1 | #ifndef MARS_MJTrainRanForest
|
---|
2 | #define MARS_MJTrainRanForest
|
---|
3 |
|
---|
4 | #ifndef MARS_MJob
|
---|
5 | #include "MJob.h"
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | class MTask;
|
---|
9 | class MFilter;
|
---|
10 |
|
---|
11 | class MJTrainRanForest : public MJob
|
---|
12 | {
|
---|
13 | protected:
|
---|
14 | Bool_t fDebug;
|
---|
15 | Bool_t fEnableWeights;
|
---|
16 |
|
---|
17 | TList fRules;
|
---|
18 |
|
---|
19 | TList fPreCuts;
|
---|
20 | TList fTrainCuts;
|
---|
21 | TList fTestCuts;
|
---|
22 | TList fPreTasks;
|
---|
23 | TList fPostTasks;
|
---|
24 |
|
---|
25 | UShort_t fNumTrees;
|
---|
26 | UShort_t fNdSize;
|
---|
27 | UShort_t fNumTry;
|
---|
28 |
|
---|
29 | Bool_t WriteDisplay(const char *fname) const;
|
---|
30 |
|
---|
31 | void AddCut(TList &l, const char *rule);
|
---|
32 | void AddPar(TList &l, const char *rule, const char *name);
|
---|
33 | void Add(TList &l, MTask *f);
|
---|
34 |
|
---|
35 | public:
|
---|
36 | MJTrainRanForest() : fDebug(kFALSE), fEnableWeights(kFALSE)
|
---|
37 | {
|
---|
38 | fNumTrees = 100; //100
|
---|
39 | fNumTry = 0; //3 0 means: in MRanForest estimated best value will be calculated
|
---|
40 | fNdSize = 1; //1
|
---|
41 | }
|
---|
42 |
|
---|
43 | void AddPreTask(MTask *t) { Add(fPreTasks, t); }
|
---|
44 | void AddPreTask(const char *rule,
|
---|
45 | const char *name="MWeight") { AddPar(fPreTasks, rule, name); }
|
---|
46 |
|
---|
47 | void AddPostTask(MTask *t) { Add(fPostTasks, t); }
|
---|
48 | void AddPostTask(const char *rule,
|
---|
49 | const char *name="MWeight") { AddPar(fPostTasks, rule, name); }
|
---|
50 |
|
---|
51 | void SetDebug(Bool_t b=kTRUE) { fDebug = b; }
|
---|
52 |
|
---|
53 | void SetWeights(const char *rule) { if (fEnableWeights) return; fEnableWeights=kTRUE; AddPostTask(rule); }
|
---|
54 | void SetWeights(MTask *t) { if (fEnableWeights) return; fEnableWeights=kTRUE; AddPostTask(t); }
|
---|
55 |
|
---|
56 | void AddPreCut(const char *rule) { AddCut(fPreCuts, rule); }
|
---|
57 | void AddPreCut(MFilter *f) { Add(fPreCuts, (MTask*)(f)); }
|
---|
58 |
|
---|
59 | void AddTrainCut(const char *rule) { AddCut(fTrainCuts, rule); }
|
---|
60 | void AddTrainCut(MFilter *f) { Add(fTrainCuts, (MTask*)(f)); }
|
---|
61 |
|
---|
62 | void AddTestCut(const char *rule) { AddCut(fTestCuts, rule); }
|
---|
63 | void AddTestCut(MFilter *f) { Add(fTestCuts, (MTask*)(f)); }
|
---|
64 |
|
---|
65 | void SetNumTrees(UShort_t n=100) { fNumTrees = n; }
|
---|
66 | void SetNdSize(UShort_t n=5) { fNdSize = n; }
|
---|
67 | void SetNumTry(UShort_t n=0) { fNumTry = n; }
|
---|
68 |
|
---|
69 | Int_t AddParameter(const char *rule);
|
---|
70 |
|
---|
71 | ClassDef(MJTrainRanForest, 0)//Base class for Random Forest training classes
|
---|
72 | };
|
---|
73 |
|
---|
74 | #endif
|
---|