/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 1/2004 ! Author(s): Markus Gaug, 02/2004 ! ! Copyright: MAGIC Software Development, 2000-2009 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MJCalibration // // Do one calibration loop over serious of runs with the same pulser // colour and the same intensity. The following containers (rectangular) and // tasks (ellipses) are called to produce an MCalibrationChargeCam and to // update the MCalibrationQECam: (MCalibrate is not called from this class) // //Begin_Html /* */ //End_Html // // Different signal extractors can be set with the command SetExtractor() // Only extractors deriving from MExtractor can be set, default is MExtractSlidingWindow // // Different arrival time extractors can be set with the command SetTimeExtractor() // Only extractors deriving from MExtractTime can be set, default is MExtractTimeHighestIntegral // // At the end of the eventloop, plots and results are displayed, depending on // the flags set (see DisplayResult()) // // If the flag SetFullDisplay() is set, all MHCameras will be displayed. // if the flag SetDataCheckDisplay() is set, only the most important ones are displayed // Otherwise, (default: SetNormalDisplay()), a good selection of plots is given // // The absolute light calibration devices Blind Pixel and PIN Diode can be switched on // and off with the commands: // // - SetUseBlindPixel(Bool_t ) // - SetUsePINDiode(Bool_t ) // // See also: MHCalibrationChargePix, MHCalibrationChargeCam, MHGausEvents // MHCalibrationChargeBlindPix, MHCalibrationChargePINDiode // MCalibrationChargePix, MCalibrationChargeCam, MCalibrationChargeCalc // MCalibrationBlindPix, MCalibrationChargePINDiode, // MCalibrationQECam, MBadPixelsPix, MBadPixelsCam // // If the flag RelTimeCalibration() is set, a calibration of the relative arrival // times is also performed. The following containers (rectangular) and // tasks (ellipses) are called to produce an MCalibrationRelTimeCam used by // MCalibrateTime to correct timing offset between pixels: (MCalibrateTime is not // called from this class) // //Begin_Html /* */ //End_Html // // Different arrival time extractors can be set directly with the command // SetTimeExtractor(MExtractor *) // // Resource file entries are case sensitive! // // See also: MHCalibrationRelTimePix, MHCalibrationRelTimeCam, MHGausEvents // MCalibrationRelTimePix, MCalibrationRelTimeCam // MBadPixelsPix, MBadPixelsCam // ///////////////////////////////////////////////////////////////////////////// #include "MJCalibration.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "MLog.h" #include "MLogManip.h" #include "MEnv.h" #include "MString.h" #include "MDirIter.h" #include "MSequence.h" #include "MParList.h" #include "MTaskList.h" #include "MEvtLoop.h" #include "MHCamera.h" #include "MGeomCam.h" #include "MCalibrationPatternDecode.h" #include "MCalibrationCam.h" #include "MCalibrationQECam.h" #include "MCalibrationQEPix.h" #include "MCalibrationChargeCam.h" #include "MCalibrationChargePix.h" #include "MCalibrationChargePINDiode.h" #include "MCalibrationBlindPix.h" #include "MCalibrationBlindCam.h" #include "MCalibrationBlindCamOneOldStyle.h" #include "MCalibrationBlindCamTwoNewStyle.h" #include "MCalibrationBlindCamThreeNewStyle.h" #include "MCalibrationChargeCalc.h" #include "MCalibColorSet.h" #include "MCalibrationRelTimeCam.h" #include "MCalibrationRelTimeCalc.h" #include "MHGausEvents.h" #include "MHCalibrationCam.h" #include "MHCalibrationChargeCam.h" #include "MHCalibrationChargeBlindCam.h" #include "MHCalibrationChargePINDiode.h" #include "MHCalibrationRelTimeCam.h" #include "MHCalibrationPix.h" #include "MHCamEvent.h" #include "MReadMarsFile.h" #include "MPedCalcPedRun.h" #include "MRawFileRead.h" #include "MGeomApply.h" #include "MPedestalSubtract.h" #include "MTaskEnv.h" #include "MBadPixelsMerge.h" #include "MBadPixelsCam.h" #include "MExtractTime.h" #include "MExtractor.h" #include "MExtractPINDiode.h" #include "MExtractBlindPixel.h" #include "MExtractTimeAndChargeSpline.h" #include "MFCosmics.h" #include "MFTriggerPattern.h" #include "MContinue.h" #include "MFillH.h" #include "MTriggerPatternDecode.h" #include "MArrivalTimeCam.h" #include "MStatusDisplay.h" ClassImp(MJCalibration); using namespace std; const Int_t MJCalibration::gkIFAEBoxInaugurationRun = 20113; const Int_t MJCalibration::gkSecondBlindPixelInstallation = 31693; const Int_t MJCalibration::gkSpecialPixelsContInstallation = 34057; const Int_t MJCalibration::gkThirdBlindPixelInstallation = 43308; const TString MJCalibration::fgReferenceFile = "mjobs/calibrationref.rc"; const TString MJCalibration::fgHiLoCalibFile = "resources/hilocalib.rc"; // -------------------------------------------------------------------------- // // Default constructor. // // - fExtractor to NULL, fTimeExtractor to NULL, fColor to kNONE, // fDisplay to kNormalDisplay, kRelTimes to kFALSE, kataCheck to kFALSE, kDebug to kFALSE // - SetUseBlindPixel() // - SetUsePINDiode() // MJCalibration::MJCalibration(const char *name, const char *title) : fExtractor(NULL), fTimeExtractor(NULL), fColor(MCalibrationCam::kNONE), fDisplayType(kDataCheckDisplay), fMinEvents(1000), fGeometry("MGeomCamMagic") { fName = name ? name : "MJCalibration"; fTitle = title ? title : "Tool to create the calibration constants for one calibration run"; //SetHiLoCalibration(); SetRelTimeCalibration(); SetDebug(kFALSE); SetReferenceFile(); SetHiLoCalibFile(); fConvFADC2PheMin = 0.; fConvFADC2PheMax = 1.5; fConvFADC2PhotMin = 0.; fConvFADC2PhotMax = 10.; fQEMin = 0.; fQEMax = 0.3; fArrivalTimeMin = 1.; fArrivalTimeMax = 10.; fTimeOffsetMin = -3.; fTimeOffsetMax = 3.; fTimeResolutionMin = 0.; fTimeResolutionMax = 1.; fRefFADC2PheInner = 0.14; fRefFADC2PheOuter = 0.4; fRefConvFADC2PheInner = 0.14; fRefConvFADC2PheOuter = 0.52; fRefQEInner = 0.18; fRefQEOuter = 0.12; fRefArrivalTimeInner = 4.5; fRefArrivalTimeOuter = 5.0; fRefArrivalTimeRmsInner = 0.5; fRefArrivalTimeRmsOuter = 0.5; fRefTimeOffsetOuter = 0.62; fRefTimeResolutionInner = 0.12; fRefTimeResolutionOuter = 0.09; } void MJCalibration::DrawTab(MParList &plist, const char *cont, const char *name, Option_t *opt) { TObject *obj = plist.FindObject(cont); if (!obj) return; fDisplay->AddTab(name); obj->DrawClone(opt); } MHCamera *MJCalibration::DrawBadPixelPad(const MHCamera &h, Bool_t unsuit) const { MHCamera *obj=(MHCamera*)h.DrawCopy("hist"); gStyle->SetPalette(1); const Int_t numcol = gStyle->GetNumberOfColors(); const Double_t min = 1; const Double_t max = unsuit ? MBadPixelsPix::GetNumUnsuitable() : MBadPixelsPix::GetNumUnreliable(); const Double_t f = (numcol-1)/(max-min); FixDataCheckHist(*obj, min, max); TPaveText *pave = new TPaveText(0.05, 0.012, 0.975, 0.999); const Double_t height = (pave->GetY2()-pave->GetY1())/(max+1); pave->SetBit(kCanDelete); pave->ConvertNDCtoPad(); pave->SetFillColor(14); pave->Draw(); Int_t n=0; while (1) { const TString name = unsuit ? MBadPixelsPix::GetUnsuitableName(++n) : MBadPixelsPix::GetUnreliableName(++n); if (name.IsNull()) break; Int_t cnt = 0; for (UInt_t pix=0; pixGetColorPalette(TMath::FloorNint((n-1)*f)); TText *p = pave->AddText(0.05, pave->GetY2()-height*(n+0.3), left); p->SetTextColor(col); p->SetTextAlign(12); p = pave->AddText(0.95, p->GetY(), right); p->SetTextColor(col); p->SetTextAlign(32); } return obj; } // -------------------------------------------------------------------------- // // Display the results in MStatusDisplay: // // - Add "Calibration" to the MStatusDisplay title // - Retrieve the MGeomCam from MParList // - Initialize the following MHCamera's: // 1) MCalibrationPix::GetMean() // 2) MCalibrationPix::Sigma() // 3) MCalibrationChargePix::GetRSigma() // 4) MCalibrationChargePix::GetRSigmaPerCharge() // 5) MCalibrationChargePix::GetPheFFactorMethod() // 6) MCalibrationChargePix::GetMeanConvFADC2Phe() // 7) MCalibrationChargePix::GetMeanFFactorFADC2Phot() // 8) MCalibrationQEPix::GetQECascadesFFactor() // 9) MCalibrationQEPix::GetQECascadesBlindPixel() // 10) MCalibrationQEPix::GetQECascadesPINDiode() // 11) MCalibrationQEPix::GetQECascadesCombined() // 12) MCalibrationQEPix::IsAverageQEFFactorAvailable() // 13) MCalibrationQEPix::IsAverageQEBlindPixelAvailable() // 14) MCalibrationQEPix::IsAverageQEPINDiodeAvailable() // 15) MCalibrationQEPix::IsAverageQECombinedAvailable() // 16) MCalibrationChargePix::IsHiGainSaturation() // 17) MCalibrationPix::GetHiLoMeansDivided() // 18) MCalibrationPix::GetHiLoSigmasDivided() // 19) MCalibrationChargePix::GetHiGainPickup() // 20) MCalibrationChargePix::GetLoGainPickup() // 21) MCalibrationChargePix::GetHiGainBlackout() // 22) MCalibrationChargePix::GetLoGainBlackout() // 23) MCalibrationPix::IsExcluded() // 24) MBadPixelsPix::IsUnsuitable(MBadPixelsPix::kUnsuitableRun) // 25) MBadPixelsPix::IsUnsuitable(MBadPixelsPix::kUnreliableRun) // 26) MBadPixelsPix::IsUncalibrated(MBadPixelsPix::kHiGainOscillating) // 27) MBadPixelsPix::IsUncalibrated(MBadPixelsPix::kLoGainOscillating) // 28) MCalibrationChargePix::GetAbsTimeMean() // 29) MCalibrationChargePix::GetAbsTimeRms() // // If the flag SetFullDisplay() is set, all MHCameras will be displayed. // if the flag SetDataCheckDisplay() is set, only the most important ones are displayed // and otherwise, (default: SetNormalDisplay()), a good selection of plots is given // void MJCalibration::DisplayResult(MParList &plist) { if (!fDisplay) return; TString drawoption = "nonew "; if (fDisplayType == kDataCheckDisplay) drawoption += "datacheck"; if (fDisplayType == kFullDisplay) drawoption += "all"; if (IsUsePINDiode()) DrawTab(plist, "MHCalibrationChargePINDiode", "PINDiode", drawoption); if (IsUseBlindPixel()) DrawTab(plist, "MHCalibrationChargeBlindCam", "BlindPix", drawoption); if (IsRelTimes()) DrawTab(plist, "MHCalibrationRelTimeCam", "Time", drawoption); DrawTab(plist, "MHCalibrationChargeCam", "Charge", drawoption); // // Update display // TString title = "-- Calibration: "; title += fSequence.GetSequence(); title += " --"; fDisplay->SetTitle(title, kFALSE); // // Get container from list // MGeomCam &geomcam = *(MGeomCam*)plist.FindObject("MGeomCam"); // Create histograms to display MHCamera disp1 (geomcam, "Charge", "Fitted Mean Signal (Charges)"); MHCamera disp2 (geomcam, "SigmaCharge", "Sigma of Fitted Signal"); MHCamera disp3 (geomcam, "RSigma", "Reduced Sigmas"); MHCamera disp4 (geomcam, "RSigmaPerCharge", "Reduced Sigma per Charge"); MHCamera disp5 (geomcam, "NumPhes", "Number Photo-electrons"); MHCamera disp6 (geomcam, "ConvFADC2Phes", "Phes per Charge (Before Flat-Field)"); MHCamera disp7 (geomcam, "TotalFFactor", "Total F-Factor(F-Factor Method)"); MHCamera disp8 (geomcam, "CascadesQEFFactor", "Cascades QE (F-Factor Method)"); MHCamera disp9 (geomcam, "CascadesQEBlindPix","Cascades QE (Blind Pixel Method)"); MHCamera disp10(geomcam, "CascadesQEPINDiode","Cascades QE (PIN Diode Method)"); MHCamera disp11(geomcam, "CascadesQECombined","Cascades QE (Combined Method)"); MHCamera disp12(geomcam, "FFactorValid", "Pixels with Valid F-Factor Calibration"); MHCamera disp13(geomcam, "BlindPixelValid", "Pixels with valid BlindPixel Calibration"); MHCamera disp14(geomcam, "PINdiodeValid", "Pixels with Valid PINDiode Calibration"); MHCamera disp15(geomcam, "CombinedValid", "Pixels with Valid Combined Calibration"); MHCamera disp16(geomcam, "Saturation", "Pixels with Saturated Hi Gain"); MHCamera disp17(geomcam, "ConversionMeans", "Conversion HiGain.vs.LoGain Means"); MHCamera disp18(geomcam, "ConversionSigmas", "Conversion HiGain.vs.LoGain Sigmas"); MHCamera disp19(geomcam, "HiGainPickup", "Number Pickup Events Hi Gain"); MHCamera disp20(geomcam, "LoGainPickup", "Number Pickup Events Lo Gain"); MHCamera disp21(geomcam, "HiGainBlackout", "Number Blackout Events Hi Gain"); MHCamera disp22(geomcam, "LoGainBlackout", "Number Blackout Events Lo Gain"); MHCamera disp23(geomcam, "Excluded", "Pixels Previously Excluded"); MHCamera disp24(geomcam, "UnSuitable", "Pixels NOT Suited for Further Analysis"); MHCamera disp25(geomcam, "UnReliable", "Pixels Suitable, but NOT Reliable for Further Analysis"); MHCamera disp26(geomcam, "HiGainOscillating", "Oscillating Pixels High Gain"); MHCamera disp27(geomcam, "LoGainOscillating", "Oscillating Pixels Low Gain"); MHCamera disp28(geomcam, "AbsTimeMean", "Abs. Arrival Times"); MHCamera disp29(geomcam, "AbsTimeRms", "RMS of Arrival Times"); MHCamera disp30(geomcam, "MeanTime", "Mean Rel. Arrival Times"); MHCamera disp31(geomcam, "SigmaTime", "Sigma Rel. Arrival Times"); MHCamera disp32(geomcam, "TimeProb", "Probability of Time Fit"); MHCamera disp33(geomcam, "TimeNotFitValid", "Pixels with not valid Fit Results"); MHCamera disp34(geomcam, "TimeOscillating", "Oscillating Pixels"); MHCamera disp35(geomcam, "TotalConv", "Conversion Factor to Photons"); MHCamera disp36(geomcam, "RMSperMean", "Charge histogram RMS per Mean"); MHCamera disp37(geomcam, "TotalConvPhe", "Conversion Factor to equiv. Phe's"); // Fitted charge means and sigmas disp1.SetCamContent(fCalibrationCam, 0); disp1.SetCamError( fCalibrationCam, 1); disp2.SetCamContent(fCalibrationCam, 2); disp2.SetCamError( fCalibrationCam, 3); // Reduced Sigmas and reduced sigmas per charge disp3.SetCamContent(fCalibrationCam, 5); disp3.SetCamError( fCalibrationCam, 6); disp4.SetCamContent(fCalibrationCam, 7); disp4.SetCamError( fCalibrationCam, 8); // F-Factor Method disp5.SetCamContent(fCalibrationCam, 9); disp5.SetCamError( fCalibrationCam, 10); disp6.SetCamContent(fCalibrationCam, 11); disp6.SetCamError( fCalibrationCam, 12); disp7.SetCamContent(fCalibrationCam, 13); disp7.SetCamError( fCalibrationCam, 14); // Quantum Efficiencies disp8.SetCamContent (fQECam, 0 ); disp8.SetCamError (fQECam, 1 ); disp9.SetCamContent (fQECam, 2 ); disp9.SetCamError (fQECam, 3 ); disp10.SetCamContent(fQECam, 4 ); disp10.SetCamError (fQECam, 5 ); disp11.SetCamContent(fQECam, 6 ); disp11.SetCamError (fQECam, 7 ); // Valid flags disp12.SetCamContent(fQECam, 8 ); disp13.SetCamContent(fQECam, 9 ); disp14.SetCamContent(fQECam, 10); disp15.SetCamContent(fQECam, 11); // Conversion Hi-Lo disp16.SetCamContent(fCalibrationCam, 25); disp17.SetCamContent(fCalibrationCam, 16); disp17.SetCamError (fCalibrationCam, 17); disp18.SetCamContent(fCalibrationCam, 18); disp18.SetCamError (fCalibrationCam, 19); // Pickup and Blackout disp19.SetCamContent(fCalibrationCam, 21); disp20.SetCamContent(fCalibrationCam, 22); disp21.SetCamContent(fCalibrationCam, 23); disp22.SetCamContent(fCalibrationCam, 24); // Pixels with defects disp23.SetCamContent(fCalibrationCam, 20); disp24.SetCamContent(fBadPixels, 6); disp25.SetCamContent(fBadPixels, 7); // Oscillations disp26.SetCamContent(fBadPixels, 10); disp27.SetCamContent(fBadPixels, 11); // Arrival Times disp28.SetCamContent(fCalibrationCam, 26); disp28.SetCamError( fCalibrationCam, 27); disp29.SetCamContent(fCalibrationCam, 27); // RMS and Mean disp36.SetCamContent(fCalibrationCam,32); disp36.SetCamError(fCalibrationCam,33); disp1.SetYTitle("Q [FADC cnts]"); disp2.SetYTitle("\\sigma_{Q} [FADC cnts]"); disp3.SetYTitle("\\sqrt{\\sigma^{2}_{Q} - RMS^{2}_{Ped}} [FADC cnts]"); disp4.SetYTitle("Red.Sigma/ [1]"); disp5.SetYTitle("Photo-electons [1]"); disp6.SetYTitle("Phes/ [FADC cnts^{-1}]"); disp7.SetYTitle("Total F-Factor [1]"); disp8.SetYTitle("QE [1]"); disp9.SetYTitle("QE [1]"); disp10.SetYTitle("QE [1]"); disp11.SetYTitle("QE [1]"); disp12.SetYTitle("[1]"); disp13.SetYTitle("[1]"); disp14.SetYTitle("[1]"); disp15.SetYTitle("[1]"); disp16.SetYTitle("[1]"); disp17.SetYTitle("(High)/(Low) [1]"); disp18.SetYTitle("\\sigma_{Q}(High)/\\sigma_{Q}(Low) [1]"); disp19.SetYTitle("[1]"); disp20.SetYTitle("[1]"); disp21.SetYTitle("[1]"); disp22.SetYTitle("[1]"); // disp23.SetYTitle("[1]"); // disp24.SetYTitle("[1]"); // disp25.SetYTitle("[1]"); disp26.SetYTitle("[1]"); disp27.SetYTitle("[1]"); disp28.SetYTitle("Mean Abs. Time [FADC sl.]"); disp29.SetYTitle("RMS Abs. Time [FADC sl.]"); disp35.SetYTitle("Conv.Factor [Ph/FADC cnts]"); disp36.SetYTitle("Charge RMS/ [1]"); disp37.SetYTitle("Conv.Factor [Phe/FADC cnts]"); for (UInt_t i=0;iAddTab("FitCharge"); c1.Divide(3, 3); disp1.CamDraw( c1, 1, 3, 6); // MEAN CHARGES disp36.CamDraw(c1, 2, 3, 6); // RMS per Charge disp5.CamDraw( c1, 3, 3, 6); // PHOTO ELECTRONS // -------------------- Conversion ------------------- TCanvas &c2 = fDisplay->AddTab("Conversion"); c2.Divide(3,3); disp6.SetMinMax(fConvFADC2PheMin, fConvFADC2PheMax); disp8.SetMinMax(fQEMin, fQEMax); disp37.SetMinMax(fConvFADC2PheMin, fConvFADC2PheMax); disp6.CamDraw( c2, 1, 3, 6); // CONVERSION FACTORS disp8.CamDraw( c2, 2, 3, 6); // QUANTUM EFFICIENCY disp37.CamDraw(c2, 3, 3, 6); // CONVERSION FADC TO PHOTONS c2.cd(1); DisplayReferenceLines(disp6, 2); c2.cd(2); DisplayReferenceLines(disp8, 0); c2.cd(3); DisplayReferenceLines(disp37, 1); // -------------------- AbsTimes ------------------- TCanvas &c3 = fDisplay->AddTab("AbsTimes"); c3.Divide(2,3); disp28.SetMinMax(fArrivalTimeMin, fArrivalTimeMax); disp28.CamDraw(c3, 1, 2, 6); // Arrival times disp29.CamDraw(c3, 2, 2, 6); // Arrival times rms c3.cd(1); DisplayReferenceLines(disp28, 3); c3.cd(2); DisplayReferenceLines(disp29, 4); if (IsRelTimes()) { // -------------------- RelTimes ------------------- TCanvas &c5 = fDisplay->AddTab("RelTimes"); c5.Divide(2,3); disp30.SetMinMax(fTimeOffsetMin, fTimeOffsetMax); disp31.SetMinMax(fTimeResolutionMin, fTimeResolutionMax); disp30.CamDraw(c5, 1, 2, 6); // MEAN REL. ARR. TIMES disp31.CamDraw(c5, 2, 2, 6); // JITTER Rel. Arr. Times c5.cd(1); DisplayReferenceLines(disp30, 5); c5.cd(2); DisplayReferenceLines(disp31, 6); } // -------------------- Unsuitable ------------------- // // UNSUITABLE PIXELS // TCanvas &c4 = fDisplay->AddTab("Defect"); c4.Divide(2,2, 0.005, 0.005); c4.cd(1); gPad->SetBorderMode(0); gPad->SetTicks(); MHCamera *obj8 = DrawBadPixelPad(disp24, kTRUE); c4.cd(3); gPad->SetBorderMode(0); obj8->SetPrettyPalette(); obj8->Draw(); // // UNRELIABLE PIXELS // c4.cd(2); gPad->SetBorderMode(0); gPad->SetTicks(); MHCamera *obj9 = DrawBadPixelPad(disp25, kFALSE); c4.cd(4); gPad->SetBorderMode(0); obj9->SetPrettyPalette(); obj9->Draw(); return; } if (fDisplayType == kNormalDisplay) { // Charges TCanvas &c11 = fDisplay->AddTab("FitCharge"); c11.Divide(2, 4); disp1.CamDraw(c11, 1, 2, 5, 1); disp2.CamDraw(c11, 2, 2, 5, 1); // Reduced Sigmas TCanvas &c12 = fDisplay->AddTab("RedSigma"); c12.Divide(2,4); disp3.CamDraw(c12, 1, 2, 5, 1); disp4.CamDraw(c12, 2, 2, 5, 1); // F-Factor TCanvas &c13 = fDisplay->AddTab("Phe's"); c13.Divide(3,4); disp5.CamDraw(c13, 1, 3, 5, 1); disp6.CamDraw(c13, 2, 3, 5, 1); disp7.CamDraw(c13, 3, 3, 5, 1); // QE's TCanvas &c14 = fDisplay->AddTab("QE's"); c14.Divide(4,4); disp8.CamDraw(c14, 1, 4, 5, 1); disp9.CamDraw(c14, 2, 4, 5, 1); disp10.CamDraw(c14, 3, 4, 5, 1); disp11.CamDraw(c14, 4, 4, 5, 1); // Defects TCanvas &c15 = fDisplay->AddTab("Defect"); // c15.Divide(5,2); c15.Divide(4,2); /* disp23.CamDraw(c15, 1, 5, 0); disp24.CamDraw(c15, 2, 5, 0); disp25.CamDraw(c15, 3, 5, 0); disp26.CamDraw(c15, 4, 5, 0); disp27.CamDraw(c15, 5, 5, 0); */ disp24.CamDraw(c15, 1, 4, 0); disp25.CamDraw(c15, 2, 4, 0); disp26.CamDraw(c15, 3, 4, 0); disp27.CamDraw(c15, 4, 4, 0); // Abs. Times TCanvas &c16 = fDisplay->AddTab("AbsTimes"); c16.Divide(2,3); disp28.CamDraw(c16, 1, 2, 5); disp29.CamDraw(c16, 2, 2, 5); if (IsRelTimes()) { // Rel. Times TCanvas &c17 = fDisplay->AddTab("RelTimes"); c17.Divide(2,4); disp30.CamDraw(c17, 1, 2, 5, 1); disp31.CamDraw(c17, 2, 2, 5, 1); } return; } if (fDisplayType == kFullDisplay) { MHCalibrationCam *cam = (MHCalibrationCam*)plist.FindObject("MHCalibrationChargeCam"); for (Int_t sector=1;sectorGetAverageSectors();sector++) { cam->GetAverageHiGainSector(sector).DrawClone("all"); cam->GetAverageLoGainSector(sector).DrawClone("all"); } // Charges TCanvas &c21 = fDisplay->AddTab("FitCharge"); c21.Divide(2, 4); disp1.CamDraw(c21, 1, 2, 2, 1); disp2.CamDraw(c21, 2, 2, 2, 1); // Reduced Sigmas TCanvas &c23 = fDisplay->AddTab("RedSigma"); c23.Divide(2,4); disp3.CamDraw(c23, 1, 2, 2, 1); disp4.CamDraw(c23, 2, 2, 2, 1); // F-Factor TCanvas &c24 = fDisplay->AddTab("Phe's"); c24.Divide(3,5); disp5.CamDraw(c24, 1, 3, 2, 1, 1); disp6.CamDraw(c24, 2, 3, 2, 1, 1); disp7.CamDraw(c24, 3, 3, 2, 1, 1); // QE's TCanvas &c25 = fDisplay->AddTab("QE's"); c25.Divide(4,5); disp8.CamDraw(c25, 1, 4, 2, 1, 1); disp9.CamDraw(c25, 2, 4, 2, 1, 1); disp10.CamDraw(c25, 3, 4, 2, 1, 1); disp11.CamDraw(c25, 4, 4, 2, 1, 1); // Validity TCanvas &c26 = fDisplay->AddTab("Valid"); c26.Divide(4,2); disp12.CamDraw(c26, 1, 4, 0); disp13.CamDraw(c26, 2, 4, 0); disp14.CamDraw(c26, 3, 4, 0); disp15.CamDraw(c26, 4, 4, 0); // Other info TCanvas &c27 = fDisplay->AddTab("HiLoGain"); c27.Divide(3,3); disp16.CamDraw(c27, 1, 3, 0); disp17.CamDraw(c27, 2, 3, 1); disp18.CamDraw(c27, 3, 3, 1); // Pickup TCanvas &c28 = fDisplay->AddTab("Pickup"); c28.Divide(4,2); disp19.CamDraw(c28, 1, 4, 0); disp20.CamDraw(c28, 2, 4, 0); disp21.CamDraw(c28, 3, 4, 0); disp22.CamDraw(c28, 4, 4, 0); // Defects TCanvas &c29 = fDisplay->AddTab("Defect"); // c29.Divide(5,2); c29.Divide(4,2); disp24.CamDraw(c29, 1, 4, 0); disp25.CamDraw(c29, 2, 4, 0); disp26.CamDraw(c29, 3, 4, 0); disp27.CamDraw(c29, 4, 4, 0); // Abs. Times TCanvas &c30 = fDisplay->AddTab("AbsTimes"); c30.Divide(2,3); disp28.CamDraw(c30, 1, 2, 2); disp29.CamDraw(c30, 2, 2, 1); if (IsRelTimes()) { // Rel. Times TCanvas &c31 = fDisplay->AddTab("RelTimes"); c31.Divide(3,5); disp30.CamDraw(c31, 1, 3, 2, 1, 1); disp31.CamDraw(c31, 2, 3, 2, 1, 1); disp32.CamDraw(c31, 3, 3, 4, 1, 1); // Time Defects TCanvas &c32 = fDisplay->AddTab("DefTime"); c32.Divide(2,2); disp33.CamDraw(c32, 1, 2, 0); disp34.CamDraw(c32, 2, 2, 0); MHCalibrationCam *ccam = (MHCalibrationCam*)plist.FindObject("MHCalibrationRelTimeCam"); for (Int_t sector=1;sectorGetAverageSectors();sector++) { ccam->GetAverageHiGainSector(sector).DrawClone("fourierevents"); ccam->GetAverageLoGainSector(sector).DrawClone("fourierevents"); } } return; } } void MJCalibration::DisplayReferenceLines(const MHCamera &hist, const Int_t what) const { MHCamera *cam = dynamic_cast(gPad->FindObject(hist.GetName())); if (!cam) return; const MGeomCam *geom = cam->GetGeometry(); const Double_t x = geom->InheritsFrom("MGeomCamMagic") ? 397 : cam->GetNbinsX() ; TLine line; line.SetLineStyle(kDashed); line.SetLineWidth(3); line.SetLineColor(kBlue); TLine *l1 = NULL; switch (what) { case 0: l1 = line.DrawLine(0, fRefQEInner, x, fRefQEInner); break; case 1: l1 = line.DrawLine(0, fRefConvFADC2PheInner, x, fRefConvFADC2PheInner); break; case 2: l1 = line.DrawLine(0, fRefFADC2PheInner, x, fRefFADC2PheInner ); break; case 3: l1 = line.DrawLine(0, fRefArrivalTimeInner, x, fRefArrivalTimeInner ); break; case 4: l1 = line.DrawLine(0, fRefArrivalTimeRmsInner, x, fRefArrivalTimeRmsInner ); break; case 5: l1 = line.DrawLine(0, 0, x, 0); break; case 6: l1 = line.DrawLine(0, fRefTimeResolutionInner, x, fRefTimeResolutionInner ); break; default: break; } if (geom->InheritsFrom("MGeomCamMagic")) { const Double_t x2 = cam->GetNbinsX(); switch (what) { case 0: line.DrawLine(x2, fRefQEOuter, 398, fRefQEOuter); break; case 1: line.DrawLine(x2, fRefConvFADC2PheOuter, 398, fRefConvFADC2PheOuter ); break; case 2: line.DrawLine(x2, fRefFADC2PheOuter, 398, fRefFADC2PheOuter); break; case 3: line.DrawLine(x2, fRefArrivalTimeOuter, 398, fRefArrivalTimeOuter); break; case 4: line.DrawLine(x2, fRefArrivalTimeRmsOuter, 398, fRefArrivalTimeRmsOuter); break; case 5: line.DrawLine(x2, fRefTimeOffsetOuter, 398, fRefTimeOffsetOuter); break; case 6: line.DrawLine(x2, fRefTimeResolutionOuter, 398, fRefTimeResolutionOuter); break; default: break; } } TLegend *leg = new TLegend(0.6,0.85,0.9 ,0.95); leg->SetBit(kCanDelete); leg->AddEntry(l1, "Reference","l"); leg->Draw(); } /* void MJCalibration::DisplayOutliers(TH1D *hist, const char* whatsmall, const char* whatbig) const { const Int_t kNotDraw = 1<<9; TF1 *f = hist->GetFunction("gaus"); f->ResetBit(kNotDraw); const Float_t mean = f->GetParameter(1); const Float_t lolim = mean - 4.0*f->GetParameter(2); const Float_t uplim = mean + 4.0*f->GetParameter(2); const Stat_t dead = hist->Integral(0,hist->FindBin(lolim)-1); const Stat_t noisy = hist->Integral(hist->FindBin(uplim)+1,hist->GetNbinsX()+1); const Double_t max = hist->GetBinContent(hist->GetMaximumBin()); const Double_t minl = hist->GetBinCenter(hist->GetXaxis()->GetFirst()); const Double_t maxl = hist->GetBinCenter(hist->GetXaxis()->GetLast()); TLatex deadtex; deadtex.SetTextSize(0.07); deadtex.DrawLatex(minl+0.015*(maxl-minl),max/1.1, Form("%3i %s pixels",(Int_t)dead,whatsmall)); TLatex noisytex; noisytex.SetTextSize(0.07); noisytex.DrawLatex(minl+0.015*(maxl-minl),max/1.2, Form("%3i %s pixels",(Int_t)noisy,whatbig)); } */ void MJCalibration::FixDataCheckHist(TH1D &h, Double_t min, Double_t max) { h.SetDirectory(NULL); h.SetStats(kFALSE); h.SetMinimum(min); h.SetMaximum(max); // // set the labels bigger // TAxis *xaxe = h.GetXaxis(); TAxis *yaxe = h.GetYaxis(); xaxe->CenterTitle(); yaxe->CenterTitle(); xaxe->SetTitleSize(0.06); yaxe->SetTitleSize(0.06); xaxe->SetTitleOffset(0.8); yaxe->SetTitleOffset(0.85); xaxe->SetLabelSize(0.05); yaxe->SetLabelSize(0.05); } // -------------------------------------------------------------------------- // // Retrieve the output file written by WriteResult() // const char* MJCalibration::GetOutputFileName() const { return Form("calib%08d.root", fSequence.GetSequence()); } // -------------------------------------------------------------------------- // // Read the following values from resource file: // // ConvFADC2PheMin // ConvFADC2PheMax // ConvFADC2PhotMin // ConvFADC2PhotMax // // QEMin // QEMax // // ArrivalTimeMin // ArrivalTimeMax // // TimeOffsetMin // TimeOffsetMax // TimeResolutionMin // TimeResolutionMax // // RefConvFADC2PheInner // RefConvFADC2PheOuter // RefConvFADC2PhotInner // RefConvFADC2PhotOuter // // RefQEInner // RefQEOuter // // RefArrivalTimeInner // RefArrivalTimeOuter // RefArrivalTimeRmsInner // RefArrivalTimeRmsOuter // // RefTimeOffsetOuter // RefTimeResolutionInner // RefTimeResolutionOuter // void MJCalibration::ReadReferenceFile() { TEnv refenv(fReferenceFile); fConvFADC2PheMin = refenv.GetValue("ConvFADC2PheMin",fConvFADC2PheMin); fConvFADC2PheMax = refenv.GetValue("ConvFADC2PheMax",fConvFADC2PheMax); fConvFADC2PhotMin = refenv.GetValue("ConvFADC2PhotMin",fConvFADC2PhotMin); fConvFADC2PhotMax = refenv.GetValue("ConvFADC2PhotMax",fConvFADC2PhotMax); fQEMin = refenv.GetValue("QEMin",fQEMin); fQEMax = refenv.GetValue("QEMax",fQEMax); fArrivalTimeMin = refenv.GetValue("ArrivalTimeMin",fArrivalTimeMin); fArrivalTimeMax = refenv.GetValue("ArrivalTimeMax",fArrivalTimeMax); fTimeOffsetMin = refenv.GetValue("TimeOffsetMin",fTimeOffsetMin); fTimeOffsetMax = refenv.GetValue("TimeOffsetMax",fTimeOffsetMax); fTimeResolutionMin = refenv.GetValue("TimeResolutionMin",fTimeResolutionMin); fTimeResolutionMax = refenv.GetValue("TimeResolutionMax",fTimeResolutionMax); fRefFADC2PheInner = refenv.GetValue("RefFADC2PheInner",fRefFADC2PheInner); fRefFADC2PheOuter = refenv.GetValue("RefFADC2PheOuter",fRefFADC2PheOuter); fRefConvFADC2PhotInner = refenv.GetValue("RefConvFADC2PhotInner",fRefConvFADC2PhotInner); fRefConvFADC2PhotOuter = refenv.GetValue("RefConvFADC2PhotOuter",fRefConvFADC2PhotOuter); fRefConvFADC2PheInner = refenv.GetValue("RefConvFADC2PheInner",fRefConvFADC2PheInner); fRefConvFADC2PheOuter = refenv.GetValue("RefConvFADC2PheOuter",fRefConvFADC2PheOuter); fRefQEInner = refenv.GetValue("RefQEInner",fRefQEInner); fRefQEOuter = refenv.GetValue("RefQEOuter",fRefQEOuter); fRefArrivalTimeInner = refenv.GetValue("RefArrivalTimeInner",fRefArrivalTimeInner); fRefArrivalTimeOuter = refenv.GetValue("RefArrivalTimeOuter",fRefArrivalTimeOuter); fRefArrivalTimeRmsInner = refenv.GetValue("RefArrivalTimeRmsInner",fRefArrivalTimeRmsInner); fRefArrivalTimeRmsOuter = refenv.GetValue("RefArrivalTimeRmsOuter",fRefArrivalTimeRmsOuter); fRefTimeOffsetOuter = refenv.GetValue("RefTimeOffsetOuter",fRefTimeOffsetOuter); fRefTimeResolutionInner = refenv.GetValue("RefTimeResolutionInner",fRefTimeResolutionInner); fRefTimeResolutionOuter = refenv.GetValue("RefTimeResolutionOuter",fRefTimeResolutionOuter); } // -------------------------------------------------------------------------- // // Read the following values from resource file. // Bool_t MJCalibration::ReadHiLoCalibFile() { if (fExtractor && !fExtractor->HasLoGain()) return kTRUE; // if (!fIsHiLoCalibration) // return kTRUE; // We use the night time stamp to determine the period // because the night must be in the sequence file const MTime &night = fSequence.GetNight(); const Int_t period = night.GetMagicPeriod(); // Open resource file MEnv env(fHiLoCalibFile); if (!env.IsValid()) { *fLog << err << "ERROR - Resource file " << fHiLoCalibFile; *fLog << " could not be opened... abort." << endl; return kFALSE; } // Defined resource id const TString id = fSequence.IsMonteCarlo() ? "MC" : Form("%02d", period); // Check for a valid entry for the correct period TString fname = env.GetValue(id, ""); if (fname.IsNull()) { *fLog << err << "ERROR - No entry for resource id '" << id; *fLog << "' found in " << fHiLoCalibFile << "... looking for default." << endl; return kFALSE; /* *fLog << warn << "WARNING - No entry for period " << period; *fLog << " found in " << fHiLoCalibFile << "... looking for default." << endl; fname = env.GetValue("00", ""); if (fname.IsNull()) { *fLog << err << "ERROR - No default entry (00) found in "; *fLog << fHiLoCalibFile << "... abort." << endl; return kFALSE; }*/ } *fLog << inf << "Reading Hi-/Lo-Gain calibration constants from " << fname << endl; // Open file with calibration constants TFile file(fname, "READ"); if (!file.IsOpen()) { *fLog << err << "ERROR - Couldn't open file " << fname << " for reading... abort." << endl; return kFALSE; } // read calibration constants MHCamEvent hilocam; if (hilocam.Read()<=0) { *fLog << err << "ERROR - Unable to read MHCamEvent from " << fname << "... abort." << endl; return kFALSE; } // Get histogram with constants MHCamera *hist = hilocam.GetHist(); if (!hist) { *fLog << err << "ERROR - MHCamEvent from " << fname << " empty... abort." << endl; return kFALSE; } // Do some sanity stuff if (fCalibrationCam.GetSize() < 1) fCalibrationCam.InitSize(hist->GetNumPixels()); if (fBadPixels.GetSize() < 1) fBadPixels.InitSize(hist->GetNumPixels()); if ((UInt_t)fCalibrationCam.GetSize() != hist->GetNumPixels()) { *fLog << err << "ERROR - Size mismatch MHCamEvent and MCalibrationChargeCam.. abort." << endl; return kFALSE; } // Copy the constants to their final location // FIXME: For what the hell do we need to have the constants in // in MCalibrationChargeCam? for (UInt_t i=0; iGetNumPixels(); i++) { hist->SetBit(MHCamera::kProfile); Double_t v = hist->GetBinContent(i); hist->SetBit(MHCamera::kErrorMean); Double_t e = hist->GetBinError(i); hist->ResetBit(MHCamera::kErrorMean); Double_t s = hist->GetBinError(i); if (!hist->IsUsed(i)) { fBadPixels[i].SetUncalibrated(MBadPixelsPix::kConversionHiLoNotValid); v = e = s = -1; } MCalibrationChargePix &cpix = (MCalibrationChargePix&)fCalibrationCam[i]; cpix.SetConversionHiLo(v); cpix.SetConversionHiLoErr(e); cpix.SetConversionHiLoSigma(s); } return kTRUE; } // -------------------------------------------------------------------------- // // MJCalibration allows to setup several option by a resource file: // MJCalibration.Display: full, datacheck, normal // MJCalibration.RelTimeCalibration: yes,no // MJCalibration.DataCheck: yes,no // MJCalibration.Debug: yes,no // MJCalibration.UseBlindPixel: yes,no // MJCalibration.UsePINDiode: yes,no // MJCalibration.Geometry: MGeomCamMagic, MGeomCamECO1000 // // Name of a file containing reference values (see ReadReferenceFile) // Prefix.ReferenceFile: filename // (see ReadReferenceFile) // // For more details see the class description and the corresponding Getters // Bool_t MJCalibration::CheckEnvLocal() { TString dis = GetEnv("Display", ""); if (dis.BeginsWith("Full", TString::kIgnoreCase)) SetFullDisplay(); if (dis.BeginsWith("DataCheck", TString::kIgnoreCase)) SetDataCheckDisplay(); if (dis.BeginsWith("Normal", TString::kIgnoreCase)) SetNormalDisplay(); if (!MJCalib::CheckEnvLocal()) return kFALSE; SetRelTimeCalibration(GetEnv("RelTimeCalibration", IsRelTimes())); SetDebug(GetEnv("Debug", IsDebug())); SetUseBlindPixel(GetEnv("UseBlindPixel", IsUseBlindPixel())); SetUsePINDiode(GetEnv("UsePINDiode", IsUsePINDiode())); SetGeometry(GetEnv("Geometry", fGeometry)); fMinEvents = (UInt_t)GetEnv("MinEvents", (Int_t)fMinEvents); fReferenceFile = GetEnv("ReferenceFile",fReferenceFile.Data()); ReadReferenceFile(); fHiLoCalibFile = GetEnv("HiLoCalibFile",fHiLoCalibFile.Data()); /* if (IsUseMC() && !fHiLoCalibFile.EndsWith("_mc.root")) { if (!fHiLoCalibFile.EndsWith(".root")) { *fLog << warn << "WARNING - Hi-/Lo-Gain intercalibration file "; *fLog << fHiLoCalibFile << " has not .root as extension..." << endl; } else fHiLoCalibFile.Insert(fHiLoCalibFile.Length()-5, "_mc"); } */ return ReadHiLoCalibFile(); } void MJCalibration::InitBlindPixel(MExtractBlindPixel &blindext, MHCalibrationChargeBlindCam &blindcam) { const Int_t run = fSequence.GetLastRun(); // // Initialize the blind pixel. Unfortunately, there is a hardware // difference in the first blind pixel until run // gkSecondBlindPixelInstallation and the later setup. The first // needs to use a filter because of the length of spurious NSB photon // signals. The latter get better along extracting the amplitude // from a small window. // const MCalibrationBlindCamOneOldStyle one; const MCalibrationBlindCamTwoNewStyle two; const MCalibrationBlindCamThreeNewStyle three; const MCalibrationBlindCam &blindresults = run(one) : (run(two) : static_cast(three)); blindresults.Copy(fCalibrationBlindCam); blindext.SetExtractionType(MExtractBlindPixel::kIntegral); blindext.SetExtractionType(MExtractBlindPixel::kFilter); if (run=gkThirdBlindPixelInstallation) blindext.SetDataType(MExtractBlindPixel::kRawEvt2); } // -------------------------------------------------------------------------- // // Execute the task list and the eventloop: // // - Check the colour of the files in fRuns (FindColor()), otherwise return // - Check for consistency between run numbers and number of files // - Add fRuns to MReadMarsFile // - Put into MParList: // 1) MPedestalCam (pedcam) // 2) MCalibrationQECam (fQECam) // 3) MCalibrationChargeCam (fCalibrationCam) // 4) MCalibrationRelTimeCam (fRelTimeCam) (only if flag IsRelTimes() is chosen) // 5) MBadPixelsCam (fBadPixels) // 6) MCalibrationChargePINDiode // 7) MCalibrationBlindPix // - Put into the MTaskList: // 1) MReadMarsFile // 2) MBadPixelsMerge // 3) MGeomApply // 4) MExtractor // 5) MExtractPINDiode // 6) MExtractBlindPixel // 7) MExtractTime (only if flag IsRelTimes() is chosen) // 8) MContinue(MFCosmics) // 9) MFillH("MHCalibrationChargePINDiode", "MExtractedSignalPINDiode", "FillPINDiode") // 10) MFillH("MHCalibrationChargeBlindCam", "MExtractedSignalBlindPixel", "FillBlindCam") // 11) MFillH("MHCalibrationChargeCam", "MExtractedSignalCam", "FillChargeCam") // 12) MFillH("MHCalibrationChargeCam", "MExtractedSignalCam", "FillRelTime") // 13) MCalibrationChargeCalc // 14) MFillH("MHCalibrationRelTimeCam", "MArrivalTimeCam") (only if flag IsRelTimes() is chosen) // 15) MCalibrationRelTimeCalc // - Execute MEvtLoop // - DisplayResult() // - WriteResult() // Bool_t MJCalibration::Process(MPedestalCam &pedcam) { if (!fSequence.IsValid()) { *fLog << err << "ERROR - Sequence invalid..." << endl; return kFALSE; } *fLog << inf; fLog->Separator(GetDescriptor()); *fLog << "Calculate calibration constants from Sequence #"; *fLog << fSequence.GetSequence() << endl << endl; // -------------------------------------------------------------------------------- if (!CheckEnv()) return kFALSE; // -------------------------------------------------------------------------------- // Setup Tasklist MParList plist; MTaskList tlist; plist.AddToList(&tlist); plist.AddToList(this); // take care of fDisplay! MDirIter iter; if (fSequence.GetRuns(iter, MSequence::kRawCal)<=0) return kFALSE; // // Input containers // pedcam.SetName("MPedestalCam"); // MPedestalFundamental plist.AddToList(&pedcam); plist.AddToList(&fBadPixels); // // Calibration Results containers // plist.AddToList(&fQECam); plist.AddToList(&fCalibrationCam); plist.AddToList(&fRelTimeCam); if (IsUseBlindPixel()) plist.AddToList(&fCalibrationBlindCam); if (IsUsePINDiode()) plist.AddToList(&fCalibrationPINDiode); // // Initialize two histogram containers which could be modified in this class // MHCalibrationRelTimeCam reltimecam; MHCalibrationChargeCam chargecam; MHCalibrationChargeBlindCam blindcam; plist.AddToList(&chargecam); if (IsUseBlindPixel()) plist.AddToList(&blindcam); if (IsRelTimes()) plist.AddToList(&reltimecam); // // Data Reading tasks // MReadMarsFile read("Events"); MRawFileRead rawread(NULL); rawread.SetForceMode(); // Ignore broken time-stamps if (!fSequence.IsMonteCarlo()) { rawread.AddFiles(iter); tlist.AddToList(&rawread); } else { read.DisableAutoScheme(); read.AddFiles(iter); tlist.AddToList(&read); } // // Other Tasks // // Set the default for data version earlier than 5, where no valid // trigger pattern exists. There should not be pin diode or other // types of events inside the calibration files which should be skipped, // anyway. So we set the default such that the MContinue ccalib // will never be executed. // We allow to have only calibration events before Prescaling. // We require that the calibration events have not been prescaled (why?) MTriggerPatternDecode trgpat; MFTriggerPattern fcalib("CalibFilter"); fcalib.SetDefault(kFALSE); fcalib.DenyAll(MFTriggerPattern::kPrescaled); fcalib.DenyAll(MFTriggerPattern::kUnPrescaled); fcalib.AllowTriggerLvl1(MFTriggerPattern::kUnPrescaled); fcalib.AllowTriggerLvl1(MFTriggerPattern::kPrescaled); fcalib.AllowTriggerLvl2(MFTriggerPattern::kUnPrescaled); fcalib.AllowTriggerLvl2(MFTriggerPattern::kPrescaled); fcalib.AllowSumTrigger(MFTriggerPattern::kUnPrescaled); fcalib.AllowSumTrigger(MFTriggerPattern::kPrescaled); fcalib.RequireCalibration(MFTriggerPattern::kPrescaled); fcalib.RequireCalibration(MFTriggerPattern::kUnPrescaled); MContinue ccalib(&fcalib, "ContTrigPattern"); ccalib.SetInverted(); MCalibrationPatternDecode decode; MGeomApply apply; apply.SetGeometry(fGeometry); MBadPixelsMerge merge(&fBadPixels); MExtractPINDiode pinext; MExtractBlindPixel blindext; if (IsUseBlindPixel()) InitBlindPixel(blindext, blindcam); // MExtractSlidingWindow extract2; // MExtractTimeHighestIntegral timehigh; MCalibrationChargeCalc calcalc; MCalibrationRelTimeCalc timecalc; calcalc.SetExtractor(fExtractor); if (IsDebug()) { chargecam.SetDebug(); calcalc.SetDebug(); } // // Calibration histogramming // MFillH fillpin("MHCalibrationChargePINDiode", "MExtractedSignalPINDiode", "FillPINDiode"); MFillH fillbnd("MHCalibrationChargeBlindCam", "MExtractedSignalBlindPixel", "FillBlindCam"); MFillH fillcam("MHCalibrationChargeCam", "MExtractedSignalCam", "FillChargeCam"); MFillH filltme("MHCalibrationRelTimeCam", "MArrivalTimeCam", "FillRelTime"); fillpin.SetBit(MFillH::kDoNotDisplay); fillbnd.SetBit(MFillH::kDoNotDisplay); fillcam.SetBit(MFillH::kDoNotDisplay); filltme.SetBit(MFillH::kDoNotDisplay); // // Set default extractors in case, none has been set... // /* if (!fExtractor) fExtractor = &extract2; if (!fTimeExtractor) fTimeExtractor = &timehigh; */ MExtractTimeAndChargeSpline spline; if (!fExtractor) fExtractor = &spline; // if (!fTimeExtractor) // fTimeExtractor = &timehigh; const Bool_t istimecharge = fExtractor->InheritsFrom("MExtractTimeAndCharge"); // // Look if the extractor is a pure charge or also a time extractor // if (istimecharge) { if (fExtractorCam.GetSize() == pedcam.GetSize()) calcalc.SetPedestals(&fExtractorCam); else { *fLog << err << GetDescriptor() << "ERROR - "; *fLog << "Used Extractor derives from MExtractTimeAndCharge, " << endl; *fLog << "but MExtractorCam size " << fExtractorCam.GetSize() << " "; *fLog << "mismatch pedcam size " << pedcam.GetSize() << "! " << endl; return kFALSE; } } // // Setup more tasks and tasklist // MTaskEnv taskenv("ExtractSignal"); taskenv.SetDefault(fExtractor); tlist.AddToList(&trgpat); if (fColor != MCalibrationCam::kCT1) tlist.AddToList(&ccalib); tlist.AddToList(&decode); tlist.AddToList(&merge); tlist.AddToList(&apply); // Produce pedestal subtracted raw-data MPedestalSubtract pedsub; pedsub.SetPedestalCam(&pedcam); tlist.AddToList(&pedsub); MCalibColorSet colorset; if (fColor != MCalibrationCam::kNONE) colorset.SetExplicitColor(fColor); tlist.AddToList(&colorset); tlist.AddToList(&taskenv); if (IsUsePINDiode()) tlist.AddToList(&pinext); if (IsUseBlindPixel()) tlist.AddToList(&blindext); MTaskEnv taskenv2("ExtractTime"); if (!istimecharge) { taskenv2.SetDefault(fTimeExtractor); if (IsRelTimes()) tlist.AddToList(&taskenv2); } // // Apply a filter against cosmics (this is for the old times in which // the calibration events where triggered by level 1 and for // sanity against empty trigger events) // MFCosmics cosmics; cosmics.SetMaxEmptyPixels(0.05); cosmics.SetMaxAcceptedFraction(0.5); // max=0.5 cosmics MContinue cont(&cosmics, "ContCosmics"); tlist.AddToList(&cont); tlist.AddToList(&fillcam); if (IsUseBlindPixel()) tlist.AddToList(&fillbnd); if (IsUsePINDiode()) tlist.AddToList(&fillpin); tlist.AddToList(&calcalc); if (IsRelTimes()) { tlist.AddToList(&filltme); tlist.AddToList(&timecalc); } MHCamEvent evt2(0, "Extra'd", "Extracted Calibration Signal;;S [cnts/sl]"); MHCamEvent evt9(4, "ArrTm", "Extracted ArrivalTime;;T"); MFillH fill2(&evt2, "MExtractedSignalCam", "FillExtractedSignal"); MFillH fill9(&evt9, "MArrivalTimeCam", "FillArrivalTime"); tlist.AddToList(&fill2); tlist.AddToList(&fill9); /* MFillH fillP("MHPulseShape", "", "FillPulseShape"); fillP.SetNameTab("Pulse"); tlist.AddToList(&fillP); */ // Create and setup the eventloop MEvtLoop evtloop(fName); evtloop.SetParList(&plist); evtloop.SetDisplay(fDisplay); evtloop.SetLogStream(fLog); if (!SetupEnv(evtloop)) return kFALSE; if (!taskenv.GetTask() && !taskenv2.GetTask()) { *fLog << err << "ERROR - Neither ExtractSignal nor ExtractTime initialized or both ''." << endl; return kFALSE; } if (!WriteTasks(taskenv.GetTask(), istimecharge ? 0 : taskenv2.GetTask())) return kFALSE; // Execute first analysis const Bool_t rc = evtloop.Eventloop(); if (!fCalibrationPINDiode.IsValid()) SetUsePINDiode(kFALSE); // Only display result if PreProcessing was successfull const Int_t numexec = !fSequence.IsMonteCarlo() ? rawread.GetNumExecutions() : read.GetNumExecutions(); if (numexec>0) { DisplayResult(plist); if (!WriteResult(plist)) return kFALSE; } if (!rc) { *fLog << err << GetDescriptor() << ": Failed." << endl; return kFALSE; } if (calcalc.GetNumExecutions()(GetEnv())); cont.Add(&fSequence); return WriteContainer(cont, GetOutputFileName(), "UPDATE"); } void MJCalibration::DisplayDoubleProject(const MHCamera &cam) { const UInt_t n = cam.GetGeometry()->GetNumAreas(); TVirtualPad *pad = gPad; pad->Divide(n, 1, 1e-5, 1e-5);; for (UInt_t i=0; icd(i+1); gPad->SetBorderMode(0); gPad->SetTicks(); TH1D &h = *cam.ProjectionS(TArrayI(), TArrayI(1, (Int_t*)&i), MString::Format("%s_%d", cam.GetName(), i)); FixDataCheckHist(h); h.SetTitle(MString::Format("%s %d",cam.GetTitle(), i)); h.SetDirectory(NULL); h.SetBit(kCanDelete); h.Draw(); h.Fit("gaus", "Q"); TF1 *f = h.GetFunction("gaus"); if (f) { f->SetLineWidth(2); f->SetLineColor(kBlue); } } }