source: trunk/MagicSoft/Mars/mjtrain/MJTrainSeparation.cc@ 7764

Last change on this file since 7764 was 7760, checked in by tbretz, 18 years ago
*** empty log message ***
File size: 27.0 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz 11/2005 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: MAGIC Software Development, 2006
21!
22!
23\* ======================================================================== */
24
25/////////////////////////////////////////////////////////////////////////////
26//
27// MJTrainSeparation
28//
29////////////////////////////////////////////////////////////////////////////
30#include "MJTrainSeparation.h"
31
32#include <TF1.h>
33#include <TH2.h>
34#include <TChain.h>
35#include <TGraph.h>
36#include <TMarker.h>
37#include <TCanvas.h>
38#include <TStopwatch.h>
39#include <TVirtualPad.h>
40
41#include "MHMatrix.h"
42
43#include "MLog.h"
44#include "MLogManip.h"
45
46// tools
47#include "MMath.h"
48#include "MDataSet.h"
49#include "MTFillMatrix.h"
50#include "MStatusDisplay.h"
51
52// eventloop
53#include "MParList.h"
54#include "MTaskList.h"
55#include "MEvtLoop.h"
56
57// tasks
58#include "MReadMarsFile.h"
59#include "MContinue.h"
60#include "MFillH.h"
61#include "MSrcPosRndm.h"
62#include "MHillasCalc.h"
63#include "MRanForestCalc.h"
64#include "MParameterCalc.h"
65
66// container
67#include "MMcEvt.hxx"
68#include "MParameters.h"
69
70// histograms
71#include "MBinning.h"
72#include "MH3.h"
73#include "MHHadronness.h"
74
75// filter
76#include "MF.h"
77#include "MFEventSelector.h"
78#include "MFilterList.h"
79
80ClassImp(MJTrainSeparation);
81
82using namespace std;
83
84void MJTrainSeparation::DisplayResult(MH3 &h31, MH3 &h32, Float_t ontime)
85{
86 TH2D &g = (TH2D&)h32.GetHist();
87 TH2D &h = (TH2D&)h31.GetHist();
88
89 h.SetMarkerColor(kRed);
90 g.SetMarkerColor(kGreen);
91
92 TH2D res1(g);
93 TH2D res2(g);
94
95 h.SetTitle("Hadronness-Distribution vs. Size");
96 res1.SetTitle("Significance Li/Ma");
97 res1.SetXTitle("Size [phe]");
98 res1.SetYTitle("Hadronness");
99 res2.SetTitle("Significance-Distribution");
100 res2.SetXTitle("Size-Cut [phe]");
101 res2.SetYTitle("Hadronness-Cut");
102 res1.SetContour(50);
103 res2.SetContour(50);
104
105 const Int_t nx = h.GetNbinsX();
106 const Int_t ny = h.GetNbinsY();
107
108 gROOT->SetSelectedPad(NULL);
109
110
111 Double_t Stot = 0;
112 Double_t Btot = 0;
113
114 Double_t max2 = -1;
115
116 TGraph gr1;
117 TGraph gr2;
118 for (int x=nx-1; x>=0; x--)
119 {
120 TH1 *hx = h.ProjectionY("H_py", x+1, x+1);
121 TH1 *gx = g.ProjectionY("G_py", x+1, x+1);
122
123 Double_t S = 0;
124 Double_t B = 0;
125
126 Double_t max1 = -1;
127 Int_t maxy1 = 0;
128 Int_t maxy2 = 0;
129 for (int y=ny-1; y>=0; y--)
130 {
131 const Float_t s = gx->Integral(1, y+1);
132 const Float_t b = hx->Integral(1, y+1);
133 const Float_t sig1 = MMath::SignificanceLiMa(s+b, b);
134 const Float_t sig2 = MMath::SignificanceLiMa(s+Stot+b+Btot, b+Btot)*TMath::Log10(s+Stot+1);
135 if (sig1>max1)
136 {
137 maxy1 = y;
138 max1 = sig1;
139 }
140 if (sig2>max2)
141 {
142 maxy2 = y;
143 max2 = sig2;
144
145 S=s;
146 B=b;
147 }
148
149 res1.SetBinContent(x+1, y+1, sig1);
150 }
151
152 Stot += S;
153 Btot += B;
154
155 gr1.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy1+1));
156 gr2.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy2+1));
157
158 delete hx;
159 delete gx;
160 }
161
162 //cout << "--> " << MMath::SignificanceLiMa(Stot+Btot, Btot) << " ";
163 //cout << Stot << " " << Btot << endl;
164
165
166 Int_t mx1=0;
167 Int_t my1=0;
168 Int_t mx2=0;
169 Int_t my2=0;
170 Int_t s1=0;
171 Int_t b1=0;
172 Int_t s2=0;
173 Int_t b2=0;
174 Double_t sig1=-1;
175 Double_t sig2=-1;
176 for (int x=0; x<nx; x++)
177 {
178 TH1 *hx = h.ProjectionY("H_py", x+1);
179 TH1 *gx = g.ProjectionY("G_py", x+1);
180 for (int y=0; y<ny; y++)
181 {
182 const Float_t s = gx->Integral(1, y+1);
183 const Float_t b = hx->Integral(1, y+1);
184 const Float_t sig = MMath::SignificanceLiMa(s+b, b);
185 res2.SetBinContent(x+1, y+1, sig);
186
187 // Search for top-rightmost maximum
188 if (sig>=sig1)
189 {
190 mx1=x+1;
191 my1=y+1;
192 s1 = TMath::Nint(s);
193 b1 = TMath::Nint(b);
194 sig1=sig;
195 }
196 if (TMath::Log10(s)*sig>=sig2)
197 {
198 mx2=x+1;
199 my2=y+1;
200 s2 = TMath::Nint(s);
201 b2 = TMath::Nint(b);
202 sig2=TMath::Log10(s)*sig;
203 }
204 }
205 delete hx;
206 delete gx;
207 }
208
209 TGraph gr3;
210 TGraph gr4;
211 gr4.SetTitle("Significance Li/Ma vs. Hadronness-cut");
212
213 TH1 *hx = h.ProjectionY("H_py");
214 TH1 *gx = g.ProjectionY("G_py");
215 for (int y=0; y<ny; y++)
216 {
217 const Float_t s = gx->Integral(1, y+1);
218 const Float_t b = hx->Integral(1, y+1);
219 const Float_t sig1 = MMath::SignificanceLiMa(s+b, b);
220 const Float_t sig2 = s<1 ? 0 : MMath::SignificanceLiMa(s+b, b)*TMath::Log10(s);
221
222 gr3.SetPoint(y, h.GetYaxis()->GetBinLowEdge(y+2), sig1);
223 gr4.SetPoint(y, h.GetYaxis()->GetBinLowEdge(y+2), sig2);
224 }
225 delete hx;
226 delete gx;
227
228 if (fDisplay)
229 {
230 TCanvas &c = fDisplay->AddTab("OptCut");
231 c.SetBorderMode(0);
232 c.Divide(2,2);
233
234 c.cd(1);
235 gPad->SetBorderMode(0);
236 gPad->SetFrameBorderMode(0);
237 gPad->SetLogx();
238 gPad->SetGridx();
239 gPad->SetGridy();
240 h.DrawCopy();
241 g.DrawCopy("same");
242 gr1.SetMarkerStyle(kFullDotMedium);
243 gr1.DrawClone("LP")->SetBit(kCanDelete);
244 gr2.SetLineColor(kBlue);
245 gr2.SetMarkerStyle(kFullDotMedium);
246 gr2.DrawClone("LP")->SetBit(kCanDelete);
247
248 c.cd(3);
249 gPad->SetBorderMode(0);
250 gPad->SetFrameBorderMode(0);
251 gPad->SetGridx();
252 gPad->SetGridy();
253 gr4.SetMinimum(0);
254 gr4.SetMarkerStyle(kFullDotMedium);
255 gr4.DrawClone("ALP")->SetBit(kCanDelete);
256 gr3.SetLineColor(kBlue);
257 gr3.SetMarkerStyle(kFullDotMedium);
258 gr3.DrawClone("LP")->SetBit(kCanDelete);
259
260 c.cd(2);
261 gPad->SetBorderMode(0);
262 gPad->SetFrameBorderMode(0);
263 gPad->SetLogx();
264 gPad->SetGridx();
265 gPad->SetGridy();
266 gPad->AddExec("color", "gStyle->SetPalette(1, 0);");
267 res1.SetMaximum(7);
268 res1.DrawCopy("colz");
269
270 c.cd(4);
271 gPad->SetBorderMode(0);
272 gPad->SetFrameBorderMode(0);
273 gPad->SetLogx();
274 gPad->SetGridx();
275 gPad->SetGridy();
276 gPad->AddExec("color", "gStyle->SetPalette(1, 0);");
277 res2.SetMaximum(res2.GetMaximum()*1.05);
278 res2.DrawCopy("colz");
279
280 // Int_t mx, my, mz;
281 // res2.GetMaximumBin(mx, my, mz);
282
283 TMarker m;
284 m.SetMarkerStyle(kStar);
285 m.DrawMarker(res2.GetXaxis()->GetBinCenter(mx1), res2.GetYaxis()->GetBinCenter(my1));
286 m.SetMarkerStyle(kPlus);
287 m.DrawMarker(res2.GetXaxis()->GetBinCenter(mx2), res2.GetYaxis()->GetBinCenter(my2));
288 }
289
290 *fLog << all << "Observation Time: " << TMath::Nint(ontime/60) << "min" << endl;
291 *fLog << "Maximum Significance: " << Form("%.1f", sig1) << " [";
292 *fLog << Form("%.1f", sig1/TMath::Sqrt(ontime/3600)) << "/sqrt(h)]";
293 *fLog << endl;
294
295 *fLog << "Significance: S=" << Form("%.1f", sig1) << " E=" << s1 << " B=" << b1 << " h<";
296 *fLog << Form("%.2f", res2.GetYaxis()->GetBinCenter(my1)) << " s>";
297 *fLog << Form("%3d", TMath::Nint(res2.GetXaxis()->GetBinCenter(mx1))) << endl;
298 *fLog << "Significance*LogE: S=" << Form("%.1f", sig2/TMath::Log10(s2)) << " E=" << s2 << " B=" << b2 << " h<";
299 *fLog << Form("%.2f", res2.GetYaxis()->GetBinCenter(my2)) << " s>";
300 *fLog << Form("%3d", TMath::Nint(res2.GetXaxis()->GetBinCenter(mx2))) << endl;
301 *fLog << endl;
302}
303
304/*
305Bool_t MJSpectrum::InitWeighting(const MDataSet &set, MMcSpectrumWeight &w) const
306{
307 fLog->Separator("Initialize energy weighting");
308
309 if (!CheckEnv(w))
310 {
311 *fLog << err << "ERROR - Reading resources for MMcSpectrumWeight failed." << endl;
312 return kFALSE;
313 }
314
315 TChain chain("RunHeaders");
316 set.AddFilesOn(chain);
317
318 MMcCorsikaRunHeader *h=0;
319 chain.SetBranchAddress("MMcCorsikaRunHeader.", &h);
320 chain.GetEntry(1);
321
322 if (!h)
323 {
324 *fLog << err << "ERROR - Couldn't read MMcCorsikaRunHeader from DataSet." << endl;
325 return kFALSE;
326 }
327
328 if (!w.Set(*h))
329 {
330 *fLog << err << "ERROR - Initializing MMcSpectrumWeight failed." << endl;
331 return kFALSE;
332 }
333
334 w.Print();
335 return kTRUE;
336}
337
338Bool_t MJSpectrum::ReadOrigMCDistribution(const MDataSet &set, TH1 &h, MMcSpectrumWeight &weight) const
339{
340 // Some debug output
341 fLog->Separator("Compiling original MC distribution");
342
343 weight.SetNameMcEvt("MMcEvtBasic");
344 const TString w(weight.GetFormulaWeights());
345 weight.SetNameMcEvt();
346
347 *fLog << inf << "Using weights: " << w << endl;
348 *fLog << "Please stand by, this may take a while..." << flush;
349
350 if (fDisplay)
351 fDisplay->SetStatusLine1("Compiling MC distribution...");
352
353 // Create chain
354 TChain chain("OriginalMC");
355 set.AddFilesOn(chain);
356
357 // Prepare histogram
358 h.Reset();
359
360 // Fill histogram from chain
361 h.SetDirectory(gROOT);
362 if (h.InheritsFrom(TH2::Class()))
363 {
364 h.SetNameTitle("ThetaEMC", "Event-Distribution vs Theta and Energy for MC (produced)");
365 h.SetXTitle("\\Theta [\\circ]");
366 h.SetYTitle("E [GeV]");
367 h.SetZTitle("Counts");
368 chain.Draw("MMcEvtBasic.fEnergy:MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaEMC", w, "goff");
369 }
370 else
371 {
372 h.SetNameTitle("ThetaMC", "Event-Distribution vs Theta for MC (produced)");
373 h.SetXTitle("\\Theta [\\circ]");
374 h.SetYTitle("Counts");
375 chain.Draw("MMcEvtBasic.fTelescopeTheta*TMath::RadToDeg()>>ThetaMC", w, "goff");
376 }
377 h.SetDirectory(0);
378
379 *fLog << "done." << endl;
380 if (fDisplay)
381 fDisplay->SetStatusLine2("done.");
382
383 if (h.GetEntries()>0)
384 return kTRUE;
385
386 *fLog << err << "ERROR - Histogram with original MC distribution empty..." << endl;
387
388 return h.GetEntries()>0;
389}
390*/
391
392Bool_t MJTrainSeparation::GetEventsProduced(MDataSet &set, Double_t &num, Double_t &min, Double_t &max) const
393{
394 TChain chain("OriginalMC");
395 set.AddFilesOn(chain);
396
397 min = chain.GetMinimum("MMcEvtBasic.fEnergy");
398 max = chain.GetMaximum("MMcEvtBasic.fEnergy");
399
400 num = chain.GetEntries();
401
402 if (num<100)
403 *fLog << err << "ERROR - Less than 100 entries in OriginalMC-Tree of MC-Train-Data found." << endl;
404
405 return num>=100;
406}
407
408Double_t MJTrainSeparation::GetDataRate(MDataSet &set, Double_t &num) const
409{
410 TChain chain1("Events");
411 set.AddFilesOff(chain1);
412
413 num = chain1.GetEntries();
414 if (num<100)
415 {
416 *fLog << err << "ERROR - Less than 100 entries in Events-Tree of Train-Data found." << endl;
417 return -1;
418 }
419
420 TChain chain("EffectiveOnTime");
421 set.AddFilesOff(chain);
422
423 chain.Draw("MEffectiveOnTime.fVal", "MEffectiveOnTime.fVal", "goff");
424
425 TH1 *h = dynamic_cast<TH1*>(gROOT->FindObject("htemp"));
426 if (!h)
427 {
428 *fLog << err << "ERROR - Weird things are happening (htemp not found)!" << endl;
429 return -1;
430 }
431
432 const Double_t ontime = h->Integral();
433 delete h;
434
435 if (ontime<1)
436 {
437 *fLog << err << "ERROR - Less than 1s of effective observation time found in Train-Data." << endl;
438 return -1;
439 }
440
441 return num/ontime;
442}
443
444Double_t MJTrainSeparation::GetNumMC(MDataSet &set) const
445{
446 TChain chain1("Events");
447 set.AddFilesOn(chain1);
448
449 const Double_t num = chain1.GetEntries();
450 if (num<100)
451 {
452 *fLog << err << "ERROR - Less than 100 entries in Events-Tree of Train-Data found." << endl;
453 return -1;
454 }
455
456 return num;
457}
458
459Float_t MJTrainSeparation::AutoTrain(MDataSet &set, Type_t typon, Type_t typof, Float_t flux)
460{
461 Double_t num, min, max;
462 if (!GetEventsProduced(set, num, min, max))
463 return -1;
464
465 *fLog << inf << "Using build-in radius of 300m to calculate collection area!" << endl;
466
467 // Target spectrum
468 TF1 flx("Flux", "[0]/1000*(x/1000)^(-2.6)", min, max);
469 flx.SetParameter(0, flux);
470
471 // Number n0 of events this spectrum would produce per s and m^2
472 const Double_t n0 = flx.Integral(min, max); //[#]
473
474 // Area produced in MC
475 const Double_t A = TMath::Pi()*300*300; //[m²]
476
477 // Rate R of events this spectrum would produce per s
478 const Double_t R = n0*A; //[Hz]
479
480 *fLog << "Source Spectrum: " << flux << " * (E/TeV)^(-2.6) * TeV*m^2*s" << endl;
481
482 *fLog << "Gamma rate from the source inside the MC production area: " << R << "Hz" << endl;
483
484 // Number N of events produced (in trainings sample)
485 const Double_t N = num; //[#]
486
487 *fLog << "Events produced by MC inside the production area: " << TMath::Nint(num) << endl;
488
489 // This correponds to an observation time T [s]
490 const Double_t T = N/R; //[s]
491
492 *fLog << "Total time produced by the Monte Carlo: " << T << "s" << endl;
493
494 // With an average data rate after star of
495 Double_t data=0;
496 const Double_t r = GetDataRate(set, data); //[Hz]
497 Double_t ontime = data/r;
498
499 *fLog << "Events measured per second effective on time: " << r << "Hz" << endl;
500 *fLog << "Total effective on time: " << ontime << "s" << endl;
501
502 const Double_t ratio = T/ontime;
503 *fLog << "Ratio of Monte Carlo to data observation time: " << ratio << endl;
504
505 // 3570.5/43440.2 = 0.082
506
507
508 // this yields a number of n events to be read for training
509 const Double_t n = r*T; //[#]
510
511 *fLog << "Events to be read from the data sample: " << TMath::Nint(n) << endl;
512 *fLog << "Events available in data sample: " << data << endl;
513
514 if (r<0)
515 return -1;
516
517 Double_t nummc = GetNumMC(set);
518
519 *fLog << "Events available in MC sample: " << nummc << endl;
520
521// *fLog << "MC read probability: " << data/n << endl;
522
523 // more data requested than available => Scale down num MC events
524 Double_t on, off;
525 if (data<n)
526 {
527 on = TMath::Nint(nummc*data/n);
528 off = TMath::Nint(data);
529 *fLog << warn;
530 *fLog << "Not enough data events available... scaling MC to data by " << data/n << endl;
531 *fLog << inf;
532 }
533 else
534 {
535 on = TMath::Nint(nummc);
536 off = TMath::Nint(n);
537 }
538
539 if (fNum[typon]>0 && fNum[typon]<on)
540 {
541 fNum[typof] = TMath::Nint(off*fNum[typon]/on);
542 ontime *= fNum[typon]/on;
543 *fLog << warn << "Less MC events requested... scaling data to MC by " << fNum[typon]/on << endl;
544 }
545 else
546 {
547 fNum[typon] = TMath::Nint(on);
548 fNum[typof] = TMath::Nint(off);
549 }
550
551 *fLog << inf;
552 *fLog << "Target number of MC events: " << fNum[typon] << endl;
553 *fLog << "Target number of data events: " << fNum[typof] << endl;
554
555 /*
556 An event rate dependent selection?
557 ----------------------------------
558 Total average data rate: R
559 Goal number of events: N
560 Number of data events: N0
561 Rate assigned to single evt: r
562
563 Selection probability: N/N0 * r/R
564
565 f := N/N0 * r
566
567 MF f("f * MEventRate.fRate < rand");
568 */
569
570 return ontime;
571}
572
573Bool_t MJTrainSeparation::Train(const char *out)
574{
575 if (!fDataSetTrain.IsValid())
576 {
577 *fLog << err << "ERROR - DataSet for training invalid!" << endl;
578 return kFALSE;
579 }
580 if (!fDataSetTest.IsValid())
581 {
582 *fLog << err << "ERROR - DataSet for testing invalid!" << endl;
583 return kFALSE;
584 }
585
586 if (fDataSetTrain.IsWobbleMode()!=fDataSetTest.IsWobbleMode())
587 {
588 *fLog << err << "ERROR - Train- and Test-DataSet have different observation modes!" << endl;
589 return kFALSE;
590 }
591
592 TStopwatch clock;
593 clock.Start();
594
595 // ----------------------- Auto Train? ----------------------
596
597 Float_t ontime = -1;
598 if (fAutoTrain)
599 {
600 fLog->Separator("Auto-Training -- Train-Data");
601 if (AutoTrain(fDataSetTrain, kTrainOn, kTrainOff, fFluxTrain)<0)
602 return kFALSE;
603 fLog->Separator("Auto-Training -- Test-Data");
604 ontime = AutoTrain(fDataSetTest, kTestOn, kTestOff, fFluxTest);
605 if (ontime<0)
606 return kFALSE;
607 }
608
609 // --------------------- Setup files --------------------
610 MReadMarsFile read1("Events");
611 MReadMarsFile read2("Events");
612 MReadMarsFile read3("Events");
613 MReadMarsFile read4("Events");
614 read1.DisableAutoScheme();
615 read2.DisableAutoScheme();
616 read3.DisableAutoScheme();
617 read4.DisableAutoScheme();
618
619 // Setup four reading tasks with the on- and off-data of the two datasets
620 fDataSetTrain.AddFilesOn(read1);
621 fDataSetTrain.AddFilesOff(read3);
622
623 fDataSetTest.AddFilesOff(read2);
624 fDataSetTest.AddFilesOn(read4);
625
626 // ----------------------- Setup RF Matrix ----------------------
627 MHMatrix train("Train");
628 train.AddColumns(fRules);
629 if (fEnableWeights[kTrainOn] || fEnableWeights[kTrainOff])
630 train.AddColumn("MWeight.fVal");
631 train.AddColumn("MHadronness.fVal");
632
633 // ----------------------- Fill Matrix RF ----------------------
634
635 // Setup the hadronness container identifying gammas and off-data
636 // and setup a container for the weights
637 MParameterD had("MHadronness");
638 MParameterD wgt("MWeight");
639
640 // Add them to the parameter list
641 MParList plistx;
642 plistx.AddToList(this); // take care of fDisplay!
643 plistx.AddToList(&had);
644 plistx.AddToList(&wgt);
645
646 // Setup the tool class to fill the matrix
647 MTFillMatrix fill;
648 fill.SetLogStream(fLog);
649 fill.SetDisplay(fDisplay);
650 fill.AddPreCuts(fPreCuts);
651 fill.AddPreCuts(fTrainCuts);
652
653 // Set classifier for gammas
654 had.SetVal(0);
655 wgt.SetVal(1);
656
657 // Setup the tool class to read the gammas and read them
658 fill.SetName("FillGammas");
659 fill.SetDestMatrix1(&train, fNum[kTrainOn]);
660 fill.SetReader(&read1);
661 fill.AddPreTasks(fPreTasksSet[kTrainOn]);
662 fill.AddPreTasks(fPreTasks);
663 fill.AddPostTasks(fPostTasksSet[kTrainOn]);
664 fill.AddPostTasks(fPostTasks);
665 if (!fill.Process(plistx))
666 return kFALSE;
667
668 // Check the number or read events
669 const Int_t numgammastrn = train.GetNumRows();
670 if (numgammastrn==0)
671 {
672 *fLog << err << "ERROR - No gammas available for training... aborting." << endl;
673 return kFALSE;
674 }
675
676 // Remove possible post tasks
677 fill.ClearPreTasks();
678 fill.ClearPostTasks();
679
680 // Set classifier for background
681 had.SetVal(1);
682 wgt.SetVal(1);
683
684 // In case of wobble mode we have to do something special
685 MSrcPosRndm srcrndm;
686 srcrndm.SetDistOfSource(0.4);
687
688 MHillasCalc hcalc;
689 hcalc.SetFlags(MHillasCalc::kCalcHillasSrc);
690
691 if (fDataSetTrain.IsWobbleMode())
692 {
693 fPreTasksSet[kTrainOff].AddFirst(&hcalc);
694 fPreTasksSet[kTrainOff].AddFirst(&srcrndm);
695 }
696
697 // Setup the tool class to read the background and read them
698 fill.SetName("FillBackground");
699 fill.SetDestMatrix1(&train, fNum[kTrainOff]);
700 fill.SetReader(&read3);
701 fill.AddPreTasks(fPreTasksSet[kTrainOff]);
702 fill.AddPreTasks(fPreTasks);
703 fill.AddPostTasks(fPostTasksSet[kTrainOff]);
704 fill.AddPostTasks(fPostTasks);
705 if (!fill.Process(plistx))
706 return kFALSE;
707
708 // Check the number or read events
709 const Int_t numbackgrndtrn = train.GetNumRows()-numgammastrn;
710 if (numbackgrndtrn==0)
711 {
712 *fLog << err << "ERROR - No background available for training... aborting." << endl;
713 return kFALSE;
714 }
715
716 // ------------------------ Train RF --------------------------
717
718 MRanForestCalc rf;
719 rf.SetNumTrees(fNumTrees);
720 rf.SetNdSize(fNdSize);
721 rf.SetNumTry(fNumTry);
722 rf.SetNumObsoleteVariables(1);
723 rf.SetLastDataColumnHasWeights(fEnableWeights[kTrainOn] || fEnableWeights[kTrainOff]);
724 rf.SetDebug(fDebug);
725 rf.SetDisplay(fDisplay);
726 rf.SetLogStream(fLog);
727 rf.SetFileName(out);
728 rf.SetNameOutput("MHadronness");
729
730 // Train the random forest either by classification or regression
731 if (fUseRegression)
732 {
733 if (!rf.TrainRegression(train)) // regression
734 return kFALSE;
735 }
736 else
737 {
738 if (!rf.TrainSingleRF(train)) // classification
739 return kFALSE;
740 }
741
742 // Output information about what was going on so far.
743 *fLog << all;
744 fLog->Separator("The forest was trained with...");
745
746 *fLog << "Training method:" << endl;
747 *fLog << " * " << (fUseRegression?"regression":"classification") << endl;
748 if (fEnableWeights[kTrainOn])
749 *fLog << " * weights for on-data" << endl;
750 if (fEnableWeights[kTrainOff])
751 *fLog << " * weights for off-data" << endl;
752 if (fDataSetTrain.IsWobbleMode())
753 *fLog << " * random source position in a distance of 0.4°" << endl;
754 *fLog << endl;
755 *fLog << "Events used for training:" << endl;
756 *fLog << " * Gammas: " << numgammastrn << endl;
757 *fLog << " * Background: " << numbackgrndtrn << endl;
758 *fLog << endl;
759 *fLog << "Gamma/Background ratio:" << endl;
760 *fLog << " * Requested: " << (float)fNum[kTrainOn]/fNum[kTrainOff] << endl;
761 *fLog << " * Result: " << (float)numgammastrn/numbackgrndtrn << endl;
762 *fLog << endl;
763 *fLog << "Run-Time: " << Form("%.1f", clock.RealTime()/60) << "min (CPU: ";
764 *fLog << Form("%.1f", clock.CpuTime()/60) << "min)" << endl;
765
766 // Chekc if testing is requested
767 if (!fDataSetTest.IsValid())
768 return kTRUE;
769
770 // --------------------- Display result ----------------------
771 fLog->Separator("Test");
772
773 clock.Continue();
774
775 // Setup parlist and tasklist for testing
776 MParList plist;
777 MTaskList tlist;
778 plist.AddToList(this); // Take care of display
779 plist.AddToList(&tlist);
780
781 MMcEvt mcevt;
782 plist.AddToList(&mcevt);
783
784 plist.AddToList(&wgt);
785
786 // ----- Setup histograms -----
787 MBinning binsy(50, 0 , 1, "BinningMH3Y", "lin");
788 MBinning binsx(40, 10, 100000, "BinningMH3X", "log");
789
790 plist.AddToList(&binsx);
791 plist.AddToList(&binsy);
792
793 MH3 h31("MHillas.fSize", "MHadronness.fVal");
794 MH3 h32("MHillas.fSize", "MHadronness.fVal");
795 MH3 h40("MMcEvt.fEnergy", "MHadronness.fVal");
796 h31.SetTitle("Background probability vs. Size:Size [phe]:Hadronness h");
797 h32.SetTitle("Background probability vs. Size:Size [phe]:Hadronness h");
798 h40.SetTitle("Background probability vs. Energy:Energy [GeV]:Hadronness h");
799
800 MHHadronness hist;
801
802 // ----- Setup tasks -----
803 MFillH fillh0(&hist, "", "FillHadronness");
804 MFillH fillh1(&h31);
805 MFillH fillh2(&h32);
806 MFillH fillh4(&h40);
807 fillh0.SetWeight("MWeight");
808 fillh1.SetWeight("MWeight");
809 fillh2.SetWeight("MWeight");
810 fillh4.SetWeight("MWeight");
811 fillh1.SetDrawOption("colz profy");
812 fillh2.SetDrawOption("colz profy");
813 fillh4.SetDrawOption("colz profy");
814 fillh1.SetNameTab("Background");
815 fillh2.SetNameTab("GammasH");
816 fillh4.SetNameTab("GammasE");
817 fillh0.SetBit(MFillH::kDoNotDisplay);
818
819 // ----- Setup filter -----
820 MFilterList precuts;
821 precuts.AddToList(fPreCuts);
822 precuts.AddToList(fTestCuts);
823
824 MContinue c0(&precuts);
825 c0.SetName("PreCuts");
826 c0.SetInverted();
827
828 MFEventSelector sel; // FIXME: USING IT (WITH PROB?) in READ will by much faster!!!
829 sel.SetNumSelectEvts(fNum[kTestOff]);
830
831 MContinue c1(&sel);
832 c1.SetInverted();
833
834 // ----- Setup tasklist -----
835 tlist.AddToList(&read2);
836 tlist.AddToList(&c1);
837 tlist.AddToList(fPreTasksSet[kTestOff]);
838 tlist.AddToList(fPreTasks);
839 tlist.AddToList(&c0);
840 tlist.AddToList(&rf);
841 tlist.AddToList(fPostTasksSet[kTestOff]);
842 tlist.AddToList(fPostTasks);
843 tlist.AddToList(&fillh0);
844 tlist.AddToList(&fillh1);
845
846 // Enable Acceleration
847 tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime);
848
849 // ----- Run eventloop on background -----
850 MEvtLoop loop;
851 loop.SetDisplay(fDisplay);
852 loop.SetLogStream(fLog);
853 loop.SetParList(&plist);
854
855 wgt.SetVal(1);
856 if (!loop.Eventloop())
857 return kFALSE;
858 /*
859 if (!loop.GetDisplay())
860 {
861 gLog << warn << "Display closed by user... execution aborted." << endl << endl;
862 return kFALSE;
863 }
864 */
865 // ----- Setup and run eventloop on gammas -----
866 sel.SetNumSelectEvts(fNum[kTestOn]);
867 fillh0.ResetBit(MFillH::kDoNotDisplay);
868
869 // Remove PreTasksOff and PostTasksOff from the list
870 tlist.RemoveFromList(fPreTasksSet[kTestOff]);
871 tlist.RemoveFromList(fPostTasksSet[kTestOff]);
872
873 // replace the reading task by a new one
874 tlist.Replace(&read4);
875
876 // Add the PreTasksOn directly after the reading task
877 tlist.AddToListAfter(fPreTasksSet[kTestOn], &c1);
878
879 // Add the PostTasksOn after rf
880 tlist.AddToListAfter(fPostTasksSet[kTestOn], &rf);
881
882 // Replace fillh1 by fillh2
883 tlist.Replace(&fillh2);
884
885 // Add fillh4 after the new fillh2
886 tlist.AddToListAfter(&fillh4, &fillh2);
887
888 // Enable Acceleration
889 tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime);
890
891 wgt.SetVal(1);
892 if (!loop.Eventloop())
893 return kFALSE;
894
895 // Show what was going on in the testing
896 const Double_t numgammastst = h32.GetHist().GetEntries();
897 const Double_t numbackgrndtst = h31.GetHist().GetEntries();
898
899 *fLog << all;
900 fLog->Separator("The forest was tested with...");
901 *fLog << "Test method:" << endl;
902 *fLog << " * Random Forest: " << out << endl;
903 if (fEnableWeights[kTestOn])
904 *fLog << " * weights for on-data" << endl;
905 if (fEnableWeights[kTestOff])
906 *fLog << " * weights for off-data" << endl;
907 if (fDataSetTrain.IsWobbleMode())
908 *fLog << " * random source position in a distance of 0.4°" << endl;
909 *fLog << endl;
910 *fLog << "Events used for test:" << endl;
911 *fLog << " * Gammas: " << numgammastst << endl;
912 *fLog << " * Background: " << numbackgrndtst << endl;
913 *fLog << endl;
914 *fLog << "Gamma/Background ratio:" << endl;
915 *fLog << " * Requested: " << (float)fNum[kTestOn]/fNum[kTestOff] << endl;
916 *fLog << " * Result: " << (float)numgammastst/numbackgrndtst << endl;
917 *fLog << endl;
918
919 // Display the result plots
920 DisplayResult(h31, h32, ontime);
921
922 *fLog << "Total Run-Time: " << Form("%.1f", clock.RealTime()/60) << "min (CPU: ";
923 *fLog << Form("%.1f", clock.CpuTime()/60) << "min)" << endl;
924 fLog->Separator();
925
926 // Write the display
927 if (!WriteDisplay(out))
928 return kFALSE;
929
930 return kTRUE;
931}
932
Note: See TracBrowser for help on using the repository browser.