source: trunk/MagicSoft/Mars/mjtrain/MJTrainSeparation.cc@ 7717

Last change on this file since 7717 was 7700, checked in by tbretz, 19 years ago
*** empty log message ***
File size: 23.7 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz 11/2005 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: MAGIC Software Development, 2006
21!
22!
23\* ======================================================================== */
24
25/////////////////////////////////////////////////////////////////////////////
26//
27// MJTrainSeparation
28//
29////////////////////////////////////////////////////////////////////////////
30#include "MJTrainSeparation.h"
31
32#include <TF1.h>
33#include <TH2.h>
34#include <TChain.h>
35#include <TGraph.h>
36#include <TMarker.h>
37#include <TCanvas.h>
38#include <TVirtualPad.h>
39
40#include "MHMatrix.h"
41
42#include "MLog.h"
43#include "MLogManip.h"
44
45// tools
46#include "MMath.h"
47#include "MDataSet.h"
48#include "MTFillMatrix.h"
49#include "MStatusDisplay.h"
50
51// eventloop
52#include "MParList.h"
53#include "MTaskList.h"
54#include "MEvtLoop.h"
55
56// tasks
57#include "MReadMarsFile.h"
58#include "MContinue.h"
59#include "MFillH.h"
60#include "MSrcPosRndm.h"
61#include "MHillasCalc.h"
62#include "MRanForestCalc.h"
63#include "MParameterCalc.h"
64
65// container
66#include "MMcEvt.hxx"
67#include "MParameters.h"
68
69// histograms
70#include "MBinning.h"
71#include "MH3.h"
72#include "MHHadronness.h"
73
74// filter
75#include "MF.h"
76#include "MFEventSelector.h"
77#include "MFilterList.h"
78
79ClassImp(MJTrainSeparation);
80
81using namespace std;
82
83void MJTrainSeparation::DisplayResult(MH3 &h31, MH3 &h32)
84{
85 TH2D &g = (TH2D&)h32.GetHist();
86 TH2D &h = (TH2D&)h31.GetHist();
87
88 h.SetMarkerColor(kRed);
89 g.SetMarkerColor(kGreen);
90
91 TH2D res1(g);
92 TH2D res2(g);
93
94 h.SetTitle("Hadronness-Distribution vs. Size");
95 res1.SetTitle("Significance Li/Ma");
96 res1.SetXTitle("Size [phe]");
97 res1.SetYTitle("Hadronness");
98 res2.SetTitle("Significance-Distribution");
99 res2.SetXTitle("Size-Cut [phe]");
100 res2.SetYTitle("Hadronness-Cut");
101 res1.SetContour(50);
102 res2.SetContour(50);
103
104 const Int_t nx = h.GetNbinsX();
105 const Int_t ny = h.GetNbinsY();
106
107 gROOT->SetSelectedPad(NULL);
108
109 TGraph gr1;
110 TGraph gr2;
111 for (int x=0; x<nx; x++)
112 {
113 TH1 *hx = h.ProjectionY("H_py", x+1, x+1);
114 TH1 *gx = g.ProjectionY("G_py", x+1, x+1);
115
116 Double_t max1 = -1;
117 Double_t max2 = -1;
118 Int_t maxy1 = 0;
119 Int_t maxy2 = 0;
120 for (int y=0; y<ny; y++)
121 {
122 const Float_t s = gx->Integral(1, y+1);
123 const Float_t b = hx->Integral(1, y+1);
124 const Float_t sig1 = MMath::SignificanceLiMa(s+b, b);
125 const Float_t sig2 = s<1 ? 0 : MMath::SignificanceLiMa(s+b, b)*TMath::Log10(s+1);
126 if (sig1>max1)
127 {
128 maxy1 = y;
129 max1 = sig1;
130 }
131 if (sig2>max2)
132 {
133 maxy2 = y;
134 max2 = sig2;
135 }
136
137 res1.SetBinContent(x+1, y+1, sig1);
138 }
139
140 gr1.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy1+1));
141 gr2.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy2+1));
142
143 delete hx;
144 delete gx;
145 }
146
147 for (int x=0; x<nx; x++)
148 {
149 TH1 *hx = h.ProjectionY("H_py", x+1);
150 TH1 *gx = g.ProjectionY("G_py", x+1);
151 for (int y=0; y<ny; y++)
152 {
153 const Float_t s = gx->Integral(1, y+1);
154 const Float_t b = hx->Integral(1, y+1);
155 const Float_t sig = MMath::SignificanceLiMa(s+b, b);
156 res2.SetBinContent(x+1, y+1, sig);
157 }
158 delete hx;
159 delete gx;
160 }
161
162 TGraph gr3;
163 TGraph gr4;
164 gr4.SetTitle("Significance Li/Ma vs. Hadronness-cut");
165
166 TH1 *hx = h.ProjectionY("H_py");
167 TH1 *gx = g.ProjectionY("G_py");
168 for (int y=0; y<ny; y++)
169 {
170 const Float_t s = gx->Integral(1, y+1);
171 const Float_t b = hx->Integral(1, y+1);
172 const Float_t sig1 = MMath::SignificanceLiMa(s+b, b);
173 const Float_t sig2 = s<1 ? 0 : MMath::SignificanceLiMa(s+b, b)*TMath::Log10(s);
174
175 gr3.SetPoint(y, h.GetYaxis()->GetBinLowEdge(y+2), sig1);
176 gr4.SetPoint(y, h.GetYaxis()->GetBinLowEdge(y+2), sig2);
177 }
178 delete hx;
179 delete gx;
180
181 TCanvas &c = fDisplay->AddTab("OptCut");
182 c.SetBorderMode(0);
183 c.Divide(2,2);
184
185 c.cd(1);
186 gPad->SetBorderMode(0);
187 gPad->SetFrameBorderMode(0);
188 gPad->SetLogx();
189 gPad->SetGridx();
190 gPad->SetGridy();
191 h.DrawCopy();
192 g.DrawCopy("same");
193 gr1.SetMarkerStyle(kFullDotMedium);
194 gr1.DrawClone("LP")->SetBit(kCanDelete);
195 gr2.SetLineColor(kBlue);
196 gr2.SetMarkerStyle(kFullDotMedium);
197 gr2.DrawClone("LP")->SetBit(kCanDelete);
198
199 c.cd(3);
200 gPad->SetBorderMode(0);
201 gPad->SetFrameBorderMode(0);
202 gPad->SetGridx();
203 gPad->SetGridy();
204 gr4.SetMinimum(0);
205 gr4.SetMarkerStyle(kFullDotMedium);
206 gr4.DrawClone("ALP")->SetBit(kCanDelete);
207 gr3.SetLineColor(kBlue);
208 gr3.SetMarkerStyle(kFullDotMedium);
209 gr3.DrawClone("LP")->SetBit(kCanDelete);
210
211 c.cd(2);
212 gPad->SetBorderMode(0);
213 gPad->SetFrameBorderMode(0);
214 gPad->SetLogx();
215 gPad->SetGridx();
216 gPad->SetGridy();
217 gPad->AddExec("color", "gStyle->SetPalette(1, 0);");
218 res1.SetMaximum(7);
219 res1.DrawCopy("colz");
220
221 c.cd(4);
222 gPad->SetBorderMode(0);
223 gPad->SetFrameBorderMode(0);
224 gPad->SetLogx();
225 gPad->SetGridx();
226 gPad->SetGridy();
227 gPad->AddExec("color", "gStyle->SetPalette(1, 0);");
228 res2.SetMaximum(res2.GetMaximum()*1.05);
229 res2.DrawCopy("colz");
230
231 Int_t mx, my, mz;
232 res2.GetMaximumBin(mx, my, mz);
233
234 TMarker m;
235 m.SetMarkerStyle(kStar);
236 m.DrawMarker(res2.GetXaxis()->GetBinCenter(mx), res2.GetYaxis()->GetBinCenter(my));
237}
238
239/*
240Bool_t MJSpectrum::InitWeighting(const MDataSet &set, MMcSpectrumWeight &w) const
241{
242 fLog->Separator("Initialize energy weighting");
243
244 if (!CheckEnv(w))
245 {
246 *fLog << err << "ERROR - Reading resources for MMcSpectrumWeight failed." << endl;
247 return kFALSE;
248 }
249
250 TChain chain("RunHeaders");
251 set.AddFilesOn(chain);
252
253 MMcCorsikaRunHeader *h=0;
254 chain.SetBranchAddress("MMcCorsikaRunHeader.", &h);
255 chain.GetEntry(1);
256
257 if (!h)
258 {
259 *fLog << err << "ERROR - Couldn't read MMcCorsikaRunHeader from DataSet." << endl;
260 return kFALSE;
261 }
262
263 if (!w.Set(*h))
264 {
265 *fLog << err << "ERROR - Initializing MMcSpectrumWeight failed." << endl;
266 return kFALSE;
267 }
268
269 w.Print();
270 return kTRUE;
271}
272
273Bool_t MJSpectrum::ReadOrigMCDistribution(const MDataSet &set, TH1 &h, MMcSpectrumWeight &weight) const
274{
275 // Some debug output
276 fLog->Separator("Compiling original MC distribution");
277
278 weight.SetNameMcEvt("MMcEvtBasic");
279 const TString w(weight.GetFormulaWeights());
280 weight.SetNameMcEvt();
281
282 *fLog << inf << "Using weights: " << w << endl;
283 *fLog << "Please stand by, this may take a while..." << flush;
284
285 if (fDisplay)
286 fDisplay->SetStatusLine1("Compiling MC distribution...");
287
288 // Create chain
289 TChain chain("OriginalMC");
290 set.AddFilesOn(chain);
291
292 // Prepare histogram
293 h.Reset();
294
295 // Fill histogram from chain
296 h.SetDirectory(gROOT);
297 if (h.InheritsFrom(TH2::Class()))
298 {
299 h.SetNameTitle("ThetaEMC", "Event-Distribution vs Theta and Energy for MC (produced)");
300 h.SetXTitle("\\Theta [\\circ]");
301 h.SetYTitle("E [GeV]");
302 h.SetZTitle("Counts");
303 chain.Draw("MMcEvtBasic.fEnergy:MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaEMC", w, "goff");
304 }
305 else
306 {
307 h.SetNameTitle("ThetaMC", "Event-Distribution vs Theta for MC (produced)");
308 h.SetXTitle("\\Theta [\\circ]");
309 h.SetYTitle("Counts");
310 chain.Draw("MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaMC", w, "goff");
311 }
312 h.SetDirectory(0);
313
314 *fLog << "done." << endl;
315 if (fDisplay)
316 fDisplay->SetStatusLine2("done.");
317
318 if (h.GetEntries()>0)
319 return kTRUE;
320
321 *fLog << err << "ERROR - Histogram with original MC distribution empty..." << endl;
322
323 return h.GetEntries()>0;
324}
325*/
326
327Bool_t MJTrainSeparation::GetEventsProduced(MDataSet &set, Double_t &num, Double_t &min, Double_t &max) const
328{
329 TChain chain("OriginalMC");
330 set.AddFilesOn(chain);
331
332 min = chain.GetMinimum("MMcEvtBasic.fEnergy");
333 max = chain.GetMaximum("MMcEvtBasic.fEnergy");
334
335 num = chain.GetEntries();
336
337 if (num<100)
338 *fLog << err << "ERROR - Less than 100 entries in OriginalMC-Tree of MC-Train-Data found." << endl;
339
340 return num>=100;
341}
342
343Double_t MJTrainSeparation::GetDataRate(MDataSet &set, Double_t &num) const
344{
345 TChain chain1("Events");
346 set.AddFilesOff(chain1);
347
348 num = chain1.GetEntries();
349 if (num<100)
350 {
351 *fLog << err << "ERROR - Less than 100 entries in Events-Tree of Train-Data found." << endl;
352 return -1;
353 }
354
355 TChain chain("EffectiveOnTime");
356 set.AddFilesOff(chain);
357
358 chain.Draw("MEffectiveOnTime.fVal", "MEffectiveOnTime.fVal", "goff");
359
360 TH1 *h = dynamic_cast<TH1*>(gROOT->FindObject("htemp"));
361 if (!h)
362 {
363 *fLog << err << "ERROR - Weird things are happening (htemp not found)!" << endl;
364 return -1;
365 }
366
367 const Double_t ontime = h->Integral();
368 delete h;
369
370 if (ontime<1)
371 {
372 *fLog << err << "ERROR - Less than 1s of effective observation time found in Train-Data." << endl;
373 return -1;
374 }
375
376 return num/ontime;
377}
378
379Double_t MJTrainSeparation::GetNumMC(MDataSet &set) const
380{
381 TChain chain1("Events");
382 set.AddFilesOn(chain1);
383
384 const Double_t num = chain1.GetEntries();
385 if (num<100)
386 {
387 *fLog << err << "ERROR - Less than 100 entries in Events-Tree of Train-Data found." << endl;
388 return -1;
389 }
390
391 return num;
392}
393
394Bool_t MJTrainSeparation::AutoTrain(MDataSet &set, UInt_t &seton, UInt_t &setoff)
395{
396 Double_t num, min, max;
397 if (!GetEventsProduced(set, num, min, max))
398 return kFALSE;
399
400 *fLog << inf << "Using build-in radius of 300m to calculate collection area!" << endl;
401
402 // Target spectrum
403 TF1 flx("Flux", "[0]/1000*(x/1000)^(-2.6)", min, max);
404 flx.SetParameter(0, fFlux);
405
406 // Number n0 of events this spectrum would produce per s and m^2
407 const Double_t n0 = flx.Integral(min, max); //[#]
408
409 // Area produced in MC
410 const Double_t A = TMath::Pi()*300*300; //[m²]
411
412 // Rate R of events this spectrum would produce per s
413 const Double_t R = n0*A; //[Hz]
414
415 *fLog << "Gamma rate from the source inside the MC production area: " << R << "Hz" << endl;
416
417 // Number N of events produced (in trainings sample)
418 const Double_t N = num; //[#]
419
420 *fLog << "Events produced by MC inside the production area: " << TMath::Nint(num) << endl;
421
422 // This correponds to an observation time T [s]
423 const Double_t T = N/R; //[s]
424
425 *fLog << "Total time produced by the Monte Carlo: " << T << "s" << endl;
426
427 // With an average data rate after star of
428 Double_t data=0;
429 const Double_t r = GetDataRate(set, data); //[Hz]
430
431 *fLog << "Events measured per second effective on time: " << r << "Hz" << endl;
432 *fLog << "Total effective on time: " << data/r << "s" << endl;
433
434 const Double_t ratio = T*r/data;
435 *fLog << "Ratio of Monte Carlo to data observation time: " << ratio << endl;
436
437 // 3570.5/43440.2 = 0.082
438
439
440 // this yields a number of n events to be read for training
441 const Double_t n = r*T; //[#]
442
443 *fLog << "Events to be read from the data sample: " << TMath::Nint(n) << endl;
444 *fLog << "Events available in data sample: " << data << endl;
445
446 if (r<0)
447 return kFALSE;
448
449 Double_t nummc = GetNumMC(set);
450
451 *fLog << "Events available in MC sample: " << nummc << endl;
452
453// *fLog << "MC read probability: " << data/n << endl;
454
455 // more data requested than available => Scale down num MC events
456 Double_t on, off;
457 if (data<n)
458 {
459 on = TMath::Nint(nummc*data/n);
460 off = TMath::Nint(data);
461 *fLog << warn;
462 *fLog << "Not enough data events available... scaling by " << data/n << endl;
463 *fLog << inf;
464 }
465 else
466 {
467 on = TMath::Nint(nummc);
468 off = TMath::Nint(n);
469 }
470
471 if (seton>0 && seton<on)
472 {
473 setoff = TMath::Nint(off*seton/on);
474 *fLog << "Less MC events requested... scaling by " << seton/on << endl;
475 }
476 else
477 {
478 seton = TMath::Nint(on);
479 setoff = TMath::Nint(off);
480 }
481
482 *fLog << "Target number of MC events: " << seton << endl;
483 *fLog << "Target number of data events: " << setoff << endl;
484
485 /*
486 An event rate dependent selection?
487 ----------------------------------
488 Total average data rate: R
489 Goal number of events: N
490 Number of data events: N0
491 Rate assigned to single evt: r
492
493 Selection probability: N/N0 * r/R
494
495 f := N/N0 * r
496
497 MF f("f * MEventRate.fRate < rand");
498 */
499
500 return kTRUE;
501}
502
503Bool_t MJTrainSeparation::Train(const char *out)
504{
505 if (!fDataSetTrain.IsValid())
506 {
507 *fLog << err << "ERROR - DataSet for training invalid!" << endl;
508 return kFALSE;
509 }
510 if (!fDataSetTest.IsValid())
511 {
512 *fLog << err << "ERROR - DataSet for testing invalid!" << endl;
513 return kFALSE;
514 }
515
516 if (fDataSetTrain.IsWobbleMode()!=fDataSetTest.IsWobbleMode())
517 {
518 *fLog << err << "ERROR - Train- and Test-DataSet have different observation modes!" << endl;
519 return kFALSE;
520 }
521
522 // ----------------------- Auto Train? ----------------------
523
524 if (fAutoTrain)
525 {
526 fLog->Separator("Auto-Training -- Train-Data");
527 if (!AutoTrain(fDataSetTrain, fNumTrainOn, fNumTrainOff))
528 return kFALSE;
529 fLog->Separator("Auto-Training -- Test-Data");
530 if (!AutoTrain(fDataSetTest, fNumTestOn, fNumTestOff))
531 return kFALSE;
532 }
533
534 // --------------------- Setup files --------------------
535 MReadMarsFile read1("Events");
536 MReadMarsFile read2("Events");
537 MReadMarsFile read3("Events");
538 MReadMarsFile read4("Events");
539 read1.DisableAutoScheme();
540 read2.DisableAutoScheme();
541 read3.DisableAutoScheme();
542 read4.DisableAutoScheme();
543
544 // Setup four reading tasks with the on- and off-data of the two datasets
545 fDataSetTrain.AddFilesOn(read1);
546 fDataSetTrain.AddFilesOff(read3);
547
548 fDataSetTest.AddFilesOff(read2);
549 fDataSetTest.AddFilesOn(read4);
550
551 // ----------------------- Setup RF Matrix ----------------------
552 MHMatrix train("Train");
553 train.AddColumns(fRules);
554 if (fEnableWeightsOn || fEnableWeightsOff)
555 train.AddColumn("MWeight.fVal");
556 train.AddColumn("MHadronness.fVal");
557
558 // ----------------------- Fill Matrix RF ----------------------
559
560 // Setup the hadronness container identifying gammas and off-data
561 // and setup a container for the weights
562 MParameterD had("MHadronness");
563 MParameterD wgt("MWeight");
564
565 // Add them to the parameter list
566 MParList plistx;
567 plistx.AddToList(&had);
568 plistx.AddToList(&wgt);
569 plistx.AddToList(this);
570
571 // Setup the tool class to fill the matrix
572 MTFillMatrix fill;
573 fill.SetLogStream(fLog);
574 fill.SetDisplay(fDisplay);
575 fill.AddPreCuts(fPreCuts);
576 fill.AddPreCuts(fTrainCuts);
577
578 // Set classifier for gammas
579 had.SetVal(0);
580 wgt.SetVal(1);
581
582 // Setup the tool class to read the gammas and read them
583 fill.SetName("FillGammas");
584 fill.SetDestMatrix1(&train, fNumTrainOn);
585 fill.SetReader(&read1);
586 fill.AddPreTasks(fPreTasksOn);
587 fill.AddPreTasks(fPreTasks);
588 fill.AddPostTasks(fPostTasksOn);
589 fill.AddPostTasks(fPostTasks);
590 if (!fill.Process(plistx))
591 return kFALSE;
592
593 // Check the number or read events
594 const Int_t numgammastrn = train.GetNumRows();
595 if (numgammastrn==0)
596 {
597 *fLog << err << "ERROR - No gammas available for training... aborting." << endl;
598 return kFALSE;
599 }
600
601 // Remove possible post tasks
602 fill.ClearPreTasks();
603 fill.ClearPostTasks();
604
605 // Set classifier for background
606 had.SetVal(1);
607 wgt.SetVal(1);
608
609 // In case of wobble mode we have to do something special
610 MSrcPosRndm srcrndm;
611 srcrndm.SetDistOfSource(0.4);
612
613 MHillasCalc hcalc;
614 hcalc.SetFlags(MHillasCalc::kCalcHillasSrc);
615
616 if (fDataSetTrain.IsWobbleMode())
617 {
618 fPreTasksOff.AddFirst(&hcalc);
619 fPreTasksOff.AddFirst(&srcrndm);
620 }
621
622 // Setup the tool class to read the background and read them
623 fill.SetName("FillBackground");
624 fill.SetDestMatrix1(&train, fNumTrainOff);
625 fill.SetReader(&read3);
626 fill.AddPreTasks(fPreTasksOff);
627 fill.AddPreTasks(fPreTasks);
628 fill.AddPostTasks(fPostTasksOff);
629 fill.AddPostTasks(fPostTasks);
630 if (!fill.Process(plistx))
631 return kFALSE;
632
633 // Check the number or read events
634 const Int_t numbackgrndtrn = train.GetNumRows()-numgammastrn;
635 if (numbackgrndtrn==0)
636 {
637 *fLog << err << "ERROR - No background available for training... aborting." << endl;
638 return kFALSE;
639 }
640
641 // ------------------------ Train RF --------------------------
642
643 MRanForestCalc rf;
644 rf.SetNumTrees(fNumTrees);
645 rf.SetNdSize(fNdSize);
646 rf.SetNumTry(fNumTry);
647 rf.SetNumObsoleteVariables(1);
648 rf.SetLastDataColumnHasWeights(fEnableWeightsOn || fEnableWeightsOff);
649 rf.SetDebug(fDebug);
650 rf.SetDisplay(fDisplay);
651 rf.SetLogStream(fLog);
652 rf.SetFileName(out);
653 rf.SetNameOutput("MHadronness");
654
655 // Train the random forest either by classification or regression
656 if (fUseRegression)
657 {
658 if (!rf.TrainRegression(train)) // regression
659 return kFALSE;
660 }
661 else
662 {
663 if (!rf.TrainSingleRF(train)) // classification
664 return kFALSE;
665 }
666
667 // Output information about what was going on so far.
668 *fLog << all;
669 fLog->Separator("The forest was trained with...");
670
671 *fLog << "Training method:" << endl;
672 *fLog << " * " << (fUseRegression?"regression":"classification") << endl;
673 if (fEnableWeightsOn)
674 *fLog << " * weights for on-data" << endl;
675 if (fEnableWeightsOff)
676 *fLog << " * weights for off-data" << endl;
677 if (fDataSetTrain.IsWobbleMode())
678 *fLog << " * random source position in a distance of 0.4°" << endl;
679 *fLog << endl;
680 *fLog << "Events used for training:" << endl;
681 *fLog << " * Gammas: " << numgammastrn << endl;
682 *fLog << " * Background: " << numbackgrndtrn << endl;
683 *fLog << endl;
684 *fLog << "Gamma/Background ratio:" << endl;
685 *fLog << " * Requested: " << (float)fNumTrainOn/fNumTrainOff << endl;
686 *fLog << " * Result: " << (float)numgammastrn/numbackgrndtrn << endl;
687
688 // Chekc if testing is requested
689 if (!fDataSetTest.IsValid())
690 return kTRUE;
691
692 // --------------------- Display result ----------------------
693 fLog->Separator("Test");
694
695 // Setup parlist and tasklist for testing
696 MParList plist;
697 MTaskList tlist;
698 plist.AddToList(this);
699 plist.AddToList(&tlist);
700
701 MMcEvt mcevt;
702 plist.AddToList(&mcevt);
703
704 plist.AddToList(&wgt);
705
706 // ----- Setup histograms -----
707 MBinning binsy(50, 0 , 1, "BinningMH3Y", "lin");
708 MBinning binsx(40, 10, 100000, "BinningMH3X", "log");
709
710 plist.AddToList(&binsx);
711 plist.AddToList(&binsy);
712
713 MH3 h31("MHillas.fSize", "MHadronness.fVal");
714 MH3 h32("MHillas.fSize", "MHadronness.fVal");
715 MH3 h40("MMcEvt.fEnergy", "MHadronness.fVal");
716 h31.SetTitle("Background probability vs. Size:Size [phe]:Hadronness h");
717 h32.SetTitle("Background probability vs. Size:Size [phe]:Hadronness h");
718 h40.SetTitle("Background probability vs. Energy:Energy [GeV]:Hadronness h");
719
720 MHHadronness hist;
721
722 // ----- Setup tasks -----
723 MFillH fillh0(&hist, "", "FillHadronness");
724 MFillH fillh1(&h31);
725 MFillH fillh2(&h32);
726 MFillH fillh4(&h40);
727 fillh0.SetWeight("MWeight");
728 fillh1.SetWeight("MWeight");
729 fillh2.SetWeight("MWeight");
730 fillh4.SetWeight("MWeight");
731 fillh1.SetDrawOption("colz profy");
732 fillh2.SetDrawOption("colz profy");
733 fillh4.SetDrawOption("colz profy");
734 fillh1.SetNameTab("Background");
735 fillh2.SetNameTab("GammasH");
736 fillh4.SetNameTab("GammasE");
737 fillh0.SetBit(MFillH::kDoNotDisplay);
738
739 // ----- Setup filter -----
740 MFilterList precuts;
741 precuts.AddToList(fPreCuts);
742 precuts.AddToList(fTestCuts);
743
744 MContinue c0(&precuts);
745 c0.SetName("PreCuts");
746 c0.SetInverted();
747
748 MFEventSelector sel; // FIXME: USING IT (WITH PROB?) in READ will by much faster!!!
749 sel.SetNumSelectEvts(fNumTestOff);
750
751 MContinue c1(&sel);
752 c1.SetInverted();
753
754 // ----- Setup tasklist -----
755 tlist.AddToList(&read2);
756 tlist.AddToList(&c1);
757 tlist.AddToList(fPreTasksOff);
758 tlist.AddToList(fPreTasks);
759 tlist.AddToList(&c0);
760 tlist.AddToList(&rf);
761 tlist.AddToList(fPostTasksOff);
762 tlist.AddToList(fPostTasks);
763 tlist.AddToList(&fillh0);
764 tlist.AddToList(&fillh1);
765
766 // Enable Acceleration
767 tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime);
768
769 // ----- Run eventloop on background -----
770 MEvtLoop loop;
771 loop.SetDisplay(fDisplay);
772 loop.SetLogStream(fLog);
773 loop.SetParList(&plist);
774
775 wgt.SetVal(1);
776 if (!loop.Eventloop())
777 return kFALSE;
778
779 // ----- Setup and run eventloop on gammas -----
780 sel.SetNumSelectEvts(fNumTestOn);
781 fillh0.ResetBit(MFillH::kDoNotDisplay);
782
783 // Remove PreTasksOff and PostTasksOff from the list
784 tlist.RemoveFromList(fPreTasksOff);
785 tlist.RemoveFromList(fPostTasksOff);
786
787 // replace the reading task by a new one
788 tlist.Replace(&read4);
789
790 // Add the PreTasksOn directly after the reading task
791 tlist.AddToListAfter(fPreTasksOn, &c1);
792
793 // Add the PostTasksOn after rf
794 tlist.AddToListAfter(fPostTasksOn, &rf);
795
796 // Replace fillh1 by fillh2
797 tlist.Replace(&fillh2);
798
799 // Add fillh4 after the new fillh2
800 tlist.AddToListAfter(&fillh4, &fillh2);
801
802 // Enable Acceleration
803 tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime);
804
805 wgt.SetVal(1);
806 if (!loop.Eventloop())
807 return kFALSE;
808
809 // Display the result plots
810 DisplayResult(h31, h32);
811
812 // Write the display
813 if (!WriteDisplay(out))
814 return kFALSE;
815
816 // Show what was going on in the testing
817 const Double_t numgammastst = h32.GetHist().GetEntries();
818 const Double_t numbackgrndtst = h31.GetHist().GetEntries();
819
820 *fLog << all;
821 fLog->Separator("The forest was tested with...");
822 *fLog << "Test method:" << endl;
823 *fLog << " * Random Forest: " << out << endl;
824 if (fEnableWeightsOn)
825 *fLog << " * weights for on-data" << endl;
826 if (fEnableWeightsOff)
827 *fLog << " * weights for off-data" << endl;
828 if (fDataSetTrain.IsWobbleMode())
829 *fLog << " * random source position in a distance of 0.4°" << endl;
830 *fLog << "Events used for test:" << endl;
831 *fLog << " * Gammas: " << numgammastst << endl;
832 *fLog << " * Background: " << numbackgrndtst << endl;
833 *fLog << endl;
834 *fLog << "Gamma/Background ratio:" << endl;
835 *fLog << " * Requested: " << (float)fNumTestOn/fNumTestOff << endl;
836 *fLog << " * Result: " << (float)numgammastst/numbackgrndtst << endl;
837
838 return kTRUE;
839}
840
Note: See TracBrowser for help on using the repository browser.