCamError( fCalibrationCam,18); disp11.SetCamContent(fCalibrationCam,19); disp11.SetCamError( fCalibrationCam,20); // PIN Diode Method disp12.SetCamContent(fCalibrationCam,21); disp12.SetCamError( fCalibrationCam,22); disp13.SetCamContent(fCalibrationCam,23); disp13.SetCamError( fCalibrationCam,24); disp14.SetCamContent(fCalibrationCam,25); disp14.SetCamError( fCalibrationCam,26); // Pixels with defects disp15.SetCamContent(fCalibrationCam,27); disp16.SetCamContent(fCalibrationCam,28); disp17.SetCamContent(fCalibrationCam,29); disp18.SetCamContent(fCalibrationCam,30); // Lo Gain calibration disp19.SetCamContent(fCalibrationCam,31); disp1.SetYTitle("Q [FADC units]"); disp2.SetYTitle("\\sigma_{Q} [FADC units]"); disp3.SetYTitle("P_{Q} [1]"); disp4.SetYTitle("\\sqrt{\\sigma^{2}_{Q} - RMS^{2}_{Ped}} [FADC Counts]"); disp5.SetYTitle("Red.Sigma/ [1]"); disp6.SetYTitle("PhE [#]"); disp7.SetYTitle("Conv.Factor [PhE/FADC units]"); disp8.SetYTitle("\\sqrt{N_{PhE}}*\\sigma_{Q}/\\mu_{Q} [1]"); disp9.SetYTitle("Phot.flux [ph/mm^{2}]"); disp10.SetYTitle("Conv.Factor [Phot/FADC Count]"); disp11.SetYTitle("\\sqrt{N_{Ph}}*\\sigma_{Q}/\\mu_{Q} [1]"); disp12.SetYTitle("Phot.flux [ph/mm^{2}]"); disp13.SetYTitle("Conv.Factor [Phot/FADC Count]"); disp14.SetYTitle("\\sqrt{N_{Ph}}*\\sigma_{Q}/\\mu_{Q} [1]"); disp15.SetYTitle("[1]"); disp16.SetYTitle("[1]"); disp17.SetYTitle("[1]"); disp18.SetYTitle("[1]"); gStyle->SetOptStat(1111); gStyle->SetOptFit(); // Charges TCanvas &c1 = fDisplay->AddTab("Fit.Charge"); c1.Divide(2, 3); CamDraw(c1, 1, 2, disp1, 2); CamDraw(c1, 2, 2, disp2, 2); // Fit Probability TCanvas &c2 = fDisplay->AddTab("Fit.Prob"); c2.Divide(1,3); CamDraw(c2, 1, 1, disp3, 4); // Reduced Sigmas TCanvas &c3 = fDisplay->AddTab("Red.Sigma"); c3.Divide(2,3); CamDraw(c3, 1, 2, disp4, 2); CamDraw(c3, 2, 2, disp5, 2); // F-Factor Method TCanvas &c4 = fDisplay->AddTab("F-Factor"); c4.Divide(3,3); CamDraw(c4, 1, 3, disp6, 2); CamDraw(c4, 2, 3, disp7, 2); CamDraw(c4, 3, 3, disp8, 2); // Blind Pixel Method TCanvas &c5 = fDisplay->AddTab("BlindPix"); c5.Divide(3, 3); CamDraw(c5, 1, 3, disp9, 9); CamDraw(c5, 2, 3, disp10, 2); CamDraw(c5, 3, 3, disp11, 2); // PIN Diode Method TCanvas &c6 = fDisplay->AddTab("PINDiode"); c6.Divide(3,3); CamDraw(c6, 1, 3, disp12, 9); CamDraw(c6, 2, 3, disp13, 2); CamDraw(c6, 3, 3, disp14, 2); // Defects TCanvas &c7 = fDisplay->AddTab("Defects"); c7.Divide(4,2); CamDraw(c7, 1, 4, disp15, 0); CamDraw(c7, 2, 4, disp16, 0); CamDraw(c7, 3, 4, disp17, 0); CamDraw(c7, 4, 4, disp18, 0); // Lo Gain Calibration TCanvas &c8 = fDisplay->AddTab("LowGain"); c8.Divide(1,3); CamDraw(c8, 1, 1, disp19, 0); } Bool_t MJCalibration::WriteResult() { if (fOutputPath.IsNull()) return kTRUE; const TString oname(GetOutputFile()); *fLog << inf << "Writing to file: " << oname << endl; TFile file(oname, "UPDATE"); if (fDisplay && fDisplay->Write()<=0) { *fLog << err << "Unable to write MStatusDisplay to " << oname << endl; return kFALSE; } if (fCalibrationCam.Write()<=0) { *fLog << err << "Unable to write MCalibrationCam to " << oname << endl; return kFALSE; } if (fBadPixels.Write()<=0) { *fLog << err << "Unable to write MBadPixelsCam to " << oname << endl; return kFALSE; } return kTRUE; } void MJCalibration::SetOutputPath(const char *path) { fOutputPath = path; if (fOutputPath.EndsWith("/")) fOutputPath = fOutputPath(0, fOutputPath.Length()-1); } Bool_t MJCalibration::Process(MPedestalCam &pedcam) { if (!ReadCalibrationCam()) return ProcessFile(pedcam); return kTRUE; } TString MJCalibration::GetOutputFile() const { if (!fRuns) return ""; return Form("%s/%s-F1.root", (const char*)fOutputPath, (const char*)fRuns->GetRunsAsFileName()); } Bool_t MJCalibration::ReadCalibrationCam() { const TString fname = GetOutputFile(); if (gSystem->AccessPathName(fname, kFileExists)) { *fLog << err << "Input file " << fname << " doesn't exist." << endl; return kFALSE; } *fLog << inf << "Reading from file: " << fname << endl; TFile file(fname, "READ"); if (fCalibrationCam.Read()<=0) { *fLog << "Unable to read MCalibrationCam from " << fname << endl; return kFALSE; } if (file.FindKey("MBadPixelsCam")) { MBadPixelsCam bad; if (bad.Read()<=0) { *fLog << "Unable to read MBadPixelsCam from " << fname << endl; return kFALSE; } fBadPixels.Merge(bad); } if (fDisplay /*&& !fDisplay->GetCanvas("Pedestals")*/) // FIXME! fDisplay->Read(); return kTRUE; } Bool_t MJCalibration::ProcessFile(MPedestalCam &pedcam) { if (!fRuns) { *fLog << err << "No Runs choosen... abort." << endl; return kFALSE; } if (fRuns->GetNumRuns() != fRuns->GetNumEntries()) { *fLog << err << "Number of files found doesn't metch number of runs... abort." << endl; return kFALSE; } *fLog << inf; fLog->Separator(GetDescriptor()); *fLog << "Calculate MCalibrationCam from Runs " << fRuns->GetRunsAsString() << endl; *fLog << endl; MReadMarsFile read("Events"); read.DisableAutoScheme(); static_cast(read).AddFiles(*fRuns); // Setup Tasklist MParList plist; plist.AddToList(&pedcam); plist.AddToList(&fCalibrationCam); MTaskList tlist; plist.AddToList(&tlist); MGeomApply apply; MBadPixelsMerge merge(&fBadPixels); // MExtractSignal extract; // Do not use this at the moment... MExtractPINDiode pinext; MExtractBlindPixel blindext; MExtractSignal2 extract; MCalibrationCalc calcalc; MFillH fillpin("MHCalibrationChargePINDiode", "MExtractedSignalPINDiode"); // // Apply a filter against cosmics // (will have to be needed in the future // when the calibration hardware-trigger is working) // MFCosmics cosmics; MContinue cont(&cosmics); // // As long, as we don't have digital modules, // we have to set the color of the pulser LED by hand // calcalc.SetPulserColor(MCalibrationCalc::kECT1); //calcalc.SkipBlindPixelFit(); tlist.AddToList(&read); tlist.AddToList(&apply); tlist.AddToList(&merge); tlist.AddToList(&extract); tlist.AddToList(&pinext); tlist.AddToList(&blindext); tlist.AddToList(&cont); tlist.AddToList(&calcalc); tlist.AddToList(&fillpin); // Create and setup the eventloop MEvtLoop evtloop(fName); evtloop.SetParList(&plist); evtloop.SetDisplay(fDisplay); evtloop.SetLogStream(fLog); // Execute first analysis if (!evtloop.Eventloop()) { *fLog << err << GetDescriptor() << ": Failed." << endl; return kFALSE; } tlist.PrintStatistics(); DisplayResult(plist); if (!WriteResult()) return kFALSE; *fLog << inf << GetDescriptor() << ": Done." << endl; return kTRUE; }