| 1 | #ifndef MARS_MJTrainSeparation | 
|---|
| 2 | #define MARS_MJTrainSeparation | 
|---|
| 3 |  | 
|---|
| 4 | #ifndef MARS_MJTrainRanForest | 
|---|
| 5 | #include "MJTrainRanForest.h" | 
|---|
| 6 | #endif | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef MARS_MDataSet | 
|---|
| 9 | #include "MDataSet.h" | 
|---|
| 10 | #endif | 
|---|
| 11 |  | 
|---|
| 12 | class MH3; | 
|---|
| 13 |  | 
|---|
| 14 | class MJTrainSeparation : public MJTrainRanForest | 
|---|
| 15 | { | 
|---|
| 16 | public: | 
|---|
| 17 | enum Type_t { kTrainOn, kTrainOff, kTestOn, kTestOff }; | 
|---|
| 18 |  | 
|---|
| 19 | private: | 
|---|
| 20 | MDataSet fDataSetTest; | 
|---|
| 21 | MDataSet fDataSetTrain; | 
|---|
| 22 |  | 
|---|
| 23 | UInt_t fNum[4]; | 
|---|
| 24 |  | 
|---|
| 25 | TList fPreTasksSet[4]; | 
|---|
| 26 | TList fPostTasksSet[4]; | 
|---|
| 27 |  | 
|---|
| 28 | Bool_t fAutoTrain; | 
|---|
| 29 | Bool_t fUseRegression; | 
|---|
| 30 |  | 
|---|
| 31 | Bool_t fEnableWeights[4]; | 
|---|
| 32 |  | 
|---|
| 33 | Float_t fFluxTrain; | 
|---|
| 34 | Float_t fFluxTest; | 
|---|
| 35 |  | 
|---|
| 36 | // Result | 
|---|
| 37 | void     DisplayResult(MH3 &h31, MH3 &h32, Float_t ontime); | 
|---|
| 38 |  | 
|---|
| 39 | // Auto training | 
|---|
| 40 | Bool_t   GetEventsProduced(MDataSet &set, Double_t &num, Double_t &min, Double_t &max) const; | 
|---|
| 41 | Double_t GetDataRate(MDataSet &set, Double_t &num) const; | 
|---|
| 42 | Double_t GetNumMC(MDataSet &set) const; | 
|---|
| 43 | Float_t  AutoTrain(MDataSet &set, Type_t typon, Type_t typoff, Float_t flux); | 
|---|
| 44 |  | 
|---|
| 45 | public: | 
|---|
| 46 | MJTrainSeparation() : | 
|---|
| 47 | fAutoTrain(kFALSE), fUseRegression(kFALSE), | 
|---|
| 48 | fFluxTrain(2e-7), fFluxTest(2e-7) | 
|---|
| 49 | { for (int i=0; i<4; i++) { fEnableWeights[i]=kFALSE; fNum[i] = (UInt_t)-1; } } | 
|---|
| 50 |  | 
|---|
| 51 | void SetDataSetTrain(const MDataSet &ds, UInt_t non=(UInt_t)-1, UInt_t noff=(UInt_t)-1) | 
|---|
| 52 | { | 
|---|
| 53 | ds.Copy(fDataSetTrain); | 
|---|
| 54 |  | 
|---|
| 55 | fDataSetTrain.SetNumAnalysis(1); | 
|---|
| 56 |  | 
|---|
| 57 | fNum[kTrainOn]  = non; | 
|---|
| 58 | fNum[kTrainOff] = noff; | 
|---|
| 59 | } | 
|---|
| 60 | void SetDataSetTest(const MDataSet &ds, UInt_t non=(UInt_t)-1, UInt_t noff=(UInt_t)-1) | 
|---|
| 61 | { | 
|---|
| 62 | ds.Copy(fDataSetTest); | 
|---|
| 63 |  | 
|---|
| 64 | fDataSetTest.SetNumAnalysis(1); | 
|---|
| 65 |  | 
|---|
| 66 | fNum[kTestOn]  = non; | 
|---|
| 67 | fNum[kTestOff] = noff; | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 | // Deprecated, used for test purpose | 
|---|
| 71 | void AddPreTask(Type_t typ, MTask *t)                                      { Add(fPreTasksSet[typ],  t); } | 
|---|
| 72 | void AddPreTask(Type_t typ, const char *rule, const char *name="MWeight")  { AddPar(fPreTasksSet[typ], rule, name); } | 
|---|
| 73 |  | 
|---|
| 74 | void AddPostTask(Type_t typ, MTask *t)                                     { Add(fPostTasksSet[typ],  t); } | 
|---|
| 75 | void AddPostTask(Type_t typ, const char *rule, const char *name="MWeight") { AddPar(fPostTasksSet[typ], rule, name); } | 
|---|
| 76 |  | 
|---|
| 77 | void SetWeights(Type_t typ, const char *rule)  { if (fEnableWeights[typ]) return; fEnableWeights[typ]=kTRUE; AddPostTask(typ, rule); } | 
|---|
| 78 | void SetWeights(Type_t typ, MTask *t)          { if (fEnableWeights[typ]) return; fEnableWeights[typ]=kTRUE; AddPostTask(typ, t); } | 
|---|
| 79 |  | 
|---|
| 80 | // Standard user interface | 
|---|
| 81 | void AddPreTaskOn(MTask *t)                                       { AddPreTask(kTrainOn, t); AddPreTask(kTestOn, t); } | 
|---|
| 82 | void AddPreTaskOn(const char *rule, const char *name="MWeight")   { AddPreTask(kTrainOn, rule, name); AddPreTask(kTestOn, rule, name); } | 
|---|
| 83 | void AddPreTaskOff(MTask *t)                                      { AddPreTask(kTrainOff, t); AddPreTask(kTestOff, t); } | 
|---|
| 84 | void AddPreTaskOff(const char *rule, const char *name="MWeight")  { AddPreTask(kTrainOff, rule, name); AddPreTask(kTestOff, rule, name); } | 
|---|
| 85 |  | 
|---|
| 86 | void AddPostTaskOn(MTask *t)                                      { AddPostTask(kTrainOn, t); AddPostTask(kTestOn, t); } | 
|---|
| 87 | void AddPostTaskOn(const char *rule, const char *name="MWeight")  { AddPostTask(kTrainOn, rule, name); AddPostTask(kTestOn, rule, name); } | 
|---|
| 88 | void AddPostTaskOff(MTask *t)                                     { AddPostTask(kTrainOff, t); AddPostTask(kTestOff, t); } | 
|---|
| 89 | void AddPostTaskOff(const char *rule, const char *name="MWeight") { AddPostTask(kTrainOff, rule, name); AddPostTask(kTestOff, rule, name); } | 
|---|
| 90 |  | 
|---|
| 91 | void SetWeightsOn(const char *rule)  { SetWeights(kTrainOn, rule); SetWeights(kTestOn, rule); } | 
|---|
| 92 | void SetWeightsOn(MTask *t)          { SetWeights(kTrainOn, t); SetWeights(kTestOn, t); } | 
|---|
| 93 | void SetWeightsOff(const char *rule) { SetWeights(kTrainOff, rule); SetWeights(kTestOff, rule); } | 
|---|
| 94 | void SetWeightsOff(MTask *t)         { SetWeights(kTrainOff, t); SetWeights(kTestOff, t); } | 
|---|
| 95 |  | 
|---|
| 96 | void SetFluxTrain(Float_t f) { fFluxTrain = f; } | 
|---|
| 97 | void SetFluxTest(Float_t f)  { fFluxTest  = f; } | 
|---|
| 98 | void SetFlux(Float_t f)      { SetFluxTrain(f); SetFluxTest(f); } | 
|---|
| 99 |  | 
|---|
| 100 | void EnableAutoTrain(Bool_t b=kTRUE)      { fAutoTrain     =  b; } | 
|---|
| 101 | void EnableRegression(Bool_t b=kTRUE)     { fUseRegression =  b; } | 
|---|
| 102 | void EnableClassification(Bool_t b=kTRUE) { fUseRegression = !b; } | 
|---|
| 103 |  | 
|---|
| 104 | Bool_t Train(const char *out); | 
|---|
| 105 |  | 
|---|
| 106 | ClassDef(MJTrainSeparation, 0)//Class to train Random Forest gamma-/background-separation | 
|---|
| 107 | }; | 
|---|
| 108 |  | 
|---|
| 109 | #endif | 
|---|