| 1 | #ifndef MARS_MJTrainSeparation
|
|---|
| 2 | #define MARS_MJTrainSeparation
|
|---|
| 3 |
|
|---|
| 4 | #ifndef MARS_MJTrainRanForest
|
|---|
| 5 | #include "MJTrainRanForest.h"
|
|---|
| 6 | #endif
|
|---|
| 7 |
|
|---|
| 8 | #ifndef MARS_MDataSet
|
|---|
| 9 | #include "MDataSet.h"
|
|---|
| 10 | #endif
|
|---|
| 11 |
|
|---|
| 12 | class MH3;
|
|---|
| 13 |
|
|---|
| 14 | class MJTrainSeparation : public MJTrainRanForest
|
|---|
| 15 | {
|
|---|
| 16 | private:
|
|---|
| 17 | MDataSet fDataSetTest;
|
|---|
| 18 | MDataSet fDataSetTrain;
|
|---|
| 19 |
|
|---|
| 20 | UInt_t fNumTrainOn;
|
|---|
| 21 | UInt_t fNumTrainOff;
|
|---|
| 22 |
|
|---|
| 23 | UInt_t fNumTestOn;
|
|---|
| 24 | UInt_t fNumTestOff;
|
|---|
| 25 |
|
|---|
| 26 | Bool_t fAutoTrain;
|
|---|
| 27 | Bool_t fUseRegression;
|
|---|
| 28 |
|
|---|
| 29 | void DisplayResult(MH3 &h31, MH3 &h32);
|
|---|
| 30 |
|
|---|
| 31 | Bool_t GetEventsProduced(MDataSet &set, Double_t &num, Double_t &min, Double_t &max) const;
|
|---|
| 32 | Double_t GetDataRate(MDataSet &set, Double_t &num) const;
|
|---|
| 33 | Double_t GetNumMC(MDataSet &set) const;
|
|---|
| 34 | Bool_t AutoTrain();
|
|---|
| 35 |
|
|---|
| 36 | public:
|
|---|
| 37 | MJTrainSeparation() :
|
|---|
| 38 | fNumTrainOn((UInt_t)-1), fNumTrainOff((UInt_t)-1),
|
|---|
| 39 | fNumTestOn((UInt_t)-1), fNumTestOff((UInt_t)-1),
|
|---|
| 40 | fAutoTrain(kFALSE), fUseRegression(kTRUE)
|
|---|
| 41 | { }
|
|---|
| 42 |
|
|---|
| 43 | void SetDataSetTrain(const MDataSet &ds, UInt_t non=(UInt_t)-1, UInt_t noff=(UInt_t)-1)
|
|---|
| 44 | {
|
|---|
| 45 | ds.Copy(fDataSetTrain);
|
|---|
| 46 |
|
|---|
| 47 | fDataSetTrain.SetNumAnalysis(1);
|
|---|
| 48 |
|
|---|
| 49 | fNumTrainOn = non;
|
|---|
| 50 | fNumTrainOff = noff;
|
|---|
| 51 | }
|
|---|
| 52 | void SetDataSetTest(const MDataSet &ds, UInt_t non=(UInt_t)-1, UInt_t noff=(UInt_t)-1)
|
|---|
| 53 | {
|
|---|
| 54 | ds.Copy(fDataSetTest);
|
|---|
| 55 |
|
|---|
| 56 | fDataSetTest.SetNumAnalysis(1);
|
|---|
| 57 |
|
|---|
| 58 | fNumTestOn = non;
|
|---|
| 59 | fNumTestOff = noff;
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 | void EnableAutoTrain(Bool_t b=kTRUE) { fAutoTrain = b; }
|
|---|
| 63 | void EnableRegression(Bool_t b=kTRUE) { fUseRegression = b; }
|
|---|
| 64 | void EnableClassification(Bool_t b=kTRUE) { fUseRegression = !b; }
|
|---|
| 65 |
|
|---|
| 66 | Bool_t Train(const char *out);
|
|---|
| 67 |
|
|---|
| 68 | ClassDef(MJTrainSeparation, 0)//Class to train Random Forest gamma-/background-separation
|
|---|
| 69 | };
|
|---|
| 70 |
|
|---|
| 71 | #endif
|
|---|