| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz 11/2005 <mailto:tbretz@astro.uni-wuerzburg.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2006
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MJTrainSeparation
|
|---|
| 28 | //
|
|---|
| 29 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 30 | #include "MJTrainSeparation.h"
|
|---|
| 31 |
|
|---|
| 32 | #include <TF1.h>
|
|---|
| 33 | #include <TH2.h>
|
|---|
| 34 | #include <TChain.h>
|
|---|
| 35 | #include <TGraph.h>
|
|---|
| 36 | #include <TVirtualPad.h>
|
|---|
| 37 |
|
|---|
| 38 | #include "MHMatrix.h"
|
|---|
| 39 |
|
|---|
| 40 | #include "MLog.h"
|
|---|
| 41 | #include "MLogManip.h"
|
|---|
| 42 |
|
|---|
| 43 | // tools
|
|---|
| 44 | #include "MMath.h"
|
|---|
| 45 | #include "MDataSet.h"
|
|---|
| 46 | #include "MTFillMatrix.h"
|
|---|
| 47 | #include "MChisqEval.h"
|
|---|
| 48 | #include "MStatusDisplay.h"
|
|---|
| 49 |
|
|---|
| 50 | // eventloop
|
|---|
| 51 | #include "MParList.h"
|
|---|
| 52 | #include "MTaskList.h"
|
|---|
| 53 | #include "MEvtLoop.h"
|
|---|
| 54 |
|
|---|
| 55 | // tasks
|
|---|
| 56 | #include "MReadMarsFile.h"
|
|---|
| 57 | #include "MContinue.h"
|
|---|
| 58 | #include "MFillH.h"
|
|---|
| 59 | #include "MRanForestCalc.h"
|
|---|
| 60 | #include "MParameterCalc.h"
|
|---|
| 61 |
|
|---|
| 62 | // container
|
|---|
| 63 | #include "MMcEvt.hxx"
|
|---|
| 64 | #include "MParameters.h"
|
|---|
| 65 |
|
|---|
| 66 | // histograms
|
|---|
| 67 | #include "MBinning.h"
|
|---|
| 68 | #include "MH3.h"
|
|---|
| 69 | #include "MHHadronness.h"
|
|---|
| 70 |
|
|---|
| 71 | // filter
|
|---|
| 72 | #include "MF.h"
|
|---|
| 73 | #include "MFEventSelector.h"
|
|---|
| 74 | #include "MFilterList.h"
|
|---|
| 75 |
|
|---|
| 76 | ClassImp(MJTrainSeparation);
|
|---|
| 77 |
|
|---|
| 78 | using namespace std;
|
|---|
| 79 |
|
|---|
| 80 | void MJTrainSeparation::DisplayResult(MH3 &h31, MH3 &h32)
|
|---|
| 81 | {
|
|---|
| 82 | TH2 &g = (TH2&)h32.GetHist();
|
|---|
| 83 | TH2 &h = (TH2&)h31.GetHist();
|
|---|
| 84 |
|
|---|
| 85 | h.SetMarkerColor(kRed);
|
|---|
| 86 | g.SetMarkerColor(kGreen);
|
|---|
| 87 |
|
|---|
| 88 | const Int_t nx = h.GetNbinsX();
|
|---|
| 89 | const Int_t ny = h.GetNbinsY();
|
|---|
| 90 |
|
|---|
| 91 | gROOT->SetSelectedPad(NULL);
|
|---|
| 92 |
|
|---|
| 93 | TGraph gr1;
|
|---|
| 94 | TGraph gr2;
|
|---|
| 95 | for (int x=0; x<nx; x++)
|
|---|
| 96 | {
|
|---|
| 97 | TH1 *hx = h.ProjectionY("H_py", x+1, x+1);
|
|---|
| 98 | TH1 *gx = g.ProjectionY("G_py", x+1, x+1);
|
|---|
| 99 |
|
|---|
| 100 | Double_t max1 = -1;
|
|---|
| 101 | Double_t max2 = -1;
|
|---|
| 102 | Int_t maxy1 = 0;
|
|---|
| 103 | Int_t maxy2 = 0;
|
|---|
| 104 | for (int y=0; y<ny; y++)
|
|---|
| 105 | {
|
|---|
| 106 | const Float_t s = gx->Integral(1, y+1);
|
|---|
| 107 | const Float_t b = hx->Integral(1, y+1);
|
|---|
| 108 | const Float_t sig1 = MMath::SignificanceLiMa(s+b, b);
|
|---|
| 109 | const Float_t sig2 = s<1 ? 0 : MMath::SignificanceLiMa(s+b, b)*TMath::Log10(s);
|
|---|
| 110 | if (sig1>max1)
|
|---|
| 111 | {
|
|---|
| 112 | maxy1 = y;
|
|---|
| 113 | max1 = sig1;
|
|---|
| 114 | }
|
|---|
| 115 | if (sig2>max2)
|
|---|
| 116 | {
|
|---|
| 117 | maxy2 = y;
|
|---|
| 118 | max2 = sig2;
|
|---|
| 119 | }
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 | gr1.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy1+1));
|
|---|
| 123 | gr2.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy2+1));
|
|---|
| 124 |
|
|---|
| 125 | delete hx;
|
|---|
| 126 | delete gx;
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 | fDisplay->AddTab("OptCut");
|
|---|
| 130 | gPad->SetLogx();
|
|---|
| 131 | h.DrawCopy();
|
|---|
| 132 | g.DrawCopy("same");
|
|---|
| 133 | gr1.SetMarkerStyle(kFullDotMedium);
|
|---|
| 134 | gr1.DrawClone("LP")->SetBit(kCanDelete);
|
|---|
| 135 | gr2.SetLineColor(kBlue);
|
|---|
| 136 | gr2.SetMarkerStyle(kFullDotMedium);
|
|---|
| 137 | gr2.DrawClone("LP")->SetBit(kCanDelete);
|
|---|
| 138 | }
|
|---|
| 139 |
|
|---|
| 140 | /*
|
|---|
| 141 | Bool_t MJSpectrum::InitWeighting(const MDataSet &set, MMcSpectrumWeight &w) const
|
|---|
| 142 | {
|
|---|
| 143 | fLog->Separator("Initialize energy weighting");
|
|---|
| 144 |
|
|---|
| 145 | if (!CheckEnv(w))
|
|---|
| 146 | {
|
|---|
| 147 | *fLog << err << "ERROR - Reading resources for MMcSpectrumWeight failed." << endl;
|
|---|
| 148 | return kFALSE;
|
|---|
| 149 | }
|
|---|
| 150 |
|
|---|
| 151 | TChain chain("RunHeaders");
|
|---|
| 152 | set.AddFilesOn(chain);
|
|---|
| 153 |
|
|---|
| 154 | MMcCorsikaRunHeader *h=0;
|
|---|
| 155 | chain.SetBranchAddress("MMcCorsikaRunHeader.", &h);
|
|---|
| 156 | chain.GetEntry(1);
|
|---|
| 157 |
|
|---|
| 158 | if (!h)
|
|---|
| 159 | {
|
|---|
| 160 | *fLog << err << "ERROR - Couldn't read MMcCorsikaRunHeader from DataSet." << endl;
|
|---|
| 161 | return kFALSE;
|
|---|
| 162 | }
|
|---|
| 163 |
|
|---|
| 164 | if (!w.Set(*h))
|
|---|
| 165 | {
|
|---|
| 166 | *fLog << err << "ERROR - Initializing MMcSpectrumWeight failed." << endl;
|
|---|
| 167 | return kFALSE;
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 | w.Print();
|
|---|
| 171 | return kTRUE;
|
|---|
| 172 | }
|
|---|
| 173 |
|
|---|
| 174 | Bool_t MJSpectrum::ReadOrigMCDistribution(const MDataSet &set, TH1 &h, MMcSpectrumWeight &weight) const
|
|---|
| 175 | {
|
|---|
| 176 | // Some debug output
|
|---|
| 177 | fLog->Separator("Compiling original MC distribution");
|
|---|
| 178 |
|
|---|
| 179 | weight.SetNameMcEvt("MMcEvtBasic");
|
|---|
| 180 | const TString w(weight.GetFormulaWeights());
|
|---|
| 181 | weight.SetNameMcEvt();
|
|---|
| 182 |
|
|---|
| 183 | *fLog << inf << "Using weights: " << w << endl;
|
|---|
| 184 | *fLog << "Please stand by, this may take a while..." << flush;
|
|---|
| 185 |
|
|---|
| 186 | if (fDisplay)
|
|---|
| 187 | fDisplay->SetStatusLine1("Compiling MC distribution...");
|
|---|
| 188 |
|
|---|
| 189 | // Create chain
|
|---|
| 190 | TChain chain("OriginalMC");
|
|---|
| 191 | set.AddFilesOn(chain);
|
|---|
| 192 |
|
|---|
| 193 | // Prepare histogram
|
|---|
| 194 | h.Reset();
|
|---|
| 195 |
|
|---|
| 196 | // Fill histogram from chain
|
|---|
| 197 | h.SetDirectory(gROOT);
|
|---|
| 198 | if (h.InheritsFrom(TH2::Class()))
|
|---|
| 199 | {
|
|---|
| 200 | h.SetNameTitle("ThetaEMC", "Event-Distribution vs Theta and Energy for MC (produced)");
|
|---|
| 201 | h.SetXTitle("\\Theta [\\circ]");
|
|---|
| 202 | h.SetYTitle("E [GeV]");
|
|---|
| 203 | h.SetZTitle("Counts");
|
|---|
| 204 | chain.Draw("MMcEvtBasic.fEnergy:MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaEMC", w, "goff");
|
|---|
| 205 | }
|
|---|
| 206 | else
|
|---|
| 207 | {
|
|---|
| 208 | h.SetNameTitle("ThetaMC", "Event-Distribution vs Theta for MC (produced)");
|
|---|
| 209 | h.SetXTitle("\\Theta [\\circ]");
|
|---|
| 210 | h.SetYTitle("Counts");
|
|---|
| 211 | chain.Draw("MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaMC", w, "goff");
|
|---|
| 212 | }
|
|---|
| 213 | h.SetDirectory(0);
|
|---|
| 214 |
|
|---|
| 215 | *fLog << "done." << endl;
|
|---|
| 216 | if (fDisplay)
|
|---|
| 217 | fDisplay->SetStatusLine2("done.");
|
|---|
| 218 |
|
|---|
| 219 | if (h.GetEntries()>0)
|
|---|
| 220 | return kTRUE;
|
|---|
| 221 |
|
|---|
| 222 | *fLog << err << "ERROR - Histogram with original MC distribution empty..." << endl;
|
|---|
| 223 |
|
|---|
| 224 | return h.GetEntries()>0;
|
|---|
| 225 | }
|
|---|
| 226 | */
|
|---|
| 227 |
|
|---|
| 228 | Bool_t MJTrainSeparation::GetEventsProduced(MDataSet &set, Double_t &num, Double_t &min, Double_t &max) const
|
|---|
| 229 | {
|
|---|
| 230 | TChain chain("OriginalMC");
|
|---|
| 231 | set.AddFilesOn(chain);
|
|---|
| 232 |
|
|---|
| 233 | min = chain.GetMinimum("MMcEvtBasic.fEnergy");
|
|---|
| 234 | max = chain.GetMaximum("MMcEvtBasic.fEnergy");
|
|---|
| 235 |
|
|---|
| 236 | num = chain.GetEntries();
|
|---|
| 237 |
|
|---|
| 238 | if (num<100)
|
|---|
| 239 | *fLog << err << "ERROR - Less than 100 entries in OriginalMC-Tree of MC-Train-Data found." << endl;
|
|---|
| 240 |
|
|---|
| 241 | return num>=100;
|
|---|
| 242 | }
|
|---|
| 243 |
|
|---|
| 244 | Double_t MJTrainSeparation::GetDataRate(MDataSet &set) const
|
|---|
| 245 | {
|
|---|
| 246 | TChain chain1("Events");
|
|---|
| 247 | set.AddFilesOff(chain1);
|
|---|
| 248 |
|
|---|
| 249 | const Double_t num = chain1.GetEntries();
|
|---|
| 250 | if (num<100)
|
|---|
| 251 | {
|
|---|
| 252 | *fLog << err << "ERROR - Less than 100 entries in Events-Tree of Train-Data found." << endl;
|
|---|
| 253 | return -1;
|
|---|
| 254 | }
|
|---|
| 255 |
|
|---|
| 256 | TChain chain("EffectiveOnTime");
|
|---|
| 257 | set.AddFilesOff(chain);
|
|---|
| 258 |
|
|---|
| 259 | TH1F h;
|
|---|
| 260 | h.SetDirectory(gROOT);
|
|---|
| 261 | h.SetNameTitle("OnTime", "Effective on-time");
|
|---|
| 262 | chain.Draw("MEffectiveOnTime.fVal>>OnTime", "", "goff");
|
|---|
| 263 | h.SetDirectory(0);
|
|---|
| 264 |
|
|---|
| 265 | if (h.Integral()<1)
|
|---|
| 266 | {
|
|---|
| 267 | *fLog << err << "ERROR - Less than 1s of effective observation time found in Train-Data." << endl;
|
|---|
| 268 | return -1;
|
|---|
| 269 | }
|
|---|
| 270 |
|
|---|
| 271 | *fLog << inf << "Found " << num << " events in " << h.Integral();
|
|---|
| 272 | *fLog << "s (" << num/h.Integral() << "Hz)" << endl;
|
|---|
| 273 |
|
|---|
| 274 | return num/h.Integral();
|
|---|
| 275 | }
|
|---|
| 276 |
|
|---|
| 277 | /*
|
|---|
| 278 | Scale:
|
|---|
| 279 |
|
|---|
| 280 |
|
|---|
| 281 | TF1 fold("old", "x^(-2.6)", emin, emax);
|
|---|
| 282 | TF1 fnew("new", "x^(-4.0)", emin, emax);
|
|---|
| 283 |
|
|---|
| 284 | TF1 q("q", "new/old", emin, emax);
|
|---|
| 285 |
|
|---|
| 286 | Double_t scale = 1./q.GetMaximum(emin, emax);
|
|---|
| 287 |
|
|---|
| 288 | // Anzahl produzierter Events vor MFEnergySlope:
|
|---|
| 289 | Double_t nold = fold.Integral(emin, emax);
|
|---|
| 290 |
|
|---|
| 291 | // Anzahl produzierter Events nach MFEnergySlope:
|
|---|
| 292 | Double_t nnew = fnew.Integral(emin, emax)*scale;
|
|---|
| 293 |
|
|---|
| 294 | class MFSpectrum : MMcSpectrumWeight
|
|---|
| 295 | {
|
|---|
| 296 | Double_t fScale;
|
|---|
| 297 | Bool_t fResult;
|
|---|
| 298 |
|
|---|
| 299 | MFSpectrum::MFSpectrum(const char *name, const char *title)
|
|---|
| 300 | {
|
|---|
| 301 | fName = name ? name : "MMcSpectrumWeight";
|
|---|
| 302 | fTitle = title ? title : "Task to calculate weights to change the energy spectrum";
|
|---|
| 303 |
|
|---|
| 304 | Init(fName, fTitle);
|
|---|
| 305 |
|
|---|
| 306 | }
|
|---|
| 307 |
|
|---|
| 308 | Int_t PreProcess(MParList *pList)
|
|---|
| 309 | {
|
|---|
| 310 | Int_t rc = MFSpectrumWeight::PreProcess(pList);
|
|---|
| 311 | if (rc!=kTRUE)
|
|---|
| 312 | return rc;
|
|---|
| 313 |
|
|---|
| 314 | fScale = fEval->GetMaximum(fEnergyMin, fEnergyMax);
|
|---|
| 315 |
|
|---|
| 316 | return kTRUE;
|
|---|
| 317 | }
|
|---|
| 318 |
|
|---|
| 319 | Int_t Process()
|
|---|
| 320 | {
|
|---|
| 321 | const Double_t e = fMcEvt->GetEnergy();
|
|---|
| 322 |
|
|---|
| 323 | Double_t prob = fFunc->Eval(e)/fScale;
|
|---|
| 324 |
|
|---|
| 325 | const Float_t Nexp = fN0 * pow(energy,fMcSlope-fNewSlope);
|
|---|
| 326 | const Float_t Nrnd = ;
|
|---|
| 327 |
|
|---|
| 328 | fResult = Nexp >= gRandom->Uniform();
|
|---|
| 329 | }
|
|---|
| 330 |
|
|---|
| 331 | }
|
|---|
| 332 |
|
|---|
| 333 |
|
|---|
| 334 | */
|
|---|
| 335 |
|
|---|
| 336 | Bool_t MJTrainSeparation::AutoTrain()
|
|---|
| 337 | {
|
|---|
| 338 | Double_t num, min, max;
|
|---|
| 339 | if (!GetEventsProduced(fDataSetTrain, num, min, max))
|
|---|
| 340 | return kFALSE;
|
|---|
| 341 |
|
|---|
| 342 | *fLog << inf << "Using build-in radius of 300m to calculate collection area!" << endl;
|
|---|
| 343 |
|
|---|
| 344 | // Target spectrum
|
|---|
| 345 | TF1 flx("Flux", "[0]*(x/1000)^(-2.6)", min, max);
|
|---|
| 346 | flx.SetParameter(0, 1e-5);
|
|---|
| 347 |
|
|---|
| 348 | // Number n0 of events this spectrum would produce per s and m^2
|
|---|
| 349 | const Double_t n0 = flx.Integral(min, max); //[#]
|
|---|
| 350 |
|
|---|
| 351 | // Area produced in MC
|
|---|
| 352 | const Double_t A = TMath::Pi()*300*300; //[m²]
|
|---|
| 353 |
|
|---|
| 354 | // Rate R of events this spectrum would produce per s
|
|---|
| 355 | const Double_t R = n0*A; //[Hz]
|
|---|
| 356 |
|
|---|
| 357 | // Number N of events produced (in trainings sample)
|
|---|
| 358 | const Double_t N = num; //[#]
|
|---|
| 359 |
|
|---|
| 360 | // This correponds to an observation time T [s]
|
|---|
| 361 | const Double_t T = N/R; //[s]
|
|---|
| 362 |
|
|---|
| 363 | // With an average data rate after star of
|
|---|
| 364 | const Double_t r = GetDataRate(fDataSetTrain); //[Hz]
|
|---|
| 365 |
|
|---|
| 366 | // this yields a number of n events to be read for training
|
|---|
| 367 | const Double_t n = r*T; //[#]
|
|---|
| 368 |
|
|---|
| 369 | if (r<0)
|
|---|
| 370 | return kFALSE;
|
|---|
| 371 |
|
|---|
| 372 | *fLog << "Calculated a total Monte Carlo observation time of " << T << "s" << endl;
|
|---|
| 373 | *fLog << "For a data rate of " << r << "Hz this corresponds to " << n << " data events." << endl;
|
|---|
| 374 |
|
|---|
| 375 | fNumTrainOn = (UInt_t)-1;
|
|---|
| 376 | fNumTrainOff = TMath::Nint(n);
|
|---|
| 377 |
|
|---|
| 378 | /*
|
|---|
| 379 | An event rate dependent selection?
|
|---|
| 380 | ----------------------------------
|
|---|
| 381 | Total average data rate: R
|
|---|
| 382 | Goal number of events: N
|
|---|
| 383 | Number of data events: N0
|
|---|
| 384 | Rate assigned to single evt: r
|
|---|
| 385 |
|
|---|
| 386 | Selection probability: N/N0 * r/R
|
|---|
| 387 |
|
|---|
| 388 | f := N/N0 * r
|
|---|
| 389 |
|
|---|
| 390 | MF f("f * MEventRate.fRate < rand");
|
|---|
| 391 | */
|
|---|
| 392 |
|
|---|
| 393 |
|
|---|
| 394 | return kTRUE;
|
|---|
| 395 | }
|
|---|
| 396 |
|
|---|
| 397 | Bool_t MJTrainSeparation::Train(const char *out)
|
|---|
| 398 | {
|
|---|
| 399 | if (!fDataSetTrain.IsValid())
|
|---|
| 400 | {
|
|---|
| 401 | *fLog << err << "ERROR - DataSet for training invalid!" << endl;
|
|---|
| 402 | return kFALSE;
|
|---|
| 403 | }
|
|---|
| 404 | if (!fDataSetTest.IsValid())
|
|---|
| 405 | {
|
|---|
| 406 | *fLog << err << "ERROR - DataSet for testing invalid!" << endl;
|
|---|
| 407 | return kFALSE;
|
|---|
| 408 | }
|
|---|
| 409 |
|
|---|
| 410 | // ----------------------- Auto Train? ----------------------
|
|---|
| 411 |
|
|---|
| 412 | if (fAutoTrain)
|
|---|
| 413 | if (!AutoTrain())
|
|---|
| 414 | return kFALSE;
|
|---|
| 415 |
|
|---|
| 416 | // --------------------- Setup files --------------------
|
|---|
| 417 | MReadMarsFile read1("Events");
|
|---|
| 418 | MReadMarsFile read2("Events");
|
|---|
| 419 | MReadMarsFile read3("Events");
|
|---|
| 420 | MReadMarsFile read4("Events");
|
|---|
| 421 | read1.DisableAutoScheme();
|
|---|
| 422 | read2.DisableAutoScheme();
|
|---|
| 423 | read3.DisableAutoScheme();
|
|---|
| 424 | read4.DisableAutoScheme();
|
|---|
| 425 |
|
|---|
| 426 | fDataSetTrain.AddFilesOn(read1);
|
|---|
| 427 | fDataSetTrain.AddFilesOff(read3);
|
|---|
| 428 |
|
|---|
| 429 | fDataSetTest.AddFilesOff(read2);
|
|---|
| 430 | fDataSetTest.AddFilesOn(read4);
|
|---|
| 431 |
|
|---|
| 432 | // ----------------------- Setup RF ----------------------
|
|---|
| 433 | MHMatrix train("Train");
|
|---|
| 434 | train.AddColumns(fRules);
|
|---|
| 435 | train.AddColumn("MHadronness.fVal");
|
|---|
| 436 |
|
|---|
| 437 | // ----------------------- Fill Matrix RF ----------------------
|
|---|
| 438 |
|
|---|
| 439 | MParameterD had("MHadronness");
|
|---|
| 440 |
|
|---|
| 441 | MParList plistx;
|
|---|
| 442 | plistx.AddToList(&had);
|
|---|
| 443 | plistx.AddToList(this);
|
|---|
| 444 |
|
|---|
| 445 | MTFillMatrix fill;
|
|---|
| 446 | fill.SetLogStream(fLog);
|
|---|
| 447 | fill.SetDisplay(fDisplay);
|
|---|
| 448 | fill.AddPreCuts(fPreCuts);
|
|---|
| 449 | fill.AddPreCuts(fTrainCuts);
|
|---|
| 450 |
|
|---|
| 451 | // Set classifier for gammas
|
|---|
| 452 | had.SetVal(0);
|
|---|
| 453 | fill.SetName("FillGammas");
|
|---|
| 454 | fill.SetDestMatrix1(&train, fNumTrainOn);
|
|---|
| 455 | fill.SetReader(&read1);
|
|---|
| 456 | if (!fill.Process(plistx))
|
|---|
| 457 | return kFALSE;
|
|---|
| 458 |
|
|---|
| 459 | // Set classifier for hadrons
|
|---|
| 460 | had.SetVal(1);
|
|---|
| 461 | fill.SetName("FillBackground");
|
|---|
| 462 | fill.SetDestMatrix1(&train, fNumTrainOff);
|
|---|
| 463 | fill.SetReader(&read3);
|
|---|
| 464 | if (!fill.Process(plistx))
|
|---|
| 465 | return kFALSE;
|
|---|
| 466 |
|
|---|
| 467 | // ------------------------ Train RF --------------------------
|
|---|
| 468 |
|
|---|
| 469 | MRanForestCalc rf;
|
|---|
| 470 | rf.SetNumTrees(fNumTrees);
|
|---|
| 471 | rf.SetNdSize(fNdSize);
|
|---|
| 472 | rf.SetNumTry(fNumTry);
|
|---|
| 473 | rf.SetNumObsoleteVariables(1);
|
|---|
| 474 | rf.SetDebug(fDebug);
|
|---|
| 475 | rf.SetDisplay(fDisplay);
|
|---|
| 476 | rf.SetLogStream(fLog);
|
|---|
| 477 | rf.SetFileName(out);
|
|---|
| 478 | rf.SetNameOutput("MHadronness");
|
|---|
| 479 |
|
|---|
| 480 | //MBinning b(2, -0.5, 1.5, "BinningHadronness", "lin");
|
|---|
| 481 |
|
|---|
| 482 | //if (!rf.TrainMultiRF(train, b.GetEdgesD())) // classification
|
|---|
| 483 | // return;
|
|---|
| 484 |
|
|---|
| 485 | //if (!rf.TrainSingleRF(train, b.GetEdgesD())) // classification
|
|---|
| 486 | // return;
|
|---|
| 487 |
|
|---|
| 488 | if (!rf.TrainSingleRF(train)) // regression
|
|---|
| 489 | return kFALSE;
|
|---|
| 490 |
|
|---|
| 491 | //fDisplay = rf.GetDisplay();
|
|---|
| 492 |
|
|---|
| 493 | // --------------------- Display result ----------------------
|
|---|
| 494 | gLog.Separator("Test");
|
|---|
| 495 |
|
|---|
| 496 | MParList plist;
|
|---|
| 497 | MTaskList tlist;
|
|---|
| 498 | plist.AddToList(this);
|
|---|
| 499 | plist.AddToList(&tlist);
|
|---|
| 500 |
|
|---|
| 501 | MMcEvt mcevt;
|
|---|
| 502 | plist.AddToList(&mcevt);
|
|---|
| 503 |
|
|---|
| 504 | // ----- Setup histograms -----
|
|---|
| 505 | MBinning binsy(100, 0 , 1, "BinningMH3Y", "lin");
|
|---|
| 506 | MBinning binsx( 50, 10, 100000, "BinningMH3X", "log");
|
|---|
| 507 |
|
|---|
| 508 | plist.AddToList(&binsx);
|
|---|
| 509 | plist.AddToList(&binsy);
|
|---|
| 510 |
|
|---|
| 511 | MH3 h31("MHillas.fSize", "MHadronness.fVal");
|
|---|
| 512 | MH3 h32("MHillas.fSize", "MHadronness.fVal");
|
|---|
| 513 | h31.SetTitle("Background probability vs. Size:Size [phe]:Hadronness");
|
|---|
| 514 | h32.SetTitle("Background probability vs. Size:Size [phe]:Hadronness");
|
|---|
| 515 |
|
|---|
| 516 | MHHadronness hist;
|
|---|
| 517 |
|
|---|
| 518 | // ----- Setup tasks -----
|
|---|
| 519 | MFillH fillh0(&hist, "", "FillHadronness");
|
|---|
| 520 | MFillH fillh1(&h31);
|
|---|
| 521 | MFillH fillh2(&h32);
|
|---|
| 522 | fillh1.SetNameTab("Background");
|
|---|
| 523 | fillh2.SetNameTab("Gammas");
|
|---|
| 524 | fillh0.SetBit(MFillH::kDoNotDisplay);
|
|---|
| 525 |
|
|---|
| 526 | // ----- Setup filter -----
|
|---|
| 527 | MFilterList precuts;
|
|---|
| 528 | precuts.AddToList(fPreCuts);
|
|---|
| 529 | precuts.AddToList(fTestCuts);
|
|---|
| 530 |
|
|---|
| 531 | MContinue c0(&precuts);
|
|---|
| 532 | c0.SetName("PreCuts");
|
|---|
| 533 | c0.SetInverted();
|
|---|
| 534 |
|
|---|
| 535 | MFEventSelector sel;
|
|---|
| 536 | sel.SetNumSelectEvts(fNumTestOn);
|
|---|
| 537 |
|
|---|
| 538 | MContinue c1(&sel);
|
|---|
| 539 | c1.SetInverted();
|
|---|
| 540 |
|
|---|
| 541 | // ----- Setup tasklist -----
|
|---|
| 542 | tlist.AddToList(&read2);
|
|---|
| 543 | tlist.AddToList(&c0);
|
|---|
| 544 | tlist.AddToList(&c1);
|
|---|
| 545 | tlist.AddToList(&rf);
|
|---|
| 546 | tlist.AddToList(&fillh0);
|
|---|
| 547 | tlist.AddToList(&fillh1);
|
|---|
| 548 |
|
|---|
| 549 | // ----- Run eventloop on gammas -----
|
|---|
| 550 | MEvtLoop loop;
|
|---|
| 551 | loop.SetDisplay(fDisplay);
|
|---|
| 552 | loop.SetLogStream(fLog);
|
|---|
| 553 | loop.SetParList(&plist);
|
|---|
| 554 |
|
|---|
| 555 | if (!loop.Eventloop())
|
|---|
| 556 | return kFALSE;
|
|---|
| 557 |
|
|---|
| 558 | // ----- Setup and run eventloop on background -----
|
|---|
| 559 | sel.SetNumSelectEvts(fNumTestOff);
|
|---|
| 560 | fillh0.ResetBit(MFillH::kDoNotDisplay);
|
|---|
| 561 |
|
|---|
| 562 | tlist.Replace(&read4);
|
|---|
| 563 | tlist.Replace(&fillh2);
|
|---|
| 564 |
|
|---|
| 565 | if (!loop.Eventloop())
|
|---|
| 566 | return kFALSE;
|
|---|
| 567 |
|
|---|
| 568 | DisplayResult(h31, h32);
|
|---|
| 569 |
|
|---|
| 570 | if (!WriteDisplay(out))
|
|---|
| 571 | return kFALSE;
|
|---|
| 572 |
|
|---|
| 573 | return kTRUE;
|
|---|
| 574 | }
|
|---|
| 575 |
|
|---|