1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 11/2005 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2006
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MJTrainSeparation
|
---|
28 | //
|
---|
29 | ////////////////////////////////////////////////////////////////////////////
|
---|
30 | #include "MJTrainSeparation.h"
|
---|
31 |
|
---|
32 | #include <TF1.h>
|
---|
33 | #include <TH2.h>
|
---|
34 | #include <TChain.h>
|
---|
35 | #include <TGraph.h>
|
---|
36 | #include <TVirtualPad.h>
|
---|
37 |
|
---|
38 | #include "MHMatrix.h"
|
---|
39 |
|
---|
40 | #include "MLog.h"
|
---|
41 | #include "MLogManip.h"
|
---|
42 |
|
---|
43 | // tools
|
---|
44 | #include "MMath.h"
|
---|
45 | #include "MDataSet.h"
|
---|
46 | #include "MTFillMatrix.h"
|
---|
47 | #include "MChisqEval.h"
|
---|
48 | #include "MStatusDisplay.h"
|
---|
49 |
|
---|
50 | // eventloop
|
---|
51 | #include "MParList.h"
|
---|
52 | #include "MTaskList.h"
|
---|
53 | #include "MEvtLoop.h"
|
---|
54 |
|
---|
55 | // tasks
|
---|
56 | #include "MReadMarsFile.h"
|
---|
57 | #include "MContinue.h"
|
---|
58 | #include "MFillH.h"
|
---|
59 | #include "MRanForestCalc.h"
|
---|
60 | #include "MParameterCalc.h"
|
---|
61 |
|
---|
62 | // container
|
---|
63 | #include "MMcEvt.hxx"
|
---|
64 | #include "MParameters.h"
|
---|
65 |
|
---|
66 | // histograms
|
---|
67 | #include "MBinning.h"
|
---|
68 | #include "MH3.h"
|
---|
69 | #include "MHHadronness.h"
|
---|
70 |
|
---|
71 | // filter
|
---|
72 | #include "MF.h"
|
---|
73 | #include "MFEventSelector.h"
|
---|
74 | #include "MFilterList.h"
|
---|
75 |
|
---|
76 | ClassImp(MJTrainSeparation);
|
---|
77 |
|
---|
78 | using namespace std;
|
---|
79 |
|
---|
80 | void MJTrainSeparation::DisplayResult(MH3 &h31, MH3 &h32)
|
---|
81 | {
|
---|
82 | TH2 &g = (TH2&)h32.GetHist();
|
---|
83 | TH2 &h = (TH2&)h31.GetHist();
|
---|
84 |
|
---|
85 | h.SetMarkerColor(kRed);
|
---|
86 | g.SetMarkerColor(kGreen);
|
---|
87 |
|
---|
88 | const Int_t nx = h.GetNbinsX();
|
---|
89 | const Int_t ny = h.GetNbinsY();
|
---|
90 |
|
---|
91 | gROOT->SetSelectedPad(NULL);
|
---|
92 |
|
---|
93 | TGraph gr1;
|
---|
94 | TGraph gr2;
|
---|
95 | for (int x=0; x<nx; x++)
|
---|
96 | {
|
---|
97 | TH1 *hx = h.ProjectionY("H_py", x+1, x+1);
|
---|
98 | TH1 *gx = g.ProjectionY("G_py", x+1, x+1);
|
---|
99 |
|
---|
100 | Double_t max1 = -1;
|
---|
101 | Double_t max2 = -1;
|
---|
102 | Int_t maxy1 = 0;
|
---|
103 | Int_t maxy2 = 0;
|
---|
104 | for (int y=0; y<ny; y++)
|
---|
105 | {
|
---|
106 | const Float_t s = gx->Integral(1, y+1);
|
---|
107 | const Float_t b = hx->Integral(1, y+1);
|
---|
108 | const Float_t sig1 = MMath::SignificanceLiMa(s+b, b);
|
---|
109 | const Float_t sig2 = s<1 ? 0 : MMath::SignificanceLiMa(s+b, b)*TMath::Log10(s);
|
---|
110 | if (sig1>max1)
|
---|
111 | {
|
---|
112 | maxy1 = y;
|
---|
113 | max1 = sig1;
|
---|
114 | }
|
---|
115 | if (sig2>max2)
|
---|
116 | {
|
---|
117 | maxy2 = y;
|
---|
118 | max2 = sig2;
|
---|
119 | }
|
---|
120 | }
|
---|
121 |
|
---|
122 | gr1.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy1+1));
|
---|
123 | gr2.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy2+1));
|
---|
124 |
|
---|
125 | delete hx;
|
---|
126 | delete gx;
|
---|
127 | }
|
---|
128 |
|
---|
129 | fDisplay->AddTab("OptCut");
|
---|
130 | gPad->SetLogx();
|
---|
131 | h.DrawCopy();
|
---|
132 | g.DrawCopy("same");
|
---|
133 | gr1.SetMarkerStyle(kFullDotMedium);
|
---|
134 | gr1.DrawClone("LP")->SetBit(kCanDelete);
|
---|
135 | gr2.SetLineColor(kBlue);
|
---|
136 | gr2.SetMarkerStyle(kFullDotMedium);
|
---|
137 | gr2.DrawClone("LP")->SetBit(kCanDelete);
|
---|
138 | }
|
---|
139 |
|
---|
140 | /*
|
---|
141 | Bool_t MJSpectrum::InitWeighting(const MDataSet &set, MMcSpectrumWeight &w) const
|
---|
142 | {
|
---|
143 | fLog->Separator("Initialize energy weighting");
|
---|
144 |
|
---|
145 | if (!CheckEnv(w))
|
---|
146 | {
|
---|
147 | *fLog << err << "ERROR - Reading resources for MMcSpectrumWeight failed." << endl;
|
---|
148 | return kFALSE;
|
---|
149 | }
|
---|
150 |
|
---|
151 | TChain chain("RunHeaders");
|
---|
152 | set.AddFilesOn(chain);
|
---|
153 |
|
---|
154 | MMcCorsikaRunHeader *h=0;
|
---|
155 | chain.SetBranchAddress("MMcCorsikaRunHeader.", &h);
|
---|
156 | chain.GetEntry(1);
|
---|
157 |
|
---|
158 | if (!h)
|
---|
159 | {
|
---|
160 | *fLog << err << "ERROR - Couldn't read MMcCorsikaRunHeader from DataSet." << endl;
|
---|
161 | return kFALSE;
|
---|
162 | }
|
---|
163 |
|
---|
164 | if (!w.Set(*h))
|
---|
165 | {
|
---|
166 | *fLog << err << "ERROR - Initializing MMcSpectrumWeight failed." << endl;
|
---|
167 | return kFALSE;
|
---|
168 | }
|
---|
169 |
|
---|
170 | w.Print();
|
---|
171 | return kTRUE;
|
---|
172 | }
|
---|
173 |
|
---|
174 | Bool_t MJSpectrum::ReadOrigMCDistribution(const MDataSet &set, TH1 &h, MMcSpectrumWeight &weight) const
|
---|
175 | {
|
---|
176 | // Some debug output
|
---|
177 | fLog->Separator("Compiling original MC distribution");
|
---|
178 |
|
---|
179 | weight.SetNameMcEvt("MMcEvtBasic");
|
---|
180 | const TString w(weight.GetFormulaWeights());
|
---|
181 | weight.SetNameMcEvt();
|
---|
182 |
|
---|
183 | *fLog << inf << "Using weights: " << w << endl;
|
---|
184 | *fLog << "Please stand by, this may take a while..." << flush;
|
---|
185 |
|
---|
186 | if (fDisplay)
|
---|
187 | fDisplay->SetStatusLine1("Compiling MC distribution...");
|
---|
188 |
|
---|
189 | // Create chain
|
---|
190 | TChain chain("OriginalMC");
|
---|
191 | set.AddFilesOn(chain);
|
---|
192 |
|
---|
193 | // Prepare histogram
|
---|
194 | h.Reset();
|
---|
195 |
|
---|
196 | // Fill histogram from chain
|
---|
197 | h.SetDirectory(gROOT);
|
---|
198 | if (h.InheritsFrom(TH2::Class()))
|
---|
199 | {
|
---|
200 | h.SetNameTitle("ThetaEMC", "Event-Distribution vs Theta and Energy for MC (produced)");
|
---|
201 | h.SetXTitle("\\Theta [\\circ]");
|
---|
202 | h.SetYTitle("E [GeV]");
|
---|
203 | h.SetZTitle("Counts");
|
---|
204 | chain.Draw("MMcEvtBasic.fEnergy:MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaEMC", w, "goff");
|
---|
205 | }
|
---|
206 | else
|
---|
207 | {
|
---|
208 | h.SetNameTitle("ThetaMC", "Event-Distribution vs Theta for MC (produced)");
|
---|
209 | h.SetXTitle("\\Theta [\\circ]");
|
---|
210 | h.SetYTitle("Counts");
|
---|
211 | chain.Draw("MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaMC", w, "goff");
|
---|
212 | }
|
---|
213 | h.SetDirectory(0);
|
---|
214 |
|
---|
215 | *fLog << "done." << endl;
|
---|
216 | if (fDisplay)
|
---|
217 | fDisplay->SetStatusLine2("done.");
|
---|
218 |
|
---|
219 | if (h.GetEntries()>0)
|
---|
220 | return kTRUE;
|
---|
221 |
|
---|
222 | *fLog << err << "ERROR - Histogram with original MC distribution empty..." << endl;
|
---|
223 |
|
---|
224 | return h.GetEntries()>0;
|
---|
225 | }
|
---|
226 | */
|
---|
227 |
|
---|
228 | Bool_t MJTrainSeparation::GetEventsProduced(MDataSet &set, Double_t &num, Double_t &min, Double_t &max) const
|
---|
229 | {
|
---|
230 | TChain chain("OriginalMC");
|
---|
231 | set.AddFilesOn(chain);
|
---|
232 |
|
---|
233 | min = chain.GetMinimum("MMcEvtBasic.fEnergy");
|
---|
234 | max = chain.GetMaximum("MMcEvtBasic.fEnergy");
|
---|
235 |
|
---|
236 | num = chain.GetEntries();
|
---|
237 |
|
---|
238 | if (num<100)
|
---|
239 | *fLog << err << "ERROR - Less than 100 entries in OriginalMC-Tree of MC-Train-Data found." << endl;
|
---|
240 |
|
---|
241 | return num>=100;
|
---|
242 | }
|
---|
243 |
|
---|
244 | Double_t MJTrainSeparation::GetDataRate(MDataSet &set) const
|
---|
245 | {
|
---|
246 | TChain chain1("Events");
|
---|
247 | set.AddFilesOff(chain1);
|
---|
248 |
|
---|
249 | const Double_t num = chain1.GetEntries();
|
---|
250 | if (num<100)
|
---|
251 | {
|
---|
252 | *fLog << err << "ERROR - Less than 100 entries in Events-Tree of Train-Data found." << endl;
|
---|
253 | return -1;
|
---|
254 | }
|
---|
255 |
|
---|
256 | TChain chain("EffectiveOnTime");
|
---|
257 | set.AddFilesOff(chain);
|
---|
258 |
|
---|
259 | TH1F h;
|
---|
260 | h.SetDirectory(gROOT);
|
---|
261 | h.SetNameTitle("OnTime", "Effective on-time");
|
---|
262 | chain.Draw("MEffectiveOnTime.fVal>>OnTime", "", "goff");
|
---|
263 | h.SetDirectory(0);
|
---|
264 |
|
---|
265 | if (h.Integral()<1)
|
---|
266 | {
|
---|
267 | *fLog << err << "ERROR - Less than 1s of effective observation time found in Train-Data." << endl;
|
---|
268 | return -1;
|
---|
269 | }
|
---|
270 |
|
---|
271 | *fLog << inf << "Found " << num << " events in " << h.Integral();
|
---|
272 | *fLog << "s (" << num/h.Integral() << "Hz)" << endl;
|
---|
273 |
|
---|
274 | return num/h.Integral();
|
---|
275 | }
|
---|
276 |
|
---|
277 | /*
|
---|
278 | Scale:
|
---|
279 |
|
---|
280 |
|
---|
281 | TF1 fold("old", "x^(-2.6)", emin, emax);
|
---|
282 | TF1 fnew("new", "x^(-4.0)", emin, emax);
|
---|
283 |
|
---|
284 | TF1 q("q", "new/old", emin, emax);
|
---|
285 |
|
---|
286 | Double_t scale = 1./q.GetMaximum(emin, emax);
|
---|
287 |
|
---|
288 | // Anzahl produzierter Events vor MFEnergySlope:
|
---|
289 | Double_t nold = fold.Integral(emin, emax);
|
---|
290 |
|
---|
291 | // Anzahl produzierter Events nach MFEnergySlope:
|
---|
292 | Double_t nnew = fnew.Integral(emin, emax)*scale;
|
---|
293 |
|
---|
294 | class MFSpectrum : MMcSpectrumWeight
|
---|
295 | {
|
---|
296 | Double_t fScale;
|
---|
297 | Bool_t fResult;
|
---|
298 |
|
---|
299 | MFSpectrum::MFSpectrum(const char *name, const char *title)
|
---|
300 | {
|
---|
301 | fName = name ? name : "MMcSpectrumWeight";
|
---|
302 | fTitle = title ? title : "Task to calculate weights to change the energy spectrum";
|
---|
303 |
|
---|
304 | Init(fName, fTitle);
|
---|
305 |
|
---|
306 | }
|
---|
307 |
|
---|
308 | Int_t PreProcess(MParList *pList)
|
---|
309 | {
|
---|
310 | Int_t rc = MFSpectrumWeight::PreProcess(pList);
|
---|
311 | if (rc!=kTRUE)
|
---|
312 | return rc;
|
---|
313 |
|
---|
314 | fScale = fEval->GetMaximum(fEnergyMin, fEnergyMax);
|
---|
315 |
|
---|
316 | return kTRUE;
|
---|
317 | }
|
---|
318 |
|
---|
319 | Int_t Process()
|
---|
320 | {
|
---|
321 | const Double_t e = fMcEvt->GetEnergy();
|
---|
322 |
|
---|
323 | Double_t prob = fFunc->Eval(e)/fScale;
|
---|
324 |
|
---|
325 | const Float_t Nexp = fN0 * pow(energy,fMcSlope-fNewSlope);
|
---|
326 | const Float_t Nrnd = ;
|
---|
327 |
|
---|
328 | fResult = Nexp >= gRandom->Uniform();
|
---|
329 | }
|
---|
330 |
|
---|
331 | }
|
---|
332 |
|
---|
333 |
|
---|
334 | */
|
---|
335 |
|
---|
336 | Bool_t MJTrainSeparation::AutoTrain()
|
---|
337 | {
|
---|
338 | Double_t num, min, max;
|
---|
339 | if (!GetEventsProduced(fDataSetTrain, num, min, max))
|
---|
340 | return kFALSE;
|
---|
341 |
|
---|
342 | *fLog << inf << "Using build-in radius of 300m to calculate collection area!" << endl;
|
---|
343 |
|
---|
344 | // Target spectrum
|
---|
345 | TF1 flx("Flux", "[0]*(x/1000)^(-2.6)", min, max);
|
---|
346 | flx.SetParameter(0, 1e-5);
|
---|
347 |
|
---|
348 | // Number n0 of events this spectrum would produce per s and m^2
|
---|
349 | const Double_t n0 = flx.Integral(min, max); //[#]
|
---|
350 |
|
---|
351 | // Area produced in MC
|
---|
352 | const Double_t A = TMath::Pi()*300*300; //[m²]
|
---|
353 |
|
---|
354 | // Rate R of events this spectrum would produce per s
|
---|
355 | const Double_t R = n0*A; //[Hz]
|
---|
356 |
|
---|
357 | // Number N of events produced (in trainings sample)
|
---|
358 | const Double_t N = num; //[#]
|
---|
359 |
|
---|
360 | // This correponds to an observation time T [s]
|
---|
361 | const Double_t T = N/R; //[s]
|
---|
362 |
|
---|
363 | // With an average data rate after star of
|
---|
364 | const Double_t r = GetDataRate(fDataSetTrain); //[Hz]
|
---|
365 |
|
---|
366 | // this yields a number of n events to be read for training
|
---|
367 | const Double_t n = r*T; //[#]
|
---|
368 |
|
---|
369 | if (r<0)
|
---|
370 | return kFALSE;
|
---|
371 |
|
---|
372 | *fLog << "Calculated a total Monte Carlo observation time of " << T << "s" << endl;
|
---|
373 | *fLog << "For a data rate of " << r << "Hz this corresponds to " << n << " data events." << endl;
|
---|
374 |
|
---|
375 | fNumTrainOn = (UInt_t)-1;
|
---|
376 | fNumTrainOff = TMath::Nint(n);
|
---|
377 |
|
---|
378 | /*
|
---|
379 | An event rate dependent selection?
|
---|
380 | ----------------------------------
|
---|
381 | Total average data rate: R
|
---|
382 | Goal number of events: N
|
---|
383 | Number of data events: N0
|
---|
384 | Rate assigned to single evt: r
|
---|
385 |
|
---|
386 | Selection probability: N/N0 * r/R
|
---|
387 |
|
---|
388 | f := N/N0 * r
|
---|
389 |
|
---|
390 | MF f("f * MEventRate.fRate < rand");
|
---|
391 | */
|
---|
392 |
|
---|
393 |
|
---|
394 | return kTRUE;
|
---|
395 | }
|
---|
396 |
|
---|
397 | Bool_t MJTrainSeparation::Train(const char *out)
|
---|
398 | {
|
---|
399 | if (!fDataSetTrain.IsValid())
|
---|
400 | {
|
---|
401 | *fLog << err << "ERROR - DataSet for training invalid!" << endl;
|
---|
402 | return kFALSE;
|
---|
403 | }
|
---|
404 | if (!fDataSetTest.IsValid())
|
---|
405 | {
|
---|
406 | *fLog << err << "ERROR - DataSet for testing invalid!" << endl;
|
---|
407 | return kFALSE;
|
---|
408 | }
|
---|
409 |
|
---|
410 | // ----------------------- Auto Train? ----------------------
|
---|
411 |
|
---|
412 | if (fAutoTrain)
|
---|
413 | if (!AutoTrain())
|
---|
414 | return kFALSE;
|
---|
415 |
|
---|
416 | // --------------------- Setup files --------------------
|
---|
417 | MReadMarsFile read1("Events");
|
---|
418 | MReadMarsFile read2("Events");
|
---|
419 | MReadMarsFile read3("Events");
|
---|
420 | MReadMarsFile read4("Events");
|
---|
421 | read1.DisableAutoScheme();
|
---|
422 | read2.DisableAutoScheme();
|
---|
423 | read3.DisableAutoScheme();
|
---|
424 | read4.DisableAutoScheme();
|
---|
425 |
|
---|
426 | fDataSetTrain.AddFilesOn(read1);
|
---|
427 | fDataSetTrain.AddFilesOff(read3);
|
---|
428 |
|
---|
429 | fDataSetTest.AddFilesOff(read2);
|
---|
430 | fDataSetTest.AddFilesOn(read4);
|
---|
431 |
|
---|
432 | // ----------------------- Setup RF ----------------------
|
---|
433 | MHMatrix train("Train");
|
---|
434 | train.AddColumns(fRules);
|
---|
435 | train.AddColumn("MHadronness.fVal");
|
---|
436 |
|
---|
437 | // ----------------------- Fill Matrix RF ----------------------
|
---|
438 |
|
---|
439 | MParameterD had("MHadronness");
|
---|
440 |
|
---|
441 | MParList plistx;
|
---|
442 | plistx.AddToList(&had);
|
---|
443 | plistx.AddToList(this);
|
---|
444 |
|
---|
445 | MTFillMatrix fill;
|
---|
446 | fill.SetLogStream(fLog);
|
---|
447 | fill.SetDisplay(fDisplay);
|
---|
448 | fill.AddPreCuts(fPreCuts);
|
---|
449 | fill.AddPreCuts(fTrainCuts);
|
---|
450 |
|
---|
451 | // Set classifier for gammas
|
---|
452 | had.SetVal(0);
|
---|
453 | fill.SetName("FillGammas");
|
---|
454 | fill.SetDestMatrix1(&train, fNumTrainOn);
|
---|
455 | fill.SetReader(&read1);
|
---|
456 | if (!fill.Process(plistx))
|
---|
457 | return kFALSE;
|
---|
458 |
|
---|
459 | // Set classifier for hadrons
|
---|
460 | had.SetVal(1);
|
---|
461 | fill.SetName("FillBackground");
|
---|
462 | fill.SetDestMatrix1(&train, fNumTrainOff);
|
---|
463 | fill.SetReader(&read3);
|
---|
464 | if (!fill.Process(plistx))
|
---|
465 | return kFALSE;
|
---|
466 |
|
---|
467 | // ------------------------ Train RF --------------------------
|
---|
468 |
|
---|
469 | MRanForestCalc rf;
|
---|
470 | rf.SetNumTrees(fNumTrees);
|
---|
471 | rf.SetNdSize(fNdSize);
|
---|
472 | rf.SetNumTry(fNumTry);
|
---|
473 | rf.SetNumObsoleteVariables(1);
|
---|
474 | rf.SetDebug(fDebug);
|
---|
475 | rf.SetDisplay(fDisplay);
|
---|
476 | rf.SetLogStream(fLog);
|
---|
477 | rf.SetFileName(out);
|
---|
478 | rf.SetNameOutput("MHadronness");
|
---|
479 |
|
---|
480 | //MBinning b(2, -0.5, 1.5, "BinningHadronness", "lin");
|
---|
481 |
|
---|
482 | //if (!rf.TrainMultiRF(train, b.GetEdgesD())) // classification
|
---|
483 | // return;
|
---|
484 |
|
---|
485 | //if (!rf.TrainSingleRF(train, b.GetEdgesD())) // classification
|
---|
486 | // return;
|
---|
487 |
|
---|
488 | if (!rf.TrainSingleRF(train)) // regression
|
---|
489 | return kFALSE;
|
---|
490 |
|
---|
491 | //fDisplay = rf.GetDisplay();
|
---|
492 |
|
---|
493 | // --------------------- Display result ----------------------
|
---|
494 | gLog.Separator("Test");
|
---|
495 |
|
---|
496 | MParList plist;
|
---|
497 | MTaskList tlist;
|
---|
498 | plist.AddToList(this);
|
---|
499 | plist.AddToList(&tlist);
|
---|
500 |
|
---|
501 | MMcEvt mcevt;
|
---|
502 | plist.AddToList(&mcevt);
|
---|
503 |
|
---|
504 | // ----- Setup histograms -----
|
---|
505 | MBinning binsy(100, 0 , 1, "BinningMH3Y", "lin");
|
---|
506 | MBinning binsx( 50, 10, 100000, "BinningMH3X", "log");
|
---|
507 |
|
---|
508 | plist.AddToList(&binsx);
|
---|
509 | plist.AddToList(&binsy);
|
---|
510 |
|
---|
511 | MH3 h31("MHillas.fSize", "MHadronness.fVal");
|
---|
512 | MH3 h32("MHillas.fSize", "MHadronness.fVal");
|
---|
513 | h31.SetTitle("Background probability vs. Size:Size [phe]:Hadronness");
|
---|
514 | h32.SetTitle("Background probability vs. Size:Size [phe]:Hadronness");
|
---|
515 |
|
---|
516 | MHHadronness hist;
|
---|
517 |
|
---|
518 | // ----- Setup tasks -----
|
---|
519 | MFillH fillh0(&hist, "", "FillHadronness");
|
---|
520 | MFillH fillh1(&h31);
|
---|
521 | MFillH fillh2(&h32);
|
---|
522 | fillh1.SetNameTab("Background");
|
---|
523 | fillh2.SetNameTab("Gammas");
|
---|
524 | fillh0.SetBit(MFillH::kDoNotDisplay);
|
---|
525 |
|
---|
526 | // ----- Setup filter -----
|
---|
527 | MFilterList precuts;
|
---|
528 | precuts.AddToList(fPreCuts);
|
---|
529 | precuts.AddToList(fTestCuts);
|
---|
530 |
|
---|
531 | MContinue c0(&precuts);
|
---|
532 | c0.SetName("PreCuts");
|
---|
533 | c0.SetInverted();
|
---|
534 |
|
---|
535 | MFEventSelector sel;
|
---|
536 | sel.SetNumSelectEvts(fNumTestOn);
|
---|
537 |
|
---|
538 | MContinue c1(&sel);
|
---|
539 | c1.SetInverted();
|
---|
540 |
|
---|
541 | // ----- Setup tasklist -----
|
---|
542 | tlist.AddToList(&read2);
|
---|
543 | tlist.AddToList(&c0);
|
---|
544 | tlist.AddToList(&c1);
|
---|
545 | tlist.AddToList(&rf);
|
---|
546 | tlist.AddToList(&fillh0);
|
---|
547 | tlist.AddToList(&fillh1);
|
---|
548 |
|
---|
549 | // ----- Run eventloop on gammas -----
|
---|
550 | MEvtLoop loop;
|
---|
551 | loop.SetDisplay(fDisplay);
|
---|
552 | loop.SetLogStream(fLog);
|
---|
553 | loop.SetParList(&plist);
|
---|
554 |
|
---|
555 | if (!loop.Eventloop())
|
---|
556 | return kFALSE;
|
---|
557 |
|
---|
558 | // ----- Setup and run eventloop on background -----
|
---|
559 | sel.SetNumSelectEvts(fNumTestOff);
|
---|
560 | fillh0.ResetBit(MFillH::kDoNotDisplay);
|
---|
561 |
|
---|
562 | tlist.Replace(&read4);
|
---|
563 | tlist.Replace(&fillh2);
|
---|
564 |
|
---|
565 | if (!loop.Eventloop())
|
---|
566 | return kFALSE;
|
---|
567 |
|
---|
568 | DisplayResult(h31, h32);
|
---|
569 |
|
---|
570 | if (!WriteDisplay(out))
|
---|
571 | return kFALSE;
|
---|
572 |
|
---|
573 | return kTRUE;
|
---|
574 | }
|
---|
575 |
|
---|