1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 11/2005 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2006
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MJTrainSeparation
|
---|
28 | //
|
---|
29 | ////////////////////////////////////////////////////////////////////////////
|
---|
30 | #include "MJTrainSeparation.h"
|
---|
31 |
|
---|
32 | #include <TF1.h>
|
---|
33 | #include <TH2.h>
|
---|
34 | #include <TChain.h>
|
---|
35 | #include <TGraph.h>
|
---|
36 | #include <TMarker.h>
|
---|
37 | #include <TCanvas.h>
|
---|
38 | #include <TStopwatch.h>
|
---|
39 | #include <TVirtualPad.h>
|
---|
40 |
|
---|
41 | #include "MHMatrix.h"
|
---|
42 |
|
---|
43 | #include "MLog.h"
|
---|
44 | #include "MLogManip.h"
|
---|
45 |
|
---|
46 | // tools
|
---|
47 | #include "MMath.h"
|
---|
48 | #include "MDataSet.h"
|
---|
49 | #include "MTFillMatrix.h"
|
---|
50 | #include "MStatusDisplay.h"
|
---|
51 |
|
---|
52 | // eventloop
|
---|
53 | #include "MParList.h"
|
---|
54 | #include "MTaskList.h"
|
---|
55 | #include "MEvtLoop.h"
|
---|
56 |
|
---|
57 | // tasks
|
---|
58 | #include "MReadMarsFile.h"
|
---|
59 | #include "MContinue.h"
|
---|
60 | #include "MFillH.h"
|
---|
61 | #include "MSrcPosRndm.h"
|
---|
62 | #include "MHillasCalc.h"
|
---|
63 | #include "MRanForestCalc.h"
|
---|
64 | #include "MParameterCalc.h"
|
---|
65 |
|
---|
66 | // container
|
---|
67 | #include "MMcEvt.hxx"
|
---|
68 | #include "MParameters.h"
|
---|
69 |
|
---|
70 | // histograms
|
---|
71 | #include "MBinning.h"
|
---|
72 | #include "MH3.h"
|
---|
73 | #include "MHHadronness.h"
|
---|
74 |
|
---|
75 | // filter
|
---|
76 | #include "MF.h"
|
---|
77 | #include "MFEventSelector.h"
|
---|
78 | #include "MFilterList.h"
|
---|
79 |
|
---|
80 | ClassImp(MJTrainSeparation);
|
---|
81 |
|
---|
82 | using namespace std;
|
---|
83 |
|
---|
84 | void MJTrainSeparation::DisplayResult(MH3 &h31, MH3 &h32, Float_t ontime)
|
---|
85 | {
|
---|
86 | TH2D &g = (TH2D&)h32.GetHist();
|
---|
87 | TH2D &h = (TH2D&)h31.GetHist();
|
---|
88 |
|
---|
89 | h.SetMarkerColor(kRed);
|
---|
90 | g.SetMarkerColor(kGreen);
|
---|
91 |
|
---|
92 | TH2D res1(g);
|
---|
93 | TH2D res2(g);
|
---|
94 |
|
---|
95 | h.SetTitle("Hadronness-Distribution vs. Size");
|
---|
96 | res1.SetTitle("Significance Li/Ma");
|
---|
97 | res1.SetXTitle("Size [phe]");
|
---|
98 | res1.SetYTitle("Hadronness");
|
---|
99 | res2.SetTitle("Significance-Distribution");
|
---|
100 | res2.SetXTitle("Size-Cut [phe]");
|
---|
101 | res2.SetYTitle("Hadronness-Cut");
|
---|
102 | res1.SetContour(50);
|
---|
103 | res2.SetContour(50);
|
---|
104 |
|
---|
105 | const Int_t nx = h.GetNbinsX();
|
---|
106 | const Int_t ny = h.GetNbinsY();
|
---|
107 |
|
---|
108 | gROOT->SetSelectedPad(NULL);
|
---|
109 |
|
---|
110 |
|
---|
111 | Double_t Stot = 0;
|
---|
112 | Double_t Btot = 0;
|
---|
113 |
|
---|
114 | Double_t max2 = -1;
|
---|
115 |
|
---|
116 | TGraph gr1;
|
---|
117 | TGraph gr2;
|
---|
118 | for (int x=nx-1; x>=0; x--)
|
---|
119 | {
|
---|
120 | TH1 *hx = h.ProjectionY("H_py", x+1, x+1);
|
---|
121 | TH1 *gx = g.ProjectionY("G_py", x+1, x+1);
|
---|
122 |
|
---|
123 | Double_t S = 0;
|
---|
124 | Double_t B = 0;
|
---|
125 |
|
---|
126 | Double_t max1 = -1;
|
---|
127 | Int_t maxy1 = 0;
|
---|
128 | Int_t maxy2 = 0;
|
---|
129 | for (int y=ny-1; y>=0; y--)
|
---|
130 | {
|
---|
131 | const Float_t s = gx->Integral(1, y+1);
|
---|
132 | const Float_t b = hx->Integral(1, y+1);
|
---|
133 | const Float_t sig1 = MMath::SignificanceLiMa(s+b, b);
|
---|
134 | const Float_t sig2 = MMath::SignificanceLiMa(s+Stot+b+Btot, b+Btot)*TMath::Log10(s+Stot+1);
|
---|
135 | if (sig1>max1)
|
---|
136 | {
|
---|
137 | maxy1 = y;
|
---|
138 | max1 = sig1;
|
---|
139 | }
|
---|
140 | if (sig2>max2)
|
---|
141 | {
|
---|
142 | maxy2 = y;
|
---|
143 | max2 = sig2;
|
---|
144 |
|
---|
145 | S=s;
|
---|
146 | B=b;
|
---|
147 | }
|
---|
148 |
|
---|
149 | res1.SetBinContent(x+1, y+1, sig1);
|
---|
150 | }
|
---|
151 |
|
---|
152 | Stot += S;
|
---|
153 | Btot += B;
|
---|
154 |
|
---|
155 | gr1.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy1+1));
|
---|
156 | gr2.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy2+1));
|
---|
157 |
|
---|
158 | delete hx;
|
---|
159 | delete gx;
|
---|
160 | }
|
---|
161 |
|
---|
162 | //cout << "--> " << MMath::SignificanceLiMa(Stot+Btot, Btot) << " ";
|
---|
163 | //cout << Stot << " " << Btot << endl;
|
---|
164 |
|
---|
165 |
|
---|
166 | Int_t mx1=0;
|
---|
167 | Int_t my1=0;
|
---|
168 | Int_t mx2=0;
|
---|
169 | Int_t my2=0;
|
---|
170 | Int_t s1=0;
|
---|
171 | Int_t b1=0;
|
---|
172 | Int_t s2=0;
|
---|
173 | Int_t b2=0;
|
---|
174 | Double_t sig1=-1;
|
---|
175 | Double_t sig2=-1;
|
---|
176 | for (int x=0; x<nx; x++)
|
---|
177 | {
|
---|
178 | TH1 *hx = h.ProjectionY("H_py", x+1);
|
---|
179 | TH1 *gx = g.ProjectionY("G_py", x+1);
|
---|
180 | for (int y=0; y<ny; y++)
|
---|
181 | {
|
---|
182 | const Float_t s = gx->Integral(1, y+1);
|
---|
183 | const Float_t b = hx->Integral(1, y+1);
|
---|
184 | const Float_t sig = MMath::SignificanceLiMa(s+b, b);
|
---|
185 | res2.SetBinContent(x+1, y+1, sig);
|
---|
186 |
|
---|
187 | // Search for top-rightmost maximum
|
---|
188 | if (sig>=sig1)
|
---|
189 | {
|
---|
190 | mx1=x+1;
|
---|
191 | my1=y+1;
|
---|
192 | s1 = TMath::Nint(s);
|
---|
193 | b1 = TMath::Nint(b);
|
---|
194 | sig1=sig;
|
---|
195 | }
|
---|
196 | if (TMath::Log10(s)*sig>=sig2)
|
---|
197 | {
|
---|
198 | mx2=x+1;
|
---|
199 | my2=y+1;
|
---|
200 | s2 = TMath::Nint(s);
|
---|
201 | b2 = TMath::Nint(b);
|
---|
202 | sig2=TMath::Log10(s)*sig;
|
---|
203 | }
|
---|
204 | }
|
---|
205 | delete hx;
|
---|
206 | delete gx;
|
---|
207 | }
|
---|
208 |
|
---|
209 | TGraph gr3;
|
---|
210 | TGraph gr4;
|
---|
211 | gr4.SetTitle("Significance Li/Ma vs. Hadronness-cut");
|
---|
212 |
|
---|
213 | TH1 *hx = h.ProjectionY("H_py");
|
---|
214 | TH1 *gx = g.ProjectionY("G_py");
|
---|
215 | for (int y=0; y<ny; y++)
|
---|
216 | {
|
---|
217 | const Float_t s = gx->Integral(1, y+1);
|
---|
218 | const Float_t b = hx->Integral(1, y+1);
|
---|
219 | const Float_t sig1 = MMath::SignificanceLiMa(s+b, b);
|
---|
220 | const Float_t sig2 = s<1 ? 0 : MMath::SignificanceLiMa(s+b, b)*TMath::Log10(s);
|
---|
221 |
|
---|
222 | gr3.SetPoint(y, h.GetYaxis()->GetBinLowEdge(y+2), sig1);
|
---|
223 | gr4.SetPoint(y, h.GetYaxis()->GetBinLowEdge(y+2), sig2);
|
---|
224 | }
|
---|
225 | delete hx;
|
---|
226 | delete gx;
|
---|
227 |
|
---|
228 | if (fDisplay)
|
---|
229 | {
|
---|
230 | TCanvas &c = fDisplay->AddTab("OptCut");
|
---|
231 | c.SetBorderMode(0);
|
---|
232 | c.Divide(2,2);
|
---|
233 |
|
---|
234 | c.cd(1);
|
---|
235 | gPad->SetBorderMode(0);
|
---|
236 | gPad->SetFrameBorderMode(0);
|
---|
237 | gPad->SetLogx();
|
---|
238 | gPad->SetGridx();
|
---|
239 | gPad->SetGridy();
|
---|
240 | h.DrawCopy();
|
---|
241 | g.DrawCopy("same");
|
---|
242 | gr1.SetMarkerStyle(kFullDotMedium);
|
---|
243 | gr1.DrawClone("LP")->SetBit(kCanDelete);
|
---|
244 | gr2.SetLineColor(kBlue);
|
---|
245 | gr2.SetMarkerStyle(kFullDotMedium);
|
---|
246 | gr2.DrawClone("LP")->SetBit(kCanDelete);
|
---|
247 |
|
---|
248 | c.cd(3);
|
---|
249 | gPad->SetBorderMode(0);
|
---|
250 | gPad->SetFrameBorderMode(0);
|
---|
251 | gPad->SetGridx();
|
---|
252 | gPad->SetGridy();
|
---|
253 | gr4.SetMinimum(0);
|
---|
254 | gr4.SetMarkerStyle(kFullDotMedium);
|
---|
255 | gr4.DrawClone("ALP")->SetBit(kCanDelete);
|
---|
256 | gr3.SetLineColor(kBlue);
|
---|
257 | gr3.SetMarkerStyle(kFullDotMedium);
|
---|
258 | gr3.DrawClone("LP")->SetBit(kCanDelete);
|
---|
259 |
|
---|
260 | c.cd(2);
|
---|
261 | gPad->SetBorderMode(0);
|
---|
262 | gPad->SetFrameBorderMode(0);
|
---|
263 | gPad->SetLogx();
|
---|
264 | gPad->SetGridx();
|
---|
265 | gPad->SetGridy();
|
---|
266 | gPad->AddExec("color", "gStyle->SetPalette(1, 0);");
|
---|
267 | res1.SetMaximum(7);
|
---|
268 | res1.DrawCopy("colz");
|
---|
269 |
|
---|
270 | c.cd(4);
|
---|
271 | gPad->SetBorderMode(0);
|
---|
272 | gPad->SetFrameBorderMode(0);
|
---|
273 | gPad->SetLogx();
|
---|
274 | gPad->SetGridx();
|
---|
275 | gPad->SetGridy();
|
---|
276 | gPad->AddExec("color", "gStyle->SetPalette(1, 0);");
|
---|
277 | res2.SetMaximum(res2.GetMaximum()*1.05);
|
---|
278 | res2.DrawCopy("colz");
|
---|
279 |
|
---|
280 | // Int_t mx, my, mz;
|
---|
281 | // res2.GetMaximumBin(mx, my, mz);
|
---|
282 |
|
---|
283 | TMarker m;
|
---|
284 | m.SetMarkerStyle(kStar);
|
---|
285 | m.DrawMarker(res2.GetXaxis()->GetBinCenter(mx1), res2.GetYaxis()->GetBinCenter(my1));
|
---|
286 | m.SetMarkerStyle(kPlus);
|
---|
287 | m.DrawMarker(res2.GetXaxis()->GetBinCenter(mx2), res2.GetYaxis()->GetBinCenter(my2));
|
---|
288 | }
|
---|
289 |
|
---|
290 | *fLog << all << "Observation Time: " << TMath::Nint(ontime/60) << "min" << endl;
|
---|
291 | *fLog << "Maximum Significance: " << Form("%.1f", sig1) << " [";
|
---|
292 | *fLog << Form("%.1f", sig1/TMath::Sqrt(ontime/3600)) << "/sqrt(h)]";
|
---|
293 | *fLog << endl;
|
---|
294 |
|
---|
295 | *fLog << "Significance: S=" << Form("%.1f", sig1) << " E=" << s1 << " B=" << b1 << " h<";
|
---|
296 | *fLog << Form("%.2f", res2.GetYaxis()->GetBinCenter(my1)) << " s>";
|
---|
297 | *fLog << Form("%3d", TMath::Nint(res2.GetXaxis()->GetBinCenter(mx1))) << endl;
|
---|
298 | *fLog << "Significance*LogE: S=" << Form("%.1f", sig2/TMath::Log10(s2)) << " E=" << s2 << " B=" << b2 << " h<";
|
---|
299 | *fLog << Form("%.2f", res2.GetYaxis()->GetBinCenter(my2)) << " s>";
|
---|
300 | *fLog << Form("%3d", TMath::Nint(res2.GetXaxis()->GetBinCenter(mx2))) << endl;
|
---|
301 | *fLog << endl;
|
---|
302 | }
|
---|
303 |
|
---|
304 | /*
|
---|
305 | Bool_t MJSpectrum::InitWeighting(const MDataSet &set, MMcSpectrumWeight &w) const
|
---|
306 | {
|
---|
307 | fLog->Separator("Initialize energy weighting");
|
---|
308 |
|
---|
309 | if (!CheckEnv(w))
|
---|
310 | {
|
---|
311 | *fLog << err << "ERROR - Reading resources for MMcSpectrumWeight failed." << endl;
|
---|
312 | return kFALSE;
|
---|
313 | }
|
---|
314 |
|
---|
315 | TChain chain("RunHeaders");
|
---|
316 | set.AddFilesOn(chain);
|
---|
317 |
|
---|
318 | MMcCorsikaRunHeader *h=0;
|
---|
319 | chain.SetBranchAddress("MMcCorsikaRunHeader.", &h);
|
---|
320 | chain.GetEntry(1);
|
---|
321 |
|
---|
322 | if (!h)
|
---|
323 | {
|
---|
324 | *fLog << err << "ERROR - Couldn't read MMcCorsikaRunHeader from DataSet." << endl;
|
---|
325 | return kFALSE;
|
---|
326 | }
|
---|
327 |
|
---|
328 | if (!w.Set(*h))
|
---|
329 | {
|
---|
330 | *fLog << err << "ERROR - Initializing MMcSpectrumWeight failed." << endl;
|
---|
331 | return kFALSE;
|
---|
332 | }
|
---|
333 |
|
---|
334 | w.Print();
|
---|
335 | return kTRUE;
|
---|
336 | }
|
---|
337 |
|
---|
338 | Bool_t MJSpectrum::ReadOrigMCDistribution(const MDataSet &set, TH1 &h, MMcSpectrumWeight &weight) const
|
---|
339 | {
|
---|
340 | // Some debug output
|
---|
341 | fLog->Separator("Compiling original MC distribution");
|
---|
342 |
|
---|
343 | weight.SetNameMcEvt("MMcEvtBasic");
|
---|
344 | const TString w(weight.GetFormulaWeights());
|
---|
345 | weight.SetNameMcEvt();
|
---|
346 |
|
---|
347 | *fLog << inf << "Using weights: " << w << endl;
|
---|
348 | *fLog << "Please stand by, this may take a while..." << flush;
|
---|
349 |
|
---|
350 | if (fDisplay)
|
---|
351 | fDisplay->SetStatusLine1("Compiling MC distribution...");
|
---|
352 |
|
---|
353 | // Create chain
|
---|
354 | TChain chain("OriginalMC");
|
---|
355 | set.AddFilesOn(chain);
|
---|
356 |
|
---|
357 | // Prepare histogram
|
---|
358 | h.Reset();
|
---|
359 |
|
---|
360 | // Fill histogram from chain
|
---|
361 | h.SetDirectory(gROOT);
|
---|
362 | if (h.InheritsFrom(TH2::Class()))
|
---|
363 | {
|
---|
364 | h.SetNameTitle("ThetaEMC", "Event-Distribution vs Theta and Energy for MC (produced)");
|
---|
365 | h.SetXTitle("\\Theta [\\circ]");
|
---|
366 | h.SetYTitle("E [GeV]");
|
---|
367 | h.SetZTitle("Counts");
|
---|
368 | chain.Draw("MMcEvtBasic.fEnergy:MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaEMC", w, "goff");
|
---|
369 | }
|
---|
370 | else
|
---|
371 | {
|
---|
372 | h.SetNameTitle("ThetaMC", "Event-Distribution vs Theta for MC (produced)");
|
---|
373 | h.SetXTitle("\\Theta [\\circ]");
|
---|
374 | h.SetYTitle("Counts");
|
---|
375 | chain.Draw("MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaMC", w, "goff");
|
---|
376 | }
|
---|
377 | h.SetDirectory(0);
|
---|
378 |
|
---|
379 | *fLog << "done." << endl;
|
---|
380 | if (fDisplay)
|
---|
381 | fDisplay->SetStatusLine2("done.");
|
---|
382 |
|
---|
383 | if (h.GetEntries()>0)
|
---|
384 | return kTRUE;
|
---|
385 |
|
---|
386 | *fLog << err << "ERROR - Histogram with original MC distribution empty..." << endl;
|
---|
387 |
|
---|
388 | return h.GetEntries()>0;
|
---|
389 | }
|
---|
390 | */
|
---|
391 |
|
---|
392 | Bool_t MJTrainSeparation::GetEventsProduced(MDataSet &set, Double_t &num, Double_t &min, Double_t &max) const
|
---|
393 | {
|
---|
394 | TChain chain("OriginalMC");
|
---|
395 | set.AddFilesOn(chain);
|
---|
396 |
|
---|
397 | min = chain.GetMinimum("MMcEvtBasic.fEnergy");
|
---|
398 | max = chain.GetMaximum("MMcEvtBasic.fEnergy");
|
---|
399 |
|
---|
400 | num = chain.GetEntries();
|
---|
401 |
|
---|
402 | if (num<100)
|
---|
403 | *fLog << err << "ERROR - Less than 100 entries in OriginalMC-Tree of MC-Train-Data found." << endl;
|
---|
404 |
|
---|
405 | return num>=100;
|
---|
406 | }
|
---|
407 |
|
---|
408 | Double_t MJTrainSeparation::GetDataRate(MDataSet &set, Double_t &num) const
|
---|
409 | {
|
---|
410 | TChain chain1("Events");
|
---|
411 | set.AddFilesOff(chain1);
|
---|
412 |
|
---|
413 | num = chain1.GetEntries();
|
---|
414 | if (num<100)
|
---|
415 | {
|
---|
416 | *fLog << err << "ERROR - Less than 100 entries in Events-Tree of Train-Data found." << endl;
|
---|
417 | return -1;
|
---|
418 | }
|
---|
419 |
|
---|
420 | TChain chain("EffectiveOnTime");
|
---|
421 | set.AddFilesOff(chain);
|
---|
422 |
|
---|
423 | chain.Draw("MEffectiveOnTime.fVal", "MEffectiveOnTime.fVal", "goff");
|
---|
424 |
|
---|
425 | TH1 *h = dynamic_cast<TH1*>(gROOT->FindObject("htemp"));
|
---|
426 | if (!h)
|
---|
427 | {
|
---|
428 | *fLog << err << "ERROR - Weird things are happening (htemp not found)!" << endl;
|
---|
429 | return -1;
|
---|
430 | }
|
---|
431 |
|
---|
432 | const Double_t ontime = h->Integral();
|
---|
433 | delete h;
|
---|
434 |
|
---|
435 | if (ontime<1)
|
---|
436 | {
|
---|
437 | *fLog << err << "ERROR - Less than 1s of effective observation time found in Train-Data." << endl;
|
---|
438 | return -1;
|
---|
439 | }
|
---|
440 |
|
---|
441 | return num/ontime;
|
---|
442 | }
|
---|
443 |
|
---|
444 | Double_t MJTrainSeparation::GetNumMC(MDataSet &set) const
|
---|
445 | {
|
---|
446 | TChain chain1("Events");
|
---|
447 | set.AddFilesOn(chain1);
|
---|
448 |
|
---|
449 | const Double_t num = chain1.GetEntries();
|
---|
450 | if (num<100)
|
---|
451 | {
|
---|
452 | *fLog << err << "ERROR - Less than 100 entries in Events-Tree of Train-Data found." << endl;
|
---|
453 | return -1;
|
---|
454 | }
|
---|
455 |
|
---|
456 | return num;
|
---|
457 | }
|
---|
458 |
|
---|
459 | Float_t MJTrainSeparation::AutoTrain(MDataSet &set, Type_t typon, Type_t typof, Float_t flux)
|
---|
460 | {
|
---|
461 | Double_t num, min, max;
|
---|
462 | if (!GetEventsProduced(set, num, min, max))
|
---|
463 | return -1;
|
---|
464 |
|
---|
465 | *fLog << inf << "Using build-in radius of 300m to calculate collection area!" << endl;
|
---|
466 |
|
---|
467 | // Target spectrum
|
---|
468 | TF1 flx("Flux", "[0]/1000*(x/1000)^(-2.6)", min, max);
|
---|
469 | flx.SetParameter(0, flux);
|
---|
470 |
|
---|
471 | // Number n0 of events this spectrum would produce per s and m^2
|
---|
472 | const Double_t n0 = flx.Integral(min, max); //[#]
|
---|
473 |
|
---|
474 | // Area produced in MC
|
---|
475 | const Double_t A = TMath::Pi()*300*300; //[m²]
|
---|
476 |
|
---|
477 | // Rate R of events this spectrum would produce per s
|
---|
478 | const Double_t R = n0*A; //[Hz]
|
---|
479 |
|
---|
480 | *fLog << "Source Spectrum: " << flux << " * (E/TeV)^(-2.6) * TeV*m^2*s" << endl;
|
---|
481 |
|
---|
482 | *fLog << "Gamma rate from the source inside the MC production area: " << R << "Hz" << endl;
|
---|
483 |
|
---|
484 | // Number N of events produced (in trainings sample)
|
---|
485 | const Double_t N = num; //[#]
|
---|
486 |
|
---|
487 | *fLog << "Events produced by MC inside the production area: " << TMath::Nint(num) << endl;
|
---|
488 |
|
---|
489 | // This correponds to an observation time T [s]
|
---|
490 | const Double_t T = N/R; //[s]
|
---|
491 |
|
---|
492 | *fLog << "Total time produced by the Monte Carlo: " << T << "s" << endl;
|
---|
493 |
|
---|
494 | // With an average data rate after star of
|
---|
495 | Double_t data=0;
|
---|
496 | const Double_t r = GetDataRate(set, data); //[Hz]
|
---|
497 | Double_t ontime = data/r;
|
---|
498 |
|
---|
499 | *fLog << "Events measured per second effective on time: " << r << "Hz" << endl;
|
---|
500 | *fLog << "Total effective on time: " << ontime << "s" << endl;
|
---|
501 |
|
---|
502 | const Double_t ratio = T/ontime;
|
---|
503 | *fLog << "Ratio of Monte Carlo to data observation time: " << ratio << endl;
|
---|
504 |
|
---|
505 | // 3570.5/43440.2 = 0.082
|
---|
506 |
|
---|
507 |
|
---|
508 | // this yields a number of n events to be read for training
|
---|
509 | const Double_t n = r*T; //[#]
|
---|
510 |
|
---|
511 | *fLog << "Events to be read from the data sample: " << TMath::Nint(n) << endl;
|
---|
512 | *fLog << "Events available in data sample: " << data << endl;
|
---|
513 |
|
---|
514 | if (r<0)
|
---|
515 | return -1;
|
---|
516 |
|
---|
517 | Double_t nummc = GetNumMC(set);
|
---|
518 |
|
---|
519 | *fLog << "Events available in MC sample: " << nummc << endl;
|
---|
520 |
|
---|
521 | // *fLog << "MC read probability: " << data/n << endl;
|
---|
522 |
|
---|
523 | // more data requested than available => Scale down num MC events
|
---|
524 | Double_t on, off;
|
---|
525 | if (data<n)
|
---|
526 | {
|
---|
527 | on = TMath::Nint(nummc*data/n);
|
---|
528 | off = TMath::Nint(data);
|
---|
529 | *fLog << warn;
|
---|
530 | *fLog << "Not enough data events available... scaling MC to data by " << data/n << endl;
|
---|
531 | *fLog << inf;
|
---|
532 | }
|
---|
533 | else
|
---|
534 | {
|
---|
535 | on = TMath::Nint(nummc);
|
---|
536 | off = TMath::Nint(n);
|
---|
537 | }
|
---|
538 |
|
---|
539 | if (fNum[typon]>0 && fNum[typon]<on)
|
---|
540 | {
|
---|
541 | fNum[typof] = TMath::Nint(off*fNum[typon]/on);
|
---|
542 | ontime *= fNum[typon]/on;
|
---|
543 | *fLog << warn << "Less MC events requested... scaling data to MC by " << fNum[typon]/on << endl;
|
---|
544 | }
|
---|
545 | else
|
---|
546 | {
|
---|
547 | fNum[typon] = TMath::Nint(on);
|
---|
548 | fNum[typof] = TMath::Nint(off);
|
---|
549 | }
|
---|
550 |
|
---|
551 | *fLog << inf;
|
---|
552 | *fLog << "Target number of MC events: " << fNum[typon] << endl;
|
---|
553 | *fLog << "Target number of data events: " << fNum[typof] << endl;
|
---|
554 |
|
---|
555 | /*
|
---|
556 | An event rate dependent selection?
|
---|
557 | ----------------------------------
|
---|
558 | Total average data rate: R
|
---|
559 | Goal number of events: N
|
---|
560 | Number of data events: N0
|
---|
561 | Rate assigned to single evt: r
|
---|
562 |
|
---|
563 | Selection probability: N/N0 * r/R
|
---|
564 |
|
---|
565 | f := N/N0 * r
|
---|
566 |
|
---|
567 | MF f("f * MEventRate.fRate < rand");
|
---|
568 | */
|
---|
569 |
|
---|
570 | return ontime;
|
---|
571 | }
|
---|
572 |
|
---|
573 | Bool_t MJTrainSeparation::Train(const char *out)
|
---|
574 | {
|
---|
575 | if (!fDataSetTrain.IsValid())
|
---|
576 | {
|
---|
577 | *fLog << err << "ERROR - DataSet for training invalid!" << endl;
|
---|
578 | return kFALSE;
|
---|
579 | }
|
---|
580 | if (!fDataSetTest.IsValid())
|
---|
581 | {
|
---|
582 | *fLog << err << "ERROR - DataSet for testing invalid!" << endl;
|
---|
583 | return kFALSE;
|
---|
584 | }
|
---|
585 |
|
---|
586 | if (fDataSetTrain.IsWobbleMode()!=fDataSetTest.IsWobbleMode())
|
---|
587 | {
|
---|
588 | *fLog << err << "ERROR - Train- and Test-DataSet have different observation modes!" << endl;
|
---|
589 | return kFALSE;
|
---|
590 | }
|
---|
591 |
|
---|
592 | TStopwatch clock;
|
---|
593 | clock.Start();
|
---|
594 |
|
---|
595 | // ----------------------- Auto Train? ----------------------
|
---|
596 |
|
---|
597 | Float_t ontime = -1;
|
---|
598 | if (fAutoTrain)
|
---|
599 | {
|
---|
600 | fLog->Separator("Auto-Training -- Train-Data");
|
---|
601 | if (AutoTrain(fDataSetTrain, kTrainOn, kTrainOff, fFluxTrain)<0)
|
---|
602 | return kFALSE;
|
---|
603 | fLog->Separator("Auto-Training -- Test-Data");
|
---|
604 | ontime = AutoTrain(fDataSetTest, kTestOn, kTestOff, fFluxTest);
|
---|
605 | if (ontime<0)
|
---|
606 | return kFALSE;
|
---|
607 | }
|
---|
608 |
|
---|
609 | // --------------------- Setup files --------------------
|
---|
610 | MReadMarsFile read1("Events");
|
---|
611 | MReadMarsFile read2("Events");
|
---|
612 | MReadMarsFile read3("Events");
|
---|
613 | MReadMarsFile read4("Events");
|
---|
614 | read1.DisableAutoScheme();
|
---|
615 | read2.DisableAutoScheme();
|
---|
616 | read3.DisableAutoScheme();
|
---|
617 | read4.DisableAutoScheme();
|
---|
618 |
|
---|
619 | // Setup four reading tasks with the on- and off-data of the two datasets
|
---|
620 | fDataSetTrain.AddFilesOn(read1);
|
---|
621 | fDataSetTrain.AddFilesOff(read3);
|
---|
622 |
|
---|
623 | fDataSetTest.AddFilesOff(read2);
|
---|
624 | fDataSetTest.AddFilesOn(read4);
|
---|
625 |
|
---|
626 | // ----------------------- Setup RF Matrix ----------------------
|
---|
627 | MHMatrix train("Train");
|
---|
628 | train.AddColumns(fRules);
|
---|
629 | if (fEnableWeights[kTrainOn] || fEnableWeights[kTrainOff])
|
---|
630 | train.AddColumn("MWeight.fVal");
|
---|
631 | train.AddColumn("MHadronness.fVal");
|
---|
632 |
|
---|
633 | // ----------------------- Fill Matrix RF ----------------------
|
---|
634 |
|
---|
635 | // Setup the hadronness container identifying gammas and off-data
|
---|
636 | // and setup a container for the weights
|
---|
637 | MParameterD had("MHadronness");
|
---|
638 | MParameterD wgt("MWeight");
|
---|
639 |
|
---|
640 | // Add them to the parameter list
|
---|
641 | MParList plistx;
|
---|
642 | plistx.AddToList(this); // take care of fDisplay!
|
---|
643 | plistx.AddToList(&had);
|
---|
644 | plistx.AddToList(&wgt);
|
---|
645 |
|
---|
646 | // Setup the tool class to fill the matrix
|
---|
647 | MTFillMatrix fill;
|
---|
648 | fill.SetLogStream(fLog);
|
---|
649 | fill.SetDisplay(fDisplay);
|
---|
650 | fill.AddPreCuts(fPreCuts);
|
---|
651 | fill.AddPreCuts(fTrainCuts);
|
---|
652 |
|
---|
653 | // Set classifier for gammas
|
---|
654 | had.SetVal(0);
|
---|
655 | wgt.SetVal(1);
|
---|
656 |
|
---|
657 | // Setup the tool class to read the gammas and read them
|
---|
658 | fill.SetName("FillGammas");
|
---|
659 | fill.SetDestMatrix1(&train, fNum[kTrainOn]);
|
---|
660 | fill.SetReader(&read1);
|
---|
661 | fill.AddPreTasks(fPreTasksSet[kTrainOn]);
|
---|
662 | fill.AddPreTasks(fPreTasks);
|
---|
663 | fill.AddPostTasks(fPostTasksSet[kTrainOn]);
|
---|
664 | fill.AddPostTasks(fPostTasks);
|
---|
665 | if (!fill.Process(plistx))
|
---|
666 | return kFALSE;
|
---|
667 |
|
---|
668 | // Check the number or read events
|
---|
669 | const Int_t numgammastrn = train.GetNumRows();
|
---|
670 | if (numgammastrn==0)
|
---|
671 | {
|
---|
672 | *fLog << err << "ERROR - No gammas available for training... aborting." << endl;
|
---|
673 | return kFALSE;
|
---|
674 | }
|
---|
675 |
|
---|
676 | // Remove possible post tasks
|
---|
677 | fill.ClearPreTasks();
|
---|
678 | fill.ClearPostTasks();
|
---|
679 |
|
---|
680 | // Set classifier for background
|
---|
681 | had.SetVal(1);
|
---|
682 | wgt.SetVal(1);
|
---|
683 |
|
---|
684 | // In case of wobble mode we have to do something special
|
---|
685 | MSrcPosRndm srcrndm;
|
---|
686 | srcrndm.SetDistOfSource(0.4);
|
---|
687 |
|
---|
688 | MHillasCalc hcalc;
|
---|
689 | hcalc.SetFlags(MHillasCalc::kCalcHillasSrc);
|
---|
690 |
|
---|
691 | if (fDataSetTrain.IsWobbleMode())
|
---|
692 | {
|
---|
693 | fPreTasksSet[kTrainOff].AddFirst(&hcalc);
|
---|
694 | fPreTasksSet[kTrainOff].AddFirst(&srcrndm);
|
---|
695 | }
|
---|
696 |
|
---|
697 | // Setup the tool class to read the background and read them
|
---|
698 | fill.SetName("FillBackground");
|
---|
699 | fill.SetDestMatrix1(&train, fNum[kTrainOff]);
|
---|
700 | fill.SetReader(&read3);
|
---|
701 | fill.AddPreTasks(fPreTasksSet[kTrainOff]);
|
---|
702 | fill.AddPreTasks(fPreTasks);
|
---|
703 | fill.AddPostTasks(fPostTasksSet[kTrainOff]);
|
---|
704 | fill.AddPostTasks(fPostTasks);
|
---|
705 | if (!fill.Process(plistx))
|
---|
706 | return kFALSE;
|
---|
707 |
|
---|
708 | // Check the number or read events
|
---|
709 | const Int_t numbackgrndtrn = train.GetNumRows()-numgammastrn;
|
---|
710 | if (numbackgrndtrn==0)
|
---|
711 | {
|
---|
712 | *fLog << err << "ERROR - No background available for training... aborting." << endl;
|
---|
713 | return kFALSE;
|
---|
714 | }
|
---|
715 |
|
---|
716 | // ------------------------ Train RF --------------------------
|
---|
717 |
|
---|
718 | MRanForestCalc rf;
|
---|
719 | rf.SetNumTrees(fNumTrees);
|
---|
720 | rf.SetNdSize(fNdSize);
|
---|
721 | rf.SetNumTry(fNumTry);
|
---|
722 | rf.SetNumObsoleteVariables(1);
|
---|
723 | rf.SetLastDataColumnHasWeights(fEnableWeights[kTrainOn] || fEnableWeights[kTrainOff]);
|
---|
724 | rf.SetDebug(fDebug);
|
---|
725 | rf.SetDisplay(fDisplay);
|
---|
726 | rf.SetLogStream(fLog);
|
---|
727 | rf.SetFileName(out);
|
---|
728 | rf.SetNameOutput("MHadronness");
|
---|
729 |
|
---|
730 | // Train the random forest either by classification or regression
|
---|
731 | if (fUseRegression)
|
---|
732 | {
|
---|
733 | if (!rf.TrainRegression(train)) // regression
|
---|
734 | return kFALSE;
|
---|
735 | }
|
---|
736 | else
|
---|
737 | {
|
---|
738 | if (!rf.TrainSingleRF(train)) // classification
|
---|
739 | return kFALSE;
|
---|
740 | }
|
---|
741 |
|
---|
742 | // Output information about what was going on so far.
|
---|
743 | *fLog << all;
|
---|
744 | fLog->Separator("The forest was trained with...");
|
---|
745 |
|
---|
746 | *fLog << "Training method:" << endl;
|
---|
747 | *fLog << " * " << (fUseRegression?"regression":"classification") << endl;
|
---|
748 | if (fEnableWeights[kTrainOn])
|
---|
749 | *fLog << " * weights for on-data" << endl;
|
---|
750 | if (fEnableWeights[kTrainOff])
|
---|
751 | *fLog << " * weights for off-data" << endl;
|
---|
752 | if (fDataSetTrain.IsWobbleMode())
|
---|
753 | *fLog << " * random source position in a distance of 0.4°" << endl;
|
---|
754 | *fLog << endl;
|
---|
755 | *fLog << "Events used for training:" << endl;
|
---|
756 | *fLog << " * Gammas: " << numgammastrn << endl;
|
---|
757 | *fLog << " * Background: " << numbackgrndtrn << endl;
|
---|
758 | *fLog << endl;
|
---|
759 | *fLog << "Gamma/Background ratio:" << endl;
|
---|
760 | *fLog << " * Requested: " << (float)fNum[kTrainOn]/fNum[kTrainOff] << endl;
|
---|
761 | *fLog << " * Result: " << (float)numgammastrn/numbackgrndtrn << endl;
|
---|
762 | *fLog << endl;
|
---|
763 | *fLog << "Run-Time: " << Form("%.1f", clock.RealTime()/60) << "min (CPU: ";
|
---|
764 | *fLog << Form("%.1f", clock.CpuTime()/60) << "min)" << endl;
|
---|
765 |
|
---|
766 | // Chekc if testing is requested
|
---|
767 | if (!fDataSetTest.IsValid())
|
---|
768 | return kTRUE;
|
---|
769 |
|
---|
770 | // --------------------- Display result ----------------------
|
---|
771 | fLog->Separator("Test");
|
---|
772 |
|
---|
773 | clock.Continue();
|
---|
774 |
|
---|
775 | // Setup parlist and tasklist for testing
|
---|
776 | MParList plist;
|
---|
777 | MTaskList tlist;
|
---|
778 | plist.AddToList(this); // Take care of display
|
---|
779 | plist.AddToList(&tlist);
|
---|
780 |
|
---|
781 | MMcEvt mcevt;
|
---|
782 | plist.AddToList(&mcevt);
|
---|
783 |
|
---|
784 | plist.AddToList(&wgt);
|
---|
785 |
|
---|
786 | // ----- Setup histograms -----
|
---|
787 | MBinning binsy(50, 0 , 1, "BinningMH3Y", "lin");
|
---|
788 | MBinning binsx(40, 10, 100000, "BinningMH3X", "log");
|
---|
789 |
|
---|
790 | plist.AddToList(&binsx);
|
---|
791 | plist.AddToList(&binsy);
|
---|
792 |
|
---|
793 | MH3 h31("MHillas.fSize", "MHadronness.fVal");
|
---|
794 | MH3 h32("MHillas.fSize", "MHadronness.fVal");
|
---|
795 | MH3 h40("MMcEvt.fEnergy", "MHadronness.fVal");
|
---|
796 | h31.SetTitle("Background probability vs. Size:Size [phe]:Hadronness h");
|
---|
797 | h32.SetTitle("Background probability vs. Size:Size [phe]:Hadronness h");
|
---|
798 | h40.SetTitle("Background probability vs. Energy:Energy [GeV]:Hadronness h");
|
---|
799 |
|
---|
800 | MHHadronness hist;
|
---|
801 |
|
---|
802 | // ----- Setup tasks -----
|
---|
803 | MFillH fillh0(&hist, "", "FillHadronness");
|
---|
804 | MFillH fillh1(&h31);
|
---|
805 | MFillH fillh2(&h32);
|
---|
806 | MFillH fillh4(&h40);
|
---|
807 | fillh0.SetWeight("MWeight");
|
---|
808 | fillh1.SetWeight("MWeight");
|
---|
809 | fillh2.SetWeight("MWeight");
|
---|
810 | fillh4.SetWeight("MWeight");
|
---|
811 | fillh1.SetDrawOption("colz profy");
|
---|
812 | fillh2.SetDrawOption("colz profy");
|
---|
813 | fillh4.SetDrawOption("colz profy");
|
---|
814 | fillh1.SetNameTab("Background");
|
---|
815 | fillh2.SetNameTab("GammasH");
|
---|
816 | fillh4.SetNameTab("GammasE");
|
---|
817 | fillh0.SetBit(MFillH::kDoNotDisplay);
|
---|
818 |
|
---|
819 | // ----- Setup filter -----
|
---|
820 | MFilterList precuts;
|
---|
821 | precuts.AddToList(fPreCuts);
|
---|
822 | precuts.AddToList(fTestCuts);
|
---|
823 |
|
---|
824 | MContinue c0(&precuts);
|
---|
825 | c0.SetName("PreCuts");
|
---|
826 | c0.SetInverted();
|
---|
827 |
|
---|
828 | MFEventSelector sel; // FIXME: USING IT (WITH PROB?) in READ will by much faster!!!
|
---|
829 | sel.SetNumSelectEvts(fNum[kTestOff]);
|
---|
830 |
|
---|
831 | MContinue c1(&sel);
|
---|
832 | c1.SetInverted();
|
---|
833 |
|
---|
834 | // ----- Setup tasklist -----
|
---|
835 | tlist.AddToList(&read2);
|
---|
836 | tlist.AddToList(&c1);
|
---|
837 | tlist.AddToList(fPreTasksSet[kTestOff]);
|
---|
838 | tlist.AddToList(fPreTasks);
|
---|
839 | tlist.AddToList(&c0);
|
---|
840 | tlist.AddToList(&rf);
|
---|
841 | tlist.AddToList(fPostTasksSet[kTestOff]);
|
---|
842 | tlist.AddToList(fPostTasks);
|
---|
843 | tlist.AddToList(&fillh0);
|
---|
844 | tlist.AddToList(&fillh1);
|
---|
845 |
|
---|
846 | // Enable Acceleration
|
---|
847 | tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime);
|
---|
848 |
|
---|
849 | // ----- Run eventloop on background -----
|
---|
850 | MEvtLoop loop;
|
---|
851 | loop.SetDisplay(fDisplay);
|
---|
852 | loop.SetLogStream(fLog);
|
---|
853 | loop.SetParList(&plist);
|
---|
854 |
|
---|
855 | wgt.SetVal(1);
|
---|
856 | if (!loop.Eventloop())
|
---|
857 | return kFALSE;
|
---|
858 | /*
|
---|
859 | if (!loop.GetDisplay())
|
---|
860 | {
|
---|
861 | gLog << warn << "Display closed by user... execution aborted." << endl << endl;
|
---|
862 | return kFALSE;
|
---|
863 | }
|
---|
864 | */
|
---|
865 | // ----- Setup and run eventloop on gammas -----
|
---|
866 | sel.SetNumSelectEvts(fNum[kTestOn]);
|
---|
867 | fillh0.ResetBit(MFillH::kDoNotDisplay);
|
---|
868 |
|
---|
869 | // Remove PreTasksOff and PostTasksOff from the list
|
---|
870 | tlist.RemoveFromList(fPreTasksSet[kTestOff]);
|
---|
871 | tlist.RemoveFromList(fPostTasksSet[kTestOff]);
|
---|
872 |
|
---|
873 | // replace the reading task by a new one
|
---|
874 | tlist.Replace(&read4);
|
---|
875 |
|
---|
876 | // Add the PreTasksOn directly after the reading task
|
---|
877 | tlist.AddToListAfter(fPreTasksSet[kTestOn], &c1);
|
---|
878 |
|
---|
879 | // Add the PostTasksOn after rf
|
---|
880 | tlist.AddToListAfter(fPostTasksSet[kTestOn], &rf);
|
---|
881 |
|
---|
882 | // Replace fillh1 by fillh2
|
---|
883 | tlist.Replace(&fillh2);
|
---|
884 |
|
---|
885 | // Add fillh4 after the new fillh2
|
---|
886 | tlist.AddToListAfter(&fillh4, &fillh2);
|
---|
887 |
|
---|
888 | // Enable Acceleration
|
---|
889 | tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime);
|
---|
890 |
|
---|
891 | wgt.SetVal(1);
|
---|
892 | if (!loop.Eventloop())
|
---|
893 | return kFALSE;
|
---|
894 |
|
---|
895 | // Show what was going on in the testing
|
---|
896 | const Double_t numgammastst = h32.GetHist().GetEntries();
|
---|
897 | const Double_t numbackgrndtst = h31.GetHist().GetEntries();
|
---|
898 |
|
---|
899 | *fLog << all;
|
---|
900 | fLog->Separator("The forest was tested with...");
|
---|
901 | *fLog << "Test method:" << endl;
|
---|
902 | *fLog << " * Random Forest: " << out << endl;
|
---|
903 | if (fEnableWeights[kTestOn])
|
---|
904 | *fLog << " * weights for on-data" << endl;
|
---|
905 | if (fEnableWeights[kTestOff])
|
---|
906 | *fLog << " * weights for off-data" << endl;
|
---|
907 | if (fDataSetTrain.IsWobbleMode())
|
---|
908 | *fLog << " * random source position in a distance of 0.4°" << endl;
|
---|
909 | *fLog << endl;
|
---|
910 | *fLog << "Events used for test:" << endl;
|
---|
911 | *fLog << " * Gammas: " << numgammastst << endl;
|
---|
912 | *fLog << " * Background: " << numbackgrndtst << endl;
|
---|
913 | *fLog << endl;
|
---|
914 | *fLog << "Gamma/Background ratio:" << endl;
|
---|
915 | *fLog << " * Requested: " << (float)fNum[kTestOn]/fNum[kTestOff] << endl;
|
---|
916 | *fLog << " * Result: " << (float)numgammastst/numbackgrndtst << endl;
|
---|
917 | *fLog << endl;
|
---|
918 |
|
---|
919 | // Display the result plots
|
---|
920 | DisplayResult(h31, h32, ontime);
|
---|
921 |
|
---|
922 | *fLog << "Total Run-Time: " << Form("%.1f", clock.RealTime()/60) << "min (CPU: ";
|
---|
923 | *fLog << Form("%.1f", clock.CpuTime()/60) << "min)" << endl;
|
---|
924 | fLog->Separator();
|
---|
925 |
|
---|
926 | // Write the display
|
---|
927 | if (!WriteDisplay(out))
|
---|
928 | return kFALSE;
|
---|
929 |
|
---|
930 | return kTRUE;
|
---|
931 | }
|
---|
932 |
|
---|