/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 4/2005 ! ! Copyright: MAGIC Software Development, 2000-2008 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MJSpectrum // // Program to calculate spectrum // ///////////////////////////////////////////////////////////////////////////// #include "MJSpectrum.h" // Root #include #include #include #include #include #include #include #include #include #include // Environment #include "MLog.h" #include "MLogManip.h" #include "MMath.h" #include "MString.h" #include "MDirIter.h" #include "MStatusArray.h" #include "MStatusDisplay.h" // Container #include "MH3.h" #include "MHn.h" #include "MEnv.h" #include "MBinning.h" #include "MParameters.h" #include "MDataSet.h" #include "MMcCorsikaRunHeader.h" // Spectrum #include "MAlphaFitter.h" #include "MHAlpha.h" #include "MHCollectionArea.h" #include "MHEnergyEst.h" #include "MMcSpectrumWeight.h" #include "MHEffectiveOnTime.h" // Eventloop #include "MEvtLoop.h" #include "MTaskList.h" #include "MParList.h" // Tasks/Filter #include "MReadMarsFile.h" #include "MEnergyEstimate.h" #include "MTaskEnv.h" #include "MFillH.h" #include "MFDataPhrase.h" #include "MFDataMember.h" #include "MContinue.h" #include "MWriteRootFile.h" ClassImp(MJSpectrum); using namespace std; MJSpectrum::MJSpectrum(const char *name, const char *title) : fCutQ(0), fCut0(0),fCut1(0), fCut2(0), fCut3(0), fCutS(0), fEstimateEnergy(0), fCalcHadronness(0), fCalcDisp(0), fForceTheta(kFALSE), fForceRunTime(kFALSE), fForceOnTimeFit(kFALSE) { fName = name ? name : "MJSpectrum"; fTitle = title ? title : "Standard program to calculate spectrum"; // Make sure that fDisplay is maintained properly // (i.e. removed via RecursiveRemove if closed) gROOT->GetListOfCleanups()->Add(this); SetBit(kMustCleanup); } // -------------------------------------------------------------------------- // // Delete all the fCut* data members and fCalcHadronness/fEstimateEnergy // MJSpectrum::~MJSpectrum() { if (fCutQ) delete fCutQ; if (fCut0) delete fCut0; if (fCut1) delete fCut1; if (fCut2) delete fCut2; if (fCut3) delete fCut3; if (fCutS) delete fCutS; if (fEstimateEnergy) delete fEstimateEnergy; if (fCalcHadronness) delete fCalcHadronness; if (fCalcDisp) delete fCalcDisp; } // -------------------------------------------------------------------------- // // Setup a task estimating the energy. The given task is cloned. // void MJSpectrum::SetEnergyEstimator(const MTask *task) { if (fEstimateEnergy) delete fEstimateEnergy; fEstimateEnergy = task ? (MTask*)task->Clone() : 0; } // -------------------------------------------------------------------------- // // Read a MTask named name into task from the open file. If this task is // required mustexist can be set. Depending on success kTRUE or kFALSE is // returned. If the task is a MContinue SetAllowEmpty is called. // The name of the task is set to name. // Bool_t MJSpectrum::ReadTask(MTask* &task, const char *name, Bool_t mustexist) const { // If a task is set delete task if (task) { delete task; task = 0; } // Try to get task from file task = (MTask*)gFile->Get(name); if (!task) { if (!mustexist) return kTRUE; *fLog << err << dbginf << "ERROR - " << name << " doen't exist in file!" << endl; return kFALSE; } // Check if task inherits from MTask if (!task->InheritsFrom(MTask::Class())) { *fLog << err << dbginf << "ERROR - " << name << " read doesn't inherit from MTask!" << endl; delete task; return kFALSE; } // Set name of task task->SetName(name); // SetAllowEmpty for MContinue tasks if (dynamic_cast(task)) dynamic_cast(task)->SetAllowEmpty(); return kTRUE; } // -------------------------------------------------------------------------- // // Print setup used for the MC processing, namely MAlphaFitter ans all fCut*. // void MJSpectrum::PrintSetup(const MAlphaFitter &fit) const { fLog->Separator("Alpha Fitter"); *fLog << all; fit.Print("result"); fLog->Separator("Used Cuts"); fCutQ->Print(); fCut0->Print(); fCut1->Print(); fCutS->Print(); fCut2->Print(); fCut3->Print(); } // -------------------------------------------------------------------------- // // Read the first MMcCorsikaRunHeader from the RunHeaders tree in // the dataset. // The simulated energy range and spectral slope is initialized from // there. // In the following eventloops the forced check in MMcSpectrumWeight // ensures, that the spectral slope and energy range doesn't change. // Bool_t MJSpectrum::InitWeighting(const MDataSet &set, MMcSpectrumWeight &w) const { fLog->Separator("Initialize energy weighting"); // Read Resources if (!CheckEnv(w)) { *fLog << err << "ERROR - Reading resources for MMcSpectrumWeight failed." << endl; return kFALSE; } w.Print("new"); return kTRUE; } Float_t MJSpectrum::ReadInput(MParList &plist, TH1D &h1, TH1D &h2) { *fLog << inf << "Reading from file: " << fPathIn << endl; TFile file(fPathIn, "READ"); if (!file.IsOpen()) { *fLog << err << dbginf << "ERROR - Could not open file " << fPathIn << endl; return -1; } MStatusArray arr; if (arr.Read()<=0) { *fLog << err << dbginf << "ERROR - MStatusDisplay not found in file... abort." << endl; return -1; } //arr.EnableTH1Workaround(); TH1D *vstime = (TH1D*)arr.FindObjectInCanvas("Theta", "TH1D", "OnTime"); TH1D *size = (TH1D*)arr.FindObjectInCanvas("Excess", "TH1D", "Hist"); if (!vstime) { *fLog << err << dbginf << "ERROR - Theta [TH1D] not found in OnTime-tab... abort." << endl; return -1; } if (!size) { *fLog << err << dbginf << "ERROR - Excess [TH1D] not found in Hist-tab... abort." << endl; return -1; } vstime->Copy(h1); size->Copy(h2); h1.SetDirectory(0); h2.SetDirectory(0); if (fDisplay) arr.DisplayIn(*fDisplay, "Hist"); if (!ReadTask(fCutQ, "CutQ")) return -1; if (!ReadTask(fCut0, "Cut0")) return -1; if (!ReadTask(fCut1, "Cut1")) return -1; if (!ReadTask(fCut2, "Cut2")) return -1; if (!ReadTask(fCut3, "Cut3")) return -1; if (!ReadTask(fCalcHadronness, "CalcHadronness", kFALSE)) return -1; if (!ReadTask(fCalcDisp, "CalcDisp", kFALSE)) return -1; TObjArray arrread; TIter Next(plist); TObject *o=0; while ((o=Next())) if (o->InheritsFrom(MBinning::Class())) arrread.Add(o); arrread.Add(plist.FindObject("MAlphaFitter")); if (!ReadContainer(arrread)) return -1; // We don't have to proceed. We later overwrite the result anyway if (fForceOnTimeFit) return 0; const Double_t ufl = vstime->GetBinContent(0); const Double_t ofl = vstime->GetBinContent(vstime->GetNbinsX()+1); const Double_t eff = vstime->Integral()+ufl+ofl; if (ufl>0) { if (vstime->GetBinLowEdge(1)<=0) { *fLog << err << "ERROR - Undeflow bin of OnTime histogram not empty as it ought to be." << endl; return -1; } *fLog << warn << "WARNING - " << Form("%.1f%% (%.0fs)", 100*ufl/eff, ufl) << " of the eff. observation time is in the underflow bin." << endl; } if (ofl>0) *fLog << warn << "WARNING - " << Form("%.1f%% (%.0fs)", 100*ofl/eff, ofl) << " of the eff. observation time is in the overflow bin." << endl; if (!fForceRunTime) return eff; TH1D *time = (TH1D*)arr.FindObjectInCanvas("ExcessTime", "TH1D", "Hist"); if (!time) { *fLog << err; *fLog << "ERROR - ExcessTime [TH1D] not found in Hist-tab... abort." << endl; *fLog << " Did you try to process Monte Carlos with --force-runtime?" <GetXaxis()->GetXmax()-time->GetXaxis()->GetXmin(); *fLog << inf; *fLog << "Total run time: " << obs/60 << "min" << endl; *fLog << "Eff. obs. time: " << eff/60 << "min (" << Form("%.1f%%", 100*eff/obs) << ")" << endl; return obs; } // -------------------------------------------------------------------------- // // return maximum value of MMcRunHeader.fImpactMax stored in the RunHeaders // of the files from the MC dataset // Bool_t MJSpectrum::AnalyzeMC(const MDataSet &set, Float_t &impactmax, Float_t &emin/*, Float_t emax*/) const { if (fDisplay) fDisplay->SetStatusLine1("Analyzing Monte Carlo headers..."); // ----- Create chain ----- *fLog << inf << "Getting files... " << flush; TChain chain("RunHeaders"); if (!set.AddFilesOn(chain)) return kFALSE; *fLog << "done. " << endl; *fLog << all; *fLog << "Searching for maximum impact... " << flush; impactmax = chain.GetMaximum("MMcRunHeader.fImpactMax"); *fLog << "found " << impactmax/100 << "m" << endl; *fLog << "Searching for minimum lower energy limit... " << flush; emin = chain.GetMinimum("MMcCorsikaRunHeader.fELowLim"); *fLog << "found " << emin << "GeV" << endl; *fLog << "Searching for maximum lower energy limit... " << flush; const Float_t emin2 = chain.GetMaximum("MMcCorsikaRunHeader.fELowLim"); *fLog << "found " << emin2 << "GeV" << endl; // Need a check for the upper energy LIMIT?!? if (emin2>emin) { *fLog << warn; *fLog << "WARNING - You are using files with different lower limits for the simulated" << endl; *fLog << " energy, i.e. that the collection area and your correction" << endl; *fLog << " coefficients between " << emin << "GeV and "; *fLog << emin2 << "GeV might be wrong." << endl; } /* *fLog << "Getting maximum energy... " << flush; emax = chain.GetMaximum("MMcCorsikaRunHeader.fEUppLim"); *fLog << "found " << emax << "GeV" << endl; */ return kTRUE; } Bool_t MJSpectrum::ReadOrigMCDistribution(const MDataSet &set, TH1 &h, MMcSpectrumWeight &weight) const { // Some debug output *fLog << all << endl; fLog->Separator("Compiling original MC distribution"); Float_t impactmax=0, Emin=0; if (!AnalyzeMC(set, impactmax, Emin)) return kFALSE; *fLog << inf << "Getting files... " << flush; MDirIter iter; if (!set.AddFilesOn(iter)) return kFALSE; *fLog << "done. " << endl; const Int_t tot = iter.GetNumEntries(); // Prepare histogram h.Reset(); h.Sumw2(); if (h.InheritsFrom(TH2::Class())) { h.SetNameTitle("ThetaEMC", "Event-Distribution vs Theta and Energy for MC (produced)"); h.SetXTitle("\\Theta [\\circ]"); h.SetYTitle("E [GeV]"); h.SetZTitle(MString::Format("Counts normalized to r=%.0fm", impactmax/100)); } else { h.SetNameTitle("ThetaMC", "Event-Distribution vs Theta for MC (produced)"); h.SetXTitle("\\Theta [\\circ]"); h.SetYTitle(MString::Format("Counts normalized to r=%.0fm", impactmax/100)); } h.SetDirectory(0); const TString cont = h.InheritsFrom(TH2::Class()) ? "MMcEvtBasic.fEnergy:MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaEMC" : "MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaMC"; if (fDisplay) fDisplay->SetStatusLine1("Reading OriginalMC distribution..."); TH1 *hfill = (TH1*)h.Clone(h.InheritsFrom(TH2::Class())?"ThetaEMC":"ThetaMC"); hfill->SetDirectory(0); *fLog << all << "Compiling simulated source spectrum... please stand by, this may take a while." << endl; Double_t evts = 0; Int_t num = 0; // Reading this with a eventloop is five times slower :( TString fname; while (fDisplay) { if (fDisplay) fDisplay->SetProgressBarPosition(Float_t(num++)/tot); // Get next filename fname = iter.Next(); if (fname.IsNull()) break; if (fDisplay) fDisplay->SetStatusLine2(fname); // open file TFile file(fname); if (file.IsZombie()) { *fLog << err << "ERROR - Couldn't open file " << fname << endl; return kFALSE; } // Get tree OriginalMC TTree *t = dynamic_cast(file.Get("OriginalMC")); if (!t) { *fLog << err << "ERROR - File " << fname << " doesn't contain tree OriginalMC." << endl; return kFALSE; } if (t->GetEntries()==0) { *fLog << warn << "WARNING - OriginalMC of " << fname << " empty." << endl; continue; } // Get tree RunHeaders TTree *rh = dynamic_cast(file.Get("RunHeaders")); if (!rh) { *fLog << err << "ERROR - File " << fname << " doesn't contain tree RunHeaders." << endl; return kFALSE; } if (rh->GetEntries()!=1) { *fLog << err << "ERROR - RunHeaders of " << fname << " doesn't contain exactly one entry." << endl; return kFALSE; } // Get corsika run header MMcCorsikaRunHeader *head=0; rh->SetBranchAddress("MMcCorsikaRunHeader.", &head); rh->GetEntry(0); if (!head) { *fLog << err << "ERROR - Couldn't read MMcCorsikaRunHeader from " << fname << "." << endl; return kFALSE; } // Get the maximum impact parameter of this file. Due to different // production areas an additional scale-factor is applied. // // Because it is assumed that the efficiency outside the production // area is nearly zero no additional weight has to be applied to the // events after cuts. For the events before cuts it is fair to use // weights... maybe filling the residual impact with unweighted // events would be better?!? (Not that the weighting might be // less correct with low statistics, because it could pronounce // a fluctuation) const Double_t impact = rh->GetMaximum("MMcRunHeader.fImpactMax"); const Double_t scale = impactmax/impact; // Propagate the run header to MMcSpectrumWeight if (!weight.Set(*head)) { *fLog << err << "ERROR - Initializing MMcSpectrumWeight from " << fname << " failed." << endl; return kFALSE; } // Get the corresponding rule for the weights const TString weights(weight.GetFormulaWeights("MMcEvtBasic")); // No we found everything... go on reading contents *fLog << inf2 << "Reading OriginalMC of " << fname << endl; // Fill histogram from tree hfill->SetDirectory(&file); if (t->Draw(cont, weights, "goff")<0) { *fLog << err << "ERROR - Reading OriginalMC failed." << endl; return kFALSE; } hfill->SetDirectory(0); evts += hfill->GetEntries(); // ----- Complete incomplete energy ranges ----- // ----- and apply production area weights ----- weight.CompleteEnergySpectrum(*hfill, Emin, scale*scale); // Add weighted data from file to final histogram h.Add(hfill); } delete hfill; *fLog << all << "Total number of events from files in Monte Carlo dataset: " << evts << endl; if (fDisplay) fDisplay->SetStatusLine2("done."); if (!fDisplay || h.GetEntries()>0) return kTRUE; *fLog << err << "ERROR - Histogram with distribution from OriginalMC empty..." << endl; return kFALSE; } void MJSpectrum::GetThetaDistribution(TH1D &temp1, TH2D &hist2) const { TH1D &temp2 = *hist2.ProjectionX(); // Display some stuff if (fDisplay) { TCanvas &c = fDisplay->AddTab("ZdDist"); c.Divide(2,2); // On-Time vs. Theta c.cd(1); gPad->SetBorderMode(0); gPad->SetGridx(); gPad->SetGridy(); temp1.DrawCopy(); // Number of MC events (produced) vs Theta c.cd(2); gPad->SetBorderMode(0); gPad->SetGridx(); gPad->SetGridy(); temp2.SetName("NVsTheta"); temp2.DrawCopy("hist"); c.cd(4); gPad->SetBorderMode(0); gPad->SetGridx(); gPad->SetGridy(); c.cd(3); gPad->SetBorderMode(0); gPad->SetGridx(); gPad->SetGridy(); } // Calculate the Probability temp1.Divide(&temp2); temp1.Scale(1./temp1.Integral(1, temp1.GetNbinsX()+1)); // Some cosmetics: Name, Axis, etc. temp1.SetName("ProbVsTheta"); temp1.SetTitle("Probability vs. Zenith Angle to choose MC events"); temp1.SetYTitle("Probability"); if (fDisplay) temp1.DrawCopy("hist"); delete &temp2; } // -------------------------------------------------------------------------- // // Display the final theta distribution. // Bool_t MJSpectrum::DisplayResult(const TH2D &h2) const { if (!fDisplay || !fDisplay->CdCanvas("ZdDist")) { *fLog << err << "ERROR - Display or tab ZdDist vanished... abort." << endl; return kFALSE; } TH1D &proj = *h2.ProjectionX(); proj.SetNameTitle("ThetaFinal", "Final Theta Distribution"); proj.SetXTitle("\\Theta [\\circ]"); proj.SetYTitle("Counts"); proj.SetLineColor(kBlue); proj.SetDirectory(0); proj.SetBit(kCanDelete); TVirtualPad *pad = gPad; pad->cd(4); proj.DrawCopy(); pad->cd(1); TH1D *theta = (TH1D*)gPad->FindObject("Theta"); if (!theta) { *fLog << err << "ERROR - Theta-Histogram vanished... cannot proceed." << endl; return kFALSE; } // Check whether histogram is empty if (proj.GetMaximum()==0) { *fLog << err; *fLog << "ERROR - The Zenith Angle distribution of your Monte Carlos doesn't overlap" << endl; *fLog << " with the Zenith Angle distribution of your observation." << endl; *fLog << " Maybe the energy binning is undefined or wrong (from "; *fLog << h2.GetYaxis()->GetXmin() << "GeV to " << h2.GetYaxis()->GetXmax() << "GeV)" << endl; theta->SetLineColor(kRed); return kFALSE;; } // scale histogram and set new maximum for display proj.Scale(theta->GetMaximum()/proj.GetMaximum()); theta->SetMaximum(1.05*TMath::Max(theta->GetMaximum(), proj.GetMaximum())); // draw project proj.Draw("same"); // Compare both histograms *fLog << inf << "Comparing theta distributions for data and MCs." << endl; const Double_t prob = proj.Chi2Test(theta, "P"); if (prob==1) return kTRUE; if (prob>0.99) { *fLog << inf; *fLog << "The Zenith Angle distribution of your Monte Carlos fits well" << endl; *fLog << "with the Zenith Angle distribution of your observation." << endl; *fLog << "The probability for identical Theta distributions is " << prob << endl; return kTRUE; } if (prob<0.01) { *fLog << err; *fLog << "ERROR - The Zenith Angle distribution of your Monte Carlos does not fit" << endl; *fLog << " with the Zenith Angle distribution of your observation." << endl; *fLog << " The probability for identical Theta distributions is " << prob << endl; if (!fForceTheta) *fLog << " To force processing use --force-theta (with care!)" << endl; theta->SetLineColor(kRed); return fForceTheta; } *fLog << warn; *fLog << "WARNING - The Zenith Angle distribution of your Monte Carlos doesn't fits well" << endl; *fLog << " with the Zenith Angle distribution of your observation." << endl; *fLog << " The probability for identical Theta distributions is " << prob << endl; return kTRUE; } TString MJSpectrum::GetHAlpha() const { TString cls("MHAlpha"); if (!fDisplay) return cls; TCanvas *c = fDisplay->GetCanvas("Hist"); if (!c) return cls; TIter Next(c->GetListOfPrimitives()); TObject *obj=0; while ((obj=Next())) if (obj->InheritsFrom(MHAlpha::Class())) break; return obj ? TString(obj->ClassName()) : cls; } // -------------------------------------------------------------------------- // // Fills the excess histogram (vs E-est) from the events stored in the // ganymed result file and therefor estimates the energy. // // The resulting histogram excess-vs-energy ist copied into h2. // Bool_t MJSpectrum::Refill(MParList &plist, TH1D &h2)/*const*/ { // Now fill the histogram *fLog << endl; fLog->Separator("Refill Excess"); *fLog << endl; MTaskList tlist; plist.AddToList(&tlist); MReadTree read("Events"); read.DisableAutoScheme(); read.AddFile(fPathIn); /* MTaskEnv taskenv0("CalcDisp"); taskenv0.SetDefault(fCalcDisp); MTaskEnv taskenv1("CalcHadronness"); taskenv1.SetDefault(fCalcHadronness); */ MEnergyEstimate est; MTaskEnv taskenv2("EstimateEnergy"); taskenv2.SetDefault(fEstimateEnergy ? fEstimateEnergy : &est); MContinue *cont = new MContinue("", "CutS"); cont->SetAllowEmpty(); if (fCutS) delete fCutS; fCutS = cont; // Try to find the class used to determine the signal! const TString cls = GetHAlpha(); // FIXME: Create HistE and HistEOff to be able to modify it from // the resource file. MFillH fill1(Form("HistEOff [%s]", cls.Data()), "", "FillHistEOff"); MFillH fill2(Form("HistE [%s]", cls.Data()), "", "FillHistE"); // Fill a new MHEffectiveOnTime. It can either be used to // re-calculate the on-time or just for manual cross check MFillH fillT("MHEffectiveOnTime", "MTime", "FillOnTime"); fillT.SetNameTab("OnTime"); MFDataMember f0("DataType.fVal", '<', 0.5, "FilterOffData"); MFDataMember f1("DataType.fVal", '>', 0.5, "FilterOnData"); fill1.SetFilter(&f0); fill2.SetFilter(&f1); fillT.SetFilter(&f1); tlist.AddToList(&read); //tlist.AddToList(&taskenv0); // not necessary, stored in file! //tlist.AddToList(&taskenv1); // not necessary, stored in file! tlist.AddToList(&f1); tlist.AddToList(&fillT); tlist.AddToList(fCutS); tlist.AddToList(&taskenv2); tlist.AddToList(&f0); tlist.AddToList(&fill1); tlist.AddToList(&fill2); // by setting it here it is distributed to all consecutive tasks tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime); MEvtLoop loop("RefillExcess"); // ***** fName ***** loop.SetParList(&plist); loop.SetDisplay(fDisplay); loop.SetLogStream(fLog); if (!SetupEnv(loop)) return kFALSE; if (!loop.Eventloop()) { *fLog << err << GetDescriptor() << ": Refilling of data failed." << endl; return kFALSE; } if (!loop.GetDisplay()) { *fLog << err << GetDescriptor() << ": Execution stopped by user." << endl; return kFALSE; } const MHAlpha *halpha = (MHAlpha *)plist.FindObject("HistE"); if (!halpha) { *fLog << err << GetDescriptor() << ": HistE [MHAlpha] not found... abort." << endl; return kFALSE; } halpha->GetHEnergy().Copy(h2); h2.SetDirectory(0); return kTRUE; } /* Bool_t MJSpectrum::IntermediateLoop(MParList &plist, MH3 &mh1, TH1D &temp1, const MDataSet &set, MMcSpectrumWeight &weight) const { MTaskList tlist1; plist.Replace(&tlist1); MReadMarsFile readmc("OriginalMC"); //readmc.DisableAutoScheme(); if (!set.AddFilesOn(readmc)) return kFALSE; readmc.EnableBranch("MMcEvtBasic.fTelescopeTheta"); readmc.EnableBranch("MMcEvtBasic.fEnergy"); mh1.SetLogy(); mh1.SetLogz(); mh1.SetName("ThetaE"); MFillH fill0(&mh1); //fill0.SetDrawOption("projx only"); MBinning *bins2 = (MBinning*)plist.FindObject("BinningEnergyEst"); MBinning *bins3 = (MBinning*)plist.FindObject("BinningTheta"); if (bins2 && bins3) { bins2->SetName("BinningThetaEY"); bins3->SetName("BinningThetaEX"); } tlist1.AddToList(&readmc); tlist1.AddToList(&weight); temp1.SetXTitle("MMcEvtBasic.fTelescopeTheta*kRad2Deg"); MH3 mh3mc(temp1); MFEventSelector2 sel1(mh3mc); sel1.SetHistIsProbability(); fill0.SetFilter(&sel1); //if (!fRawMc) tlist1.AddToList(&sel1); tlist1.AddToList(&fill0); // by setting it here it is distributed to all consecutive tasks tlist1.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime); MEvtLoop loop1("IntermediateLoop"); // ***** fName ***** loop1.SetParList(&plist); loop1.SetLogStream(fLog); loop1.SetDisplay(fDisplay); if (!SetupEnv(loop1)) return kFALSE; if (!loop1.Eventloop(fMaxEvents)) { *fLog << err << GetDescriptor() << ": Processing of MC-data failed." << endl; return kFALSE; } if (!loop1.GetDisplay()) { *fLog << err << GetDescriptor() << ": Execution stopped by user." << endl; return kFALSE; } if (bins2 && bins3) { bins2->SetName("BinningEnergyEst"); bins3->SetName("BinningTheta"); } return kTRUE; } */ TString MJSpectrum::FormFloat(Double_t d) { TString s; s += d; return s.Strip(TString::kLeading); } TString MJSpectrum::FormFlux(const TF1 &f, const char *unit) { Double_t p0 = -f.GetParameter(0); Double_t p1 = f.GetParameter(1); Double_t e0 = f.GetParError(0); Double_t e1 = f.GetParError(1); MMath::Format(p0, e0); MMath::Format(p1, e1); const Int_t i = TMath::FloorNint(TMath::Log10(p1)); const Double_t exp = TMath::Power(10, i); TString str = MString::Format("(%s #pm %s)·10^{%d} ", FormFloat(p1/exp).Data(), FormFloat(e1/exp).Data(), i); str += MString::Format("#left(#frac{E}{%s}#right)^{-%s #pm %s}", unit, FormFloat(p0).Data(), FormFloat(e0).Data()); str += " TeV^{-1} m^{-2} s^{-1}"; return str; } TString MJSpectrum::FormString(const TF1 &f, Byte_t type) { switch (type) { case 0: return FormFlux(f, "500GeV"); case 1: return MString::Format("\\chi^{2}/NDF=%.2f/%d", f.GetChisquare(),f.GetNDF()); case 2: return MString::Format("P=%.0f%%", 100*TMath::Prob(f.GetChisquare(), f.GetNDF())); } return ""; } TArrayD MJSpectrum::FitSpectrum(TH1D &spectrum) const { Axis_t lo, hi; MH::GetRangeUser(spectrum, lo, hi); TF1 f("f", "[1]*(x/500)^[0]", lo, hi); f.SetParameter(0, -3.0); f.SetParameter(1, spectrum.GetMaximum()); f.SetLineColor(kBlue); f.SetLineWidth(2); spectrum.Fit(&f, "NIR"); // M skipped f.DrawCopy("same"); TString str = FormString(f); TLatex tex; tex.SetTextSize(0.045); tex.SetBit(TLatex::kTextNDC); tex.SetTextAlign(31); tex.DrawLatex(0.89, 0.935, str); str = FormString(f, 1); tex.DrawLatex(0.89, 0.83, str); str = FormString(f, 2); tex.DrawLatex(0.89, 0.735, str); TArrayD res(2); res[0] = f.GetParameter(0); res[1] = f.GetParameter(1); return res; } // -------------------------------------------------------------------------- // // Calculate the final spectrum from: // - collection area // - excess // - correction coefficients // - ontime // and display it // TArrayD MJSpectrum::DisplaySpectrum(MHCollectionArea &area, TH1D &excess, MHEnergyEst &hest, Double_t ontime) const { // Create copies of the histograms TH1D collarea(area.GetHEnergy()); TH1D spectrum(excess); TH1D weights; // Get spill-over corrections from energy estimation hest.GetWeights(weights); // E_mc/E_est // Print effective on-time cout << "Effective On time: " << ontime << "s" << endl; // Setup spectrum plot spectrum.SetNameTitle("Preliminary", "N/sm^{2} versus Energy (before unfolding)"); spectrum.SetYTitle("N/sm^{2}"); spectrum.SetDirectory(NULL); spectrum.SetBit(kCanDelete); // Divide by collection are and on-time spectrum.Scale(1./ontime); spectrum.Divide(&collarea); // Draw spectrum before applying spill-over corrections TCanvas &c1 = fDisplay->AddTab("Spectrum"); c1.Divide(2,2); c1.cd(1); gPad->SetBorderMode(0); gPad->SetLogx(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); collarea.DrawCopy(); c1.cd(2); gPad->SetBorderMode(0); gPad->SetLogx(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); TH1D *spec=(TH1D*)spectrum.DrawCopy(); //FitSpectrum(*spec); c1.cd(3); gPad->SetBorderMode(0); gPad->SetLogx(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); weights.DrawCopy(); // Apply spill-over correction (done't take the errors into account) // They are supposed to be identical with the errors of the // collection area and cancel out. //spectrum.Multiply(&weights); spectrum.SetNameTitle("Flux", "Spectrum"); spectrum.SetBit(TH1::kNoStats); // Minimum number of excessevents to get 3sigma in 1h TF1 sensl("SensLZA", "85*(x/200)^(-0.55)", 100, 6000); TF1 sensh("SensHZA", "35*(x/200)^(-0.70)", 100, 1000); //sens.SetLineColor(kBlue); //sens.DrawClone("Csame"); c1.cd(4); gPad->SetBorderMode(0); gPad->SetLogx(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); TGraph gsensl;//("Sensitivity LZA", ""); TGraph gsensh;//("Sensitivity HZA", ""); const Double_t sqrton = TMath::Sqrt(ontime/3600.); for (int i=0; i(fc).Copy(fa); fa.DrawCopy("same"); tex.SetTextAlign(23); tex.DrawLatex(600, fa.Eval(600), "PG1553/\\Gamma=-4.2"); gROOT->SetSelectedPad(0); gsensl.SetLineStyle(5); gsensl.SetLineColor(14); gsensl.SetLineWidth(2); gsensl.DrawClone("C")->SetBit(kCanDelete); gsensh.SetLineStyle(5); gsensh.SetLineColor(14); gsensh.SetLineWidth(2); gsensh.DrawClone("C")->SetBit(kCanDelete); // Display dN/dE*E^2 for conveinience fDisplay->AddTab("Check"); gPad->SetLogx(); gPad->SetLogy(); gPad->SetGrid(); // Calculate Spectrum * E^2 for (int i=0; i(fc).Copy(fc2); fc2.DrawCopy("same"); TF1 fa2("PG1553*E^2", "x^2*PG1553*1e-6", 100, 6000); static_cast(fc).Copy(fa2); fa2.DrawCopy("same"); gsensl.DrawClone("C")->SetBit(kCanDelete); gsensh.DrawClone("C")->SetBit(kCanDelete); // Fit Spectrum c1.cd(4); return FitSpectrum(*spec); /* TF1 f("f", "[1]*(x/1e3)^[0]", 10, 3e4); f.SetParameter(0, -2.87); f.SetParameter(1, 1.9e-6); f.SetLineColor(kGreen); spectrum.Fit(&f, "NIM", "", 100, 5000); f.DrawCopy("same"); const Double_t p0 = f.GetParameter(0); const Double_t p1 = f.GetParameter(1); const Double_t e0 = f.GetParError(0); const Double_t e1 = f.GetParError(1); const Int_t np = TMath::Nint(TMath::Floor(TMath::Log10(p1))); const Double_t exp = TMath::Power(10, np); TString str; str += Form("(%.2f#pm%.2f)10^{%d}", p1/exp, e1/exp, np); str += Form("(\\frac{E}{TeV})^{%.2f#pm%.2f}", p0, e0); str += "\\frac{ph}{TeVm^{2}s}"; TLatex tex; tex.SetTextSize(0.045); tex.SetBit(TLatex::kTextNDC); tex.DrawLatex(0.45, 0.935, str); str = Form("\\chi^{2}/NDF=%.2f", f.GetChisquare()/f.GetNDF()); tex.DrawLatex(0.70, 0.83, str); TArrayD res(2); res[0] = f.GetParameter(0); res[1] = f.GetParameter(1); return res; */ } // -------------------------------------------------------------------------- // // Scale some image parameter plots using the scale factor and plot them // together with the corresponding MC histograms. // Called from DisplaySize // Bool_t MJSpectrum::PlotSame(MStatusArray &arr, MParList &plist, const char *name, const char *tab, const char *plot, Double_t scale) const { TString same(name); same += "Same"; TH1 *h1 = (TH1*)arr.FindObjectInCanvas(name, "TH1F", tab); TH1 *h2 = (TH1*)arr.FindObjectInCanvas(same, "TH1F", tab); if (!h1 || !h2) return kFALSE; TObject *obj = plist.FindObject(plot); if (!obj) { *fLog << warn << plot << " not in parameter list... skipping." << endl; return kFALSE; } TH1 *h3 = (TH1*)obj->FindObject(name); if (!h3) { *fLog << warn << name << " not found in " << plot << "... skipping." << endl; return kFALSE; } const MAlphaFitter *fit = (MAlphaFitter*)plist.FindObject("MAlphaFitter"); const Double_t ascale = fit ? fit->GetScaleFactor() : 1; gPad->SetBorderMode(0); h2->SetLineColor(kBlack); h3->SetLineColor(kBlue); h2->Add(h1, -ascale); //h2->Scale(1./ontime); //h2->Integral()); h3->Scale(scale); //h3->Integral()); h2->SetMaximum(1.05*TMath::Max(h2->GetMaximum(), h3->GetMaximum())); h2 = h2->DrawCopy(); h3 = h3->DrawCopy("same"); // Don't do this on the original object! h2->SetStats(kFALSE); h3->SetStats(kFALSE); return kTRUE; } // -------------------------------------------------------------------------- // // Take a lot of histograms and plot them together in one plot. // Calls PlotSame // Bool_t MJSpectrum::DisplaySize(MParList &plist, Double_t scale) const { *fLog << inf << "Reading from file: " << fPathIn << endl; TFile file(fPathIn, "READ"); if (!file.IsOpen()) { *fLog << err << dbginf << "ERROR - Could not open file " << fPathIn << endl; return kFALSE; } file.cd(); MStatusArray arr; if (arr.Read()<=0) { *fLog << "MStatusDisplay not found in file... abort." << endl; return kFALSE; } TH1 *excess = (TH1D*)arr.FindObjectInCanvas("Excess", "TH1D", "Hist"); if (!excess) return kFALSE; // ------------------- Plot excess versus size ------------------- TCanvas &c = fDisplay->AddTab("Excess"); c.Divide(3,2); c.cd(1); gPad->SetBorderMode(0); gPad->SetLogx(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); excess->SetTitle("Excess events vs Size (data/black, mc/blue)"); excess = excess->DrawCopy("E2"); // Don't do this on the original object! excess->SetStats(kFALSE); excess->SetMarkerStyle(kFullDotMedium); excess->SetFillColor(kBlack); excess->SetFillStyle(0); excess->SetName("Excess "); excess->SetDirectory(0); TObject *o=0; if ((o=plist.FindObject("ExcessMC"))) { TH1 *histsel = (TH1F*)o->FindObject(""); if (histsel) { if (scale<0) scale = excess->Integral()/histsel->Integral(); histsel->Scale(scale); histsel->SetLineColor(kBlue); histsel->SetBit(kCanDelete); histsel = histsel->DrawCopy("E1 same"); // Don't do this on the original object! histsel->SetStats(kFALSE); /* fLog->Separator("Kolmogorov Test"); histsel->KolmogorovTest(excess, "DX"); fLog->Separator("Chi^2 Test"); const Double_t p = histsel->Chi2Test(excess, "P"); TLatex tex; tex.SetBit(TLatex::kTextNDC); tex.DrawLatex(0.75, 0.93, Form("P(\\chi^{2})=%.0f%%", p*100)); */ } } // -------------- Comparison of Image Parameters -------------- c.cd(2); PlotSame(arr, plist, "Dist", "HilSrc", "MHHilSrcMCPost", scale); c.cd(3); PlotSame(arr, plist, "Length", "PostCut", "MHHillasMCPost", scale); c.cd(4); PlotSame(arr, plist, "M3l", "HilExt", "MHHilExtMCPost", scale); c.cd(5); PlotSame(arr, plist, "Conc1", "NewPar", "MHNewParMCPost", scale); c.cd(6); PlotSame(arr, plist, "Width", "PostCut", "MHHillasMCPost", scale); return kTRUE; } // -------------------------------------------------------------------------- // void MJSpectrum::DisplayCutEfficiency(const MHCollectionArea &area0, const MHCollectionArea &area1) const { if (!fDisplay) return; const TH1D &trig = area0.GetHEnergy(); TH1D &cut = (TH1D&)*area1.GetHEnergy().Clone(); fDisplay->AddTab("CutEff"); gPad->SetBorderMode(0); gPad->SetFrameBorderMode(0); gPad->SetLogx(); gPad->SetGridx(); gPad->SetGridy(); cut.Divide(&trig); cut.Scale(100); cut.SetNameTitle("CutEff", "Background Supression: Cut efficiency (after star)"); cut.SetYTitle("\\eta [%]"); cut.SetDirectory(0); cut.SetMinimum(0); cut.SetMaximum(100); cut.SetBit(kCanDelete); cut.Draw(); TLine line; line.SetLineColor(kBlue); line.SetLineWidth(2); line.SetLineStyle(kDashed); line.DrawLine(cut.GetBinLowEdge(1), 50, cut.GetBinLowEdge(cut.GetNbinsX()+1), 50); } void MJSpectrum::SetupHistEvtDist(MHn &hist) const { hist.AddHist("MMcEvt.fEnergy"); hist.InitName("EnergyDist;EnergyEst"); hist.InitTitle("Unweighted event distribution (Real statistics);E [GeV];Counts;"); hist.AddHist("MPointingPos.fZd"); hist.InitName("ZdDist;Theta"); hist.InitTitle("Unweighted event distribution (Real statistics);Zd [\\circ];Counts;"); } void MJSpectrum::SetupHistEnergyEst(MHn &hist) const { const char *res = "log10(MEnergyEst.fVal)-log10(MMcEvt.fEnergy)"; hist.AddHist("MHillas.fSize", res); hist.InitName("ResSize;Size;EnergyResidual"); hist.InitTitle(";S [phe];\\Delta lg E;"); hist.SetDrawOption("colz profx"); hist.AddHist("MPointingPos.fZd", res); hist.InitName("ResTheta;Theta;EnergyResidual"); hist.InitTitle(";Zd [\\circ];\\Delta lg E;"); hist.SetDrawOption("colz profx"); hist.AddHist("MNewImagePar.fLeakage1", res); hist.InitName("ResLeak;Leakage;EnergyResidual"); hist.InitTitle(";Leak;\\Delta lg E;"); hist.SetDrawOption("colz profx"); hist.AddHist("MHillasSrc.fDist*3.37e-3", res); hist.InitName("ResDist;Dist;EnergyResidual"); hist.InitTitle(";D [\\circ];\\Delta lg E;"); hist.SetDrawOption("colz profx"); } void MJSpectrum::SetupHistDisp(MHn &hist) const { const char *res = "-Disp.fVal*sign(MHillasSrc.fCosDeltaAlpha)-MHillasSrc.fDist*3.37e-3"; hist.AddHist("MHillas.fSize", res); hist.InitName("ResSize;Size;ResidualDist"); hist.InitTitle(";S [phe];Disp-Dist [\\circ];"); hist.SetDrawOption("colz profx"); hist.AddHist("MPointingPos.fZd", res); hist.InitName("ResTheta;Theta;ResidualDist"); hist.InitTitle(";Zd [\\circ];Disp-Dist [\\circ];"); hist.SetDrawOption("colz profx"); hist.AddHist("MNewImagePar.fLeakage1", res); hist.InitName("ResLeak;Leakage;ResidualDist"); hist.InitTitle(";Leak;Disp-Dist [\\circ];"); hist.SetDrawOption("colz profx"); hist.AddHist("MHillasExt.fSlopeLong*sign(MHillasSrc.fCosDeltaAlpha)/3.37e-3", res); hist.InitName("ResSlope;Slope;ResidualDist"); hist.InitTitle(";Slope;Disp-Dist [\\circ];"); hist.SetDrawOption("colz profx"); } void MJSpectrum::SetupHistEnergyRes(MHn &hist) const { hist.AddHist("MEnergyEst.fVal", "(MMcEvt.fEnergy/MEnergyEst.fVal-1)^2", MH3::kProfile); hist.InitName("ResEest;EnergyEst;"); hist.InitTitle(";E_{est} [GeV];Resolution (E_{mc}/E_{est}-1)^{2};"); //hist.AddHist("MMcEvt.fEnergy", "(MEnergyEst.fVal/MMcEvt.fEnergy-1)^2", MH3::kProfile); //hist.InitName("ResEmc;EnergyEst;"); //hist.InitTitle(";E_{mc} [GeV];Resolution (E_{est}/E_{mc}-1)^{2};"); hist.AddHist("MHillas.fSize", "(MMcEvt.fEnergy/MEnergyEst.fVal-1)^2", MH3::kProfile); hist.InitName("ResSize;Size;"); hist.InitTitle(";S [phe];Resolution (E_{mc}/E_{est}-1)^{2};"); hist.AddHist("MPointingPos.fZd", "(MMcEvt.fEnergy/MEnergyEst.fVal-1)^2", MH3::kProfile); hist.InitName("ResTheta;Theta;"); hist.InitTitle(";\\Theta [\\circ];Resolution (E_{mc}/E_{est}-1)^{2};"); hist.AddHist("MMcEvt.fImpact/100", "(MMcEvt.fEnergy/MEnergyEst.fVal-1)^2", MH3::kProfile); hist.InitName("ResImpact;Impact;"); hist.InitTitle(";I [m];Resolution (E_{mc}/E_{est}-1)^{2};"); } // -------------------------------------------------------------------------- // // Setup write to write: // container tree optional? // -------------- ---------- ----------- // "MHillas" to "Events" // "MHillasSrc" to "Events" // "Hadronness" to "Events" yes // "MEnergyEst" to "Events" yes // "DataType" to "Events" // void MJSpectrum::SetupWriter(MWriteRootFile *write/*, const char *name*/) const { if (!write) return; //write->SetName(name); write->AddContainer("MHillas", "Events"); write->AddContainer("MHillasSrc", "Events"); write->AddContainer("MHillasExt", "Events"); //write->AddContainer("MPointingPos", "Events"); write->AddContainer("MHillasSrcAnti", "Events", kFALSE); write->AddContainer("MImagePar", "Events", kFALSE); write->AddContainer("MNewImagePar", "Events", kFALSE); write->AddContainer("MNewImagePar2", "Events", kFALSE); write->AddContainer("Hadronness", "Events", kFALSE); write->AddContainer("MSrcPosCam", "Events", kFALSE); write->AddContainer("MSrcPosAnti", "Events", kFALSE); write->AddContainer("ThetaSquared", "Events", kFALSE); write->AddContainer("OpticalAxis", "Events", kFALSE); write->AddContainer("Disp", "Events", kFALSE); write->AddContainer("Ghostbuster", "Events", kFALSE); write->AddContainer("MEnergyEst", "Events", kFALSE); write->AddContainer("MTime", "Events", kFALSE); write->AddContainer("MMcEvt", "Events", kFALSE); write->AddContainer("MWeight", "Events"); write->AddContainer("DataType", "Events"); write->AddContainer("FileId", "Events"); write->AddContainer("EvtNumber", "Events"); } Bool_t MJSpectrum::Process(const MDataSet &set) { if (!set.IsValid()) { *fLog << err << "ERROR - DataSet invalid!" << endl; return kFALSE; } if (!HasWritePermission(GetPathOut())) return kFALSE; if (!CheckEnv()) return kFALSE; // -------------------------------------------------------------------------------- *fLog << inf; fLog->Separator(GetDescriptor()); *fLog << "Compile Monte Carlo sample (dataset " << set.GetBaseName() << ")" << endl; *fLog << endl; if (fDisplay) fDisplay->SetWindowName(fName); // Setup everything which is read from the ganymed file MBinning bins1("BinningAlpha"); MBinning bins2("BinningEnergyEst"); MBinning bins3("BinningTheta"); MBinning bins4("BinningFalseSource"); MBinning bins5("BinningWidth"); MBinning bins6("BinningLength"); MBinning bins7("BinningDist"); MBinning bins8("BinningM3Long"); MBinning bins9("BinningM3Trans"); MBinning bins0("BinningSlope"); MBinning binsa("BinningAsym"); MBinning binsb("BinningConc1"); MEnv env("", "ganymed.rc"); MAlphaFitter fit; MParList plist; plist.AddToList(&bins0); plist.AddToList(&bins1); plist.AddToList(&bins3); plist.AddToList(&bins4); plist.AddToList(&bins5); plist.AddToList(&bins6); plist.AddToList(&bins7); plist.AddToList(&bins8); plist.AddToList(&bins9); plist.AddToList(&binsa); plist.AddToList(&binsb); plist.AddToList(&fit); // Read from the ganymed file TH1D htheta, size; Float_t ontime = ReadInput(plist, htheta, size); if (ontime<0) { *fLog << err << GetDescriptor() << ": Could not determine effective on time..." << endl; return kFALSE; } // Set Zenith angle binning to binning from the ganymed-file bins3.SetEdges(htheta, 'x'); // Read energy binning from resource file if (!CheckEnv(bins2)) { *fLog << err << "ERROR - Reading energy binning from resources failed." << endl; return kFALSE; } plist.AddToList(&bins2); // For later use in MC processing // -------------- Fill excess events versus energy --------------- TH1D excess; if (fForceOnTimeFit) { // Refill excess histogram to determine the excess events // If we use the eff. on-time fit we have to loop over the data first // This is not really desired, because if something is wrong with // the Monte Carlos the program runs quite long before it fails if (!Refill(plist, excess)) return kFALSE; // Print the setup and result of the MAlphaFitter, print used cuts PrintSetup(fit); // ------------ On user request redo eff. on-time fit ------------ const MHEffectiveOnTime *htime = (MHEffectiveOnTime*)plist.FindObject("MHEffectiveOnTime"); if (!htime) { // This should never happen, bt you never know *fLog << err; *fLog << "ERROR - Use of new effective on-time fit requested for on-time determination," << endl; *fLog << " but MHEffectiveOnTime not found in parameter list... aborting." << endl; return kFALSE; } const TH1D &h = htime->GetHEffOnTheta(); /* if (!htime->IsConsistent() || h.GetNbinsX()!=htheta.GetNbinsX()) { *fLog << err << "ERROR - Effective on-time from newly filles MHEffectiveOnTime (Tab='OnTime) invalid... aborting." << endl; return kFALSE; }*/ *fLog << inf; *fLog << "Using eff. on-time from new MHEffectiveOnTime (see also 'OnTime')" << endl; *fLog << " Orig. value: " << ontime << "s" << endl; // Copy ontime from newly filled and fitted eff on-time histogram ontime = htime->GetEffOnTime(); *fLog << " New value: " << ontime << "s" << endl; h.Copy(htheta); // Copy contents of newly filled hist into on-time vs. theta htheta.SetName("Theta"); // Copy overwrites the name needed in DisplayResult htheta.SetDirectory(0); // Remove from global directory added by SetName } // --------------------------------------------------------------- // Initialize weighting to a new spectrum as defined in the resource file MMcSpectrumWeight weight; if (!InitWeighting(set, weight)) return kFALSE; // Print Theta and energy binning for cross-checks *fLog << all << endl; bins2.Print(); bins3.Print(); // Now we read the MC distribution as produced by corsika // vs zenith angle and energy. // Weight for the new energy spectrum defined in MMcSpectumWeight // are applied. // Also correction for different lower energy bounds and // different production areas (impact parameters) are applied. TH2D hist; hist.UseCurrentStyle(); MH::SetBinning(&hist, &bins3, &bins2); if (!ReadOrigMCDistribution(set, hist, weight)) return kFALSE; // Check if user has closed the display if (!fDisplay) return kTRUE; // Display histograms and calculate za-weights into htheta GetThetaDistribution(htheta, hist); // Give the zenith angle weights to the weighting task weight.SetWeightsZd(&htheta); // No we apply the the zenith-angle-weights to the corsika produced // MC distribution. Unfortunately this must be done manually // because we are multiplying column by column for (int y=0; y<=hist.GetNbinsY()+1; y++) for (int x=0; x<=hist.GetNbinsX()+1; x++) { hist.SetBinContent(x, y, hist.GetBinContent(x, y)*htheta.GetBinContent(x)); hist.SetBinError(x, y, hist.GetBinError(x, y) *htheta.GetBinContent(x)); } // Display the resulting distribution and check it matches // the observation time distribution (this could be false // for example if you miss MCs of some zenith angles, which you have // data for) if (!DisplayResult(hist)) return kFALSE; // Refill excess histogram to determine the excess events if (!fForceOnTimeFit) { if (!Refill(plist, excess)) return kFALSE; // Print the setup and result of the MAlphaFitter, print used cuts PrintSetup(fit); } // ------------------------- Final loop -------------------------- *fLog << endl; fLog->Separator("Calculate efficiencies"); *fLog << endl; MTaskList tlist2; plist.AddToList(&tlist2); MReadMarsFile read("Events"); read.DisableAutoScheme(); if (!set.AddFilesOn(read)) return kFALSE; // Selector to get correct (final) theta-distribution //temp1.SetXTitle("MPointingPos.fZd"); // //MH3 mh3(temp1); // //MFEventSelector2 sel2(mh3); //sel2.SetHistIsProbability(); // //MContinue contsel(&sel2); //contsel.SetInverted(); // Get correct source position //MSrcPosCalc calc; // Calculate corresponding Hillas parameters //MHillasCalc hcalc1; //MHillasCalc hcalc2("MHillasCalcAnti"); //hcalc1.SetFlags(MHillasCalc::kCalcHillasSrc); //hcalc2.SetFlags(MHillasCalc::kCalcHillasSrc); //hcalc2.SetNameHillasSrc("MHillasSrcAnti"); //hcalc2.SetNameSrcPosCam("MSrcPosAnti"); // Fill collection area and energy estimator (unfolding) // Make sure to use the same binning for MHCollectionArea and MHEnergyEst MHCollectionArea area0("TriggerArea"); MHCollectionArea area1; area0.SetHistAll(hist); area1.SetHistAll(hist); MHEnergyEst hest; MFillH fill30(&area0, "", "FillTriggerArea"); MFillH fill31(&area1, "", "FillCollectionArea"); MFillH fill4(&hest, "", "FillEnergyEst"); MFillH fill5("MHThreshold", "", "FillThreshold"); fill30.SetWeight(); fill31.SetWeight(); fill4.SetWeight(); fill5.SetWeight(); fill30.SetNameTab("TrigArea"); fill31.SetNameTab("ColArea"); fill4.SetNameTab("E-Est"); fill5.SetNameTab("Threshold"); /* MH3 henergy("MMcEvt.fEnergy"); henergy.SetName("EventDist;EnergyEst"); henergy.SetTitle("Unweighted event distribution (Real statistics);E [GeV];Counts;"); henergy.Sumw2(); */ // --------------------------------------------------------- MBinning binsA(50, 10, 100000, "BinningSize", "log"); MBinning binsC(50, 0, 0.3, "BinningLeakage", "lin"); MBinning binsB(51, -1, 1, "BinningEnergyResidual", "lin"); MBinning binsD(51, -1, 1, "BinningResidualDist", "lin"); MBinning binsI(16, 0, 800, "BinningImpact", "lin"); plist.AddToList(&binsA); plist.AddToList(&binsB); plist.AddToList(&binsC); plist.AddToList(&binsD); plist.AddToList(&binsI); MHn heest("Energy", "Energy Residual (lg E_{est} - lg E_{mc})"); SetupHistEnergyEst(heest); MHn hdisp("Disp", "Dist residual (Disp-Dist)"); SetupHistDisp(hdisp); MHn henergy("EvtDist"); SetupHistEvtDist(henergy); MHn heres("EnergyRes"); SetupHistEnergyRes(heres); MFillH fill4b(&heest, "", "FillEnergyResidual"); fill4b.SetWeight(); MFillH fill4c(&hdisp, "", "FillDispResidual"); fill4c.SetWeight(); MFillH fill4d(&heres, "", "FillEnergyResolution"); fill4d.SetWeight(); MFDataPhrase fdisp("Disp.fVal*sign(MHillasSrc.fCosDeltaAlpha)<0", "FilterDisp"); fill4c.SetFilter(&fdisp); // --------------------------------------------------------- MH3 hsize("MHillas.fSize"); hsize.SetName("ExcessMC"); hsize.Sumw2(); MBinning bins(size, "BinningExcessMC"); plist.AddToList(&hsize); plist.AddToList(&bins); // --------------------------------------------------------- MFillH fillsp("MHSrcPosCam", "MSrcPosCam", "FillSrcPosCam"); MFillH fill0a(&henergy, "", "FillEventDist"); MFillH fill1a("MHHillasMCPre [MHHillas]", "MHillas", "FillHillasPre"); MFillH fill2a("MHHillasMCPost [MHHillas]", "MHillas", "FillHillasPost"); MFillH fill3a("MHVsSizeMCPost [MHVsSize]", "MHillasSrc", "FillVsSizePost"); MFillH fill4a("MHHilExtMCPost [MHHillasExt]", "MHillasSrc", "FillHilExtPost"); MFillH fill5a("MHHilSrcMCPost [MHHillasSrc]", "MHillasSrc", "FillHilSrcPost"); MFillH fill6a("MHImgParMCPost [MHImagePar]", "MImagePar", "FillImgParPost"); MFillH fill7a("MHNewParMCPost [MHNewImagePar]", "MNewImagePar", "FillNewParPost"); MFillH fill8a("ExcessMC [MH3]", "", "FillExcessMC"); fillsp.SetNameTab("SrcPos"); fill0a.SetNameTab("EvtDist"); fill1a.SetNameTab("PreCut"); fill2a.SetNameTab("PostCut"); fill3a.SetNameTab("VsSize"); fill4a.SetNameTab("HilExt"); fill5a.SetNameTab("HilSrc"); fill6a.SetNameTab("ImgPar"); fill7a.SetNameTab("NewPar"); fill8a.SetBit(MFillH::kDoNotDisplay); fill1a.SetWeight(); fill2a.SetWeight(); fill3a.SetWeight(); fill4a.SetWeight(); fill5a.SetWeight(); fill6a.SetWeight(); fill7a.SetWeight(); fill8a.SetWeight(); fillsp.SetWeight(); // FIXME: To be done: A task checking the lower 1% after the lower // energy limit! MTaskEnv taskenv0("CalcDisp"); taskenv0.SetDefault(fCalcDisp); MTaskEnv taskenv1("CalcHadronness"); taskenv1.SetDefault(fCalcHadronness); MEnergyEstimate est; MTaskEnv taskenv2("EstimateEnergy"); taskenv2.SetDefault(fEstimateEnergy ? fEstimateEnergy : &est); MWriteRootFile write(GetPathOut()); SetupWriter(&write); MParameterI *par = (MParameterI*)plist.FindCreateObj("MParameterI", "DataType"); if (!par) return kFALSE; par->SetVal(2); // Not really necessary but for sanity TObject *cam = plist.FindObject("MSrcPosCam"); if (cam) cam->Clear(); tlist2.AddToList(&read); // If no weighting should be applied but the events should // be thrown away according to the theta distribution // it is enabled here //if (!fRawMc && fNoThetaWeights) // tlist2.AddToList(&contsel); //tlist2.AddToList(&calc); //tlist2.AddToList(&hcalc1); //tlist2.AddToList(&hcalc2); tlist2.AddToList(&weight); tlist2.AddToList(&fillsp); tlist2.AddToList(&fill1a); tlist2.AddToList(&fill30); tlist2.AddToList(fCutQ); tlist2.AddToList(fCut0); tlist2.AddToList(&taskenv0); tlist2.AddToList(&taskenv1); tlist2.AddToList(&fdisp); tlist2.AddToList(&fill4c); tlist2.AddToList(fCut1); tlist2.AddToList(fCutS); tlist2.AddToList(fCut2); tlist2.AddToList(fCut3); tlist2.AddToList(&taskenv2); if (!GetPathOut().IsNull()) tlist2.AddToList(&write); tlist2.AddToList(&fill31); tlist2.AddToList(&fill4); tlist2.AddToList(&fill4b); tlist2.AddToList(&fill4d); tlist2.AddToList(&fill5); tlist2.AddToList(&fill0a); tlist2.AddToList(&fill2a); tlist2.AddToList(&fill3a); tlist2.AddToList(&fill4a); tlist2.AddToList(&fill5a); tlist2.AddToList(&fill6a); tlist2.AddToList(&fill7a); tlist2.AddToList(&fill8a); //tlist2.AddToList(&fill9a); // by setting it here it is distributed to all consecutive tasks tlist2.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime); MEvtLoop loop2(fName); // ***** fName ***** loop2.SetParList(&plist); loop2.SetDisplay(fDisplay); loop2.SetLogStream(fLog); if (!SetupEnv(loop2)) return kFALSE; if (!loop2.Eventloop(fMaxEvents)) { *fLog << err << GetDescriptor() << ": Processing of MC-data failed." << endl; return kFALSE; } if (!loop2.GetDisplay()) { *fLog << err << GetDescriptor() << ": Execution stopped by user." << endl; return kFALSE; } fLog->Separator("Energy Estimator"); if (plist.FindObject("EstimateEnergy")) plist.FindObject("EstimateEnergy")->Print(); fLog->Separator("Spectrum"); // -------------------------- Spectrum ---------------------------- // Calculate and display spectrum (N/TeVsm^2 at 1TeV) TArrayD res(DisplaySpectrum(area1, excess, hest, ontime)); // Spectrum fitted (convert res[1] from TeV to GeV) TF1 flx("flx", MString::Format("%e*pow(x/500, %f)", res[1]/500, res[0])); // Number of events this spectrum would produce per s and m^2 Double_t n = flx.Integral(weight.GetEnergyMin(), weight.GetEnergyMax()); // scale with effective collection area to get the event rate (N/s) // scale with the effective observation time to absolute observed events n *= area1.GetCollectionAreaAbs()*ontime; // N // Now calculate the scale factor from the number of events // produced and the number of events which should have been // observed with our telescope in the time ontime const Double_t scale = n/area1.GetEntries(); // Print normalization constant cout << "MC normalization factor: " << scale << endl; // Display cut efficiency DisplayCutEfficiency(area0, area1); // Overlay normalized plots DisplaySize(plist, scale); // check if output should be written if (!fPathOut.IsNull()) { TNamed ganame("ganymed.root", fPathIn.Data()); // Write the output TObjArray cont; cont.Add(&env); // ganymed.rc cont.Add(const_cast(GetEnv())); // sponde.rc cont.Add(const_cast(&set)); // Dataset cont.Add(plist.FindObject("MAlphaFitter")); cont.Add(&area0); cont.Add(&area1); cont.Add(&hest); cont.Add(&ganame); if (fDisplay) cont.Add(fDisplay); if (!WriteContainer(cont, "", GetPathOut().IsNull()?"RECREATE":"UPDATE")) { *fLog << err << GetDescriptor() << ": Writing result failed." << endl; return kFALSE; } } *fLog << all << GetDescriptor() << ": Done." << endl; *fLog << endl << endl; return kTRUE; }