1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Javier Lopez 05/2001 (jlopez@ifae.es)
|
---|
19 | ! Thomas Bretz 06/2001 (tbretz@uni-sw.gwdg.de)
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2000-2001
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 |
|
---|
26 | ///////////////////////////////////////////////////////////////////////////
|
---|
27 | //
|
---|
28 | // MMcThresholdCalc
|
---|
29 | //
|
---|
30 | // Input Containers:
|
---|
31 | // MMcEvt, MMcTrig;*
|
---|
32 | //
|
---|
33 | // Output Containers:
|
---|
34 | // MHMcEnergies
|
---|
35 | //
|
---|
36 | /////////////////////////////////////////////////////////////////////////////
|
---|
37 |
|
---|
38 | #include "MMcThresholdCalc.h"
|
---|
39 |
|
---|
40 | #include <math.h>
|
---|
41 |
|
---|
42 | #include "MParList.h"
|
---|
43 |
|
---|
44 | #include "MLog.h"
|
---|
45 | #include "MLogManip.h"
|
---|
46 |
|
---|
47 | #include "MMcEvt.hxx"
|
---|
48 | #include "MMcTrig.hxx"
|
---|
49 |
|
---|
50 | #include "MHMcEnergy.h"
|
---|
51 |
|
---|
52 | ClassImp(MMcThresholdCalc);
|
---|
53 |
|
---|
54 | const Float_t MMcThresholdCalc::fSqrt2 = sqrt(2);
|
---|
55 |
|
---|
56 | // --------------------------------------------------------------------------
|
---|
57 | //
|
---|
58 | // Default Constructor.
|
---|
59 | //
|
---|
60 | // Specify the number of trigger conditions you want to use.
|
---|
61 | // The default is 0.
|
---|
62 | //
|
---|
63 | // dim < 0: use only condition number dim (eg "MMcTrig;3")
|
---|
64 | // dim = 0: use only condition without a number ("MMcTrig")
|
---|
65 | // dim > 0: use conditions up to dim
|
---|
66 | //
|
---|
67 | MMcThresholdCalc::MMcThresholdCalc(const Int_t dim, const char* name,
|
---|
68 | const char* title) : fDimension(dim)
|
---|
69 | {
|
---|
70 | *fName = name ? name : "MMcThresholdCalc";
|
---|
71 | *fTitle = title ? title : "Task to calculate the energy threshold from Monte Carlo";
|
---|
72 | }
|
---|
73 |
|
---|
74 | // -------------------------------------------------------------------------
|
---|
75 | //
|
---|
76 | // Destructor.
|
---|
77 | //
|
---|
78 | MMcThresholdCalc::~MMcThresholdCalc()
|
---|
79 | {
|
---|
80 | if (fMcTrig)
|
---|
81 | delete fMcTrig;
|
---|
82 |
|
---|
83 | if (fEnergy)
|
---|
84 | delete fEnergy;
|
---|
85 | }
|
---|
86 |
|
---|
87 | // --------------------------------------------------------------------------
|
---|
88 | //
|
---|
89 | // connect Monte Carlo data with this task
|
---|
90 | //
|
---|
91 | Bool_t MMcThresholdCalc::PreProcess(MParList* pList)
|
---|
92 | {
|
---|
93 | //
|
---|
94 | // This task takes into accout if the root file has one trigger
|
---|
95 | // condition (MMcTrig) or severl of them (MMcTrig;#.)
|
---|
96 |
|
---|
97 | fMcEvt = (MMcEvt*)pList->FindObject("MMcEvt");
|
---|
98 | if (!fMcEvt)
|
---|
99 | {
|
---|
100 | *fLog << dbginf << "MMcEvt not found... aborting." << endl;
|
---|
101 | return kFALSE;
|
---|
102 | }
|
---|
103 |
|
---|
104 |
|
---|
105 | const UInt_t from = fDimension<=0 ? -fDimension : 0;
|
---|
106 |
|
---|
107 | if (fDimension<=0)
|
---|
108 | fDimension = -fDimension;
|
---|
109 |
|
---|
110 | fMcTrig = new TObjArray(pList->FindObjectList("MMcTrig", from, fDimension));
|
---|
111 | if (fMcTrig->GetEntriesFast() != fDimension)
|
---|
112 | {
|
---|
113 | *fLog << dbginf << "Error: Not all requested MMcTrig objects are available...aborting." << endl;
|
---|
114 | return kFALSE;
|
---|
115 | }
|
---|
116 |
|
---|
117 | fEnergy = new TObjArray(pList->FindCreateObjList("MHMcEnergy", from, fDimension));
|
---|
118 | if (fMcTrig->GetEntriesFast() != fDimension)
|
---|
119 | return kFALSE;
|
---|
120 |
|
---|
121 | return kTRUE;
|
---|
122 | }
|
---|
123 |
|
---|
124 | // --------------------------------------------------------------------------
|
---|
125 | //
|
---|
126 | // The histograms are filled with log10 of the energy for triggered
|
---|
127 | // events and weighted with 1/E because it is needed the dN/dE vs. logE
|
---|
128 | // distribution to get the energy threshold.
|
---|
129 | //
|
---|
130 | Bool_t MMcThresholdCalc::Process()
|
---|
131 | {
|
---|
132 | const Float_t energy = fMcEvt->GetEnergy();
|
---|
133 | const Float_t lg10 = log10(energy);
|
---|
134 | const Float_t reciproc = 1./energy;
|
---|
135 |
|
---|
136 | for (Int_t i=0; i<fDimension; i++)
|
---|
137 | if (GetTrig(i)->GetFirstLevel()>0)
|
---|
138 | GetHEnergy(i)->Fill(lg10, reciproc);
|
---|
139 |
|
---|
140 | return kTRUE;
|
---|
141 | }
|
---|
142 |
|
---|
143 | // --------------------------------------------------------------------------
|
---|
144 | //
|
---|
145 | // fit the energy distribution to get the threshold
|
---|
146 | // Some iterations are done to be sure the fit parameters converge.
|
---|
147 | //
|
---|
148 | Bool_t MMcThresholdCalc::PostProcess()
|
---|
149 | {
|
---|
150 | for (Int_t i=0; i<fDimension; i++)
|
---|
151 | {
|
---|
152 | MHMcEnergy &hist = *GetHEnergy(i);
|
---|
153 |
|
---|
154 | Float_t peak;
|
---|
155 | Float_t sigma;
|
---|
156 |
|
---|
157 | hist.Fit(1, 3);
|
---|
158 |
|
---|
159 | peak = hist.GetGaussPeak();
|
---|
160 | sigma = hist.GetGaussSigma();
|
---|
161 | hist.Fit(peak - 2. *sigma, peak + 2. *sigma);
|
---|
162 |
|
---|
163 | peak = hist.GetGaussPeak();
|
---|
164 | sigma = hist.GetGaussSigma();
|
---|
165 | hist.Fit(peak - fSqrt2*sigma, peak + fSqrt2*sigma);
|
---|
166 | }
|
---|
167 | return kTRUE;
|
---|
168 | }
|
---|
169 |
|
---|