/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 07/2005 ! ! Copyright: MAGIC Software Development, 2000-2007 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MPointingDevCalc // // Calculates the pointing deviation from the starguider information. // // There are some quality parameters to steer which are the valid // starguider data points: // // * MPointingDevCalc.NumMinStars: 8 // Minimum number of identified stars required to accep the data // // * MPointingDevCalc.NsbLevel: 3.0 // Minimum deviation (in rms) from the the mean allowed for the // measured NSB (noise in the ccd camera) // // * MPointingDevCalc.NsbMin: 30 // - minimum NSB to be used in mean/rms calculation // // * MPointingDevCalc.NsbMax: 60 // - maximum NSB to be used in mean/rms calculation // // * MPointingDevCalc.MaxAbsDev: 15 // - Maximum absolute deviation which is consideres as valid (arcmin) // // Starguider data which doens't fullfill this requirements is ignored. // If the measures NSB==0 (file too old, starguider didn't write down // these values) the checks based on NSB and NumMinStar are skipped. // // The calculation of NSB mean and rms is reset for each file (ReInit) // // If your starguider data doesn't fullfill this requirement the latest // value which could be correctly calculated is used instead. If the time // for which no valid value can be calculated exceeds one minute // the return value is reset to 0/0. The maximum time allowed without // a valid value can be setup using: // // * MPointingDevCalc.MaxAge: 1 // Maximum time before the starguider is reset to 0/0 in minutes // // Note, that the starguider itself is not well calibrated. Therefore // it is necessary to do a starguider calibration in our software. // // There are two options: // // * Simple starguider calibration using offsets in the camera plane // // The starguider is calibrated by taking its values (dZd/dAz) // adding them to the source position, calculating the source position // in the camera plane and adding the offsets. To switch off the // full starguider calibration do: // // * MPointingDevCalc.PointingModels: // // To set the offsets (in units of degree) use // // * MPointingDevCalc.Dx: -0.001 // * MPointingDevCalc.Dy: -0.004 // // * A starguider calibration using a pointing model calculated // from calibration data, so called TPoints // // Because the pointing model can change from time to time // you can give the run-number from which on a new pointing // model is valid. The run itself is included, e.g.: // // * MPointingDevCalc.PointingModels: 85240 89180 // * MPointingDevCalc.FilePrefix: resources/starguider // // mean that for all runs<85240 the simple offset correction is used. // For runs >=85240 and <89180 the file resources/starguider0085240.txt // and for runs >=89180 the file resources/starguider0089180.txt is // used. To setup a default file for all runs before 85240 setup // a low number (eg. 0 or 1) // // In the case a pointing model is used additional offsets in // the x/y-camera plane (in units of deg) can be set using the DX // and DY parameters of the pointing model. The fDx and fDy data // members of this class are ignored. To overwrite the starguider // calibrated offset in either Az or Zd with a constant, you // can use the PX/PY directive in the pointing model. (To enable // the overwrite set the third column, the error, to a value // greater than zero) // // // At the PostProcessing step a table with statistics is print if the // debug level is greater or equal 3 (in most applications it is switched // on by -v3) // // // Pointing Models: // ---------------- // // What we know so far about (maybe) important changes in cosy: // // 18.03.2006: The camera holding has been repaired and the camera got // shifted a little bit. // // 16.04.2006: Around this date a roque lamp focussing hass been done // // 25.04.2006: A missalignment intrduced with the roque adjust has been // corrected // // The starguider pointing model for the time before 18.3.2006 and after // April 2006 (in fact there are no TPoints until 07/2006 to check it) // and for the period 07/2006 to (at least) 06/2007 are very similar. // // The pointing model for the time between 18.3.2006 and 04/2006 is // clearly different, mainly giving different Azimuth values between // Zenith and roughly ~25deg, and a slight offset on both axes. // // 10.5.2006: pos1 -= pos0 commented (What was the mentioned fix?) // 29.6.2006: repaired // // 23.3.2006: new starguider algorithm // // 17.3.2005: Fixed units of "nompos" in MDriveCom // // // New pointing models have been installed (if the pointing model // is different, than the previous one it might mean, that also // the starguider calibration is different.) // // 29. Apr. 2004 ~25800 // 5. Aug. 2004 ~32000 // 19. Aug. 2004 ~33530 // 7. Jun. 2005 ~57650 // 8. Jun. 2005 // 9. Jun. 2005 ~57860 // 12. Sep. 2005 ~68338 // 24. Nov. 2005 ~75562 // 17. Oct. 2006 ~103130 // 17. Jun. 2007 ~248193 // 18. Oct. 2007 // // From 2.2.2006 beginnig of the night (21:05h, run >=81855) to 24.2.2006 // beginning of the the night (20:34h, run<83722) the LEDs did not work. // In the time after this incident the shift crew often forgot to switch on // the LEDs at the beginning of the night! // // [2006-03-07 00:10:58] In the daytime, we raised the position of the // 9 o'clock LED by one screw hole to make it visible when the TPoint // Lid is closed. (< run 84980) // // Mirror refocussing around 23.Apr.2006, from the Runbook. // // 25./26.4.2006: Run 89180 // // (Note: The year here is not a typo!) // [2007-04-25 23:50:39] // Markus is performing AMC focussing. // // Mirror refocussing around 4.Aug.2007, from the Runbook: // // [2007-08-04 04:46:47] // We finished with the focussing with Polaris. The images need to be // analysed and new LUTs generated. // // [2007-08-04 23:47:30] // Actually we see that the mispointing is always large; probably since // the LUT tables have not yet been adjusted to the new focussing. // // [2007-08-03 23:07:58] // Data taking stopped. Mirror focussing. // // [2007-08-05 00:09:16] // We take some pictures on stars nearby Cyg X3 with the sbig camera; // actually the spot doesn't look very nice... The pictures have been // saved with name Deneb- and Sadr- Polaris seems a bit better. Should we // have new LUT tables after the focussing? // // [2007-08-10 20:18:48] // Tonight we take first images of Polaris with a new LUT file generated // based on the recent focussing. The image will be analysed tomorrow and // than new LUTs will be generated. For tonight the focussing is still not // changed. // // [2007-08-14 20:57:59] // The weather is fine. There is a group of hobby astronomers at the // helicopter parking. Before data taking, we tried to check the new LUTs. // However, because of technical problems with the new LUTs we had to // postpone the measurements. We lost some 10 min of data taking because // of this. // // [2007-08-14 22:29:37] // Before continuing the observation we perform a focussing test with the // new LUTs from recent Polaris focussing. Note: Data on Her X-1 was taken // with old focussing. We performed PSF measurements on Kornephorus (Zd // 31.77, Az 264,67) first with old LUTs and then with new LUTs. We took // T-points with both focussing. The first T-Point corresponds to the // previous focussing and the second with the improved. Please check both // T-points for eventual misspointing. We found big improvement of the PSF // with the new LUTs and will therefore continue from now on with the new // focussing. Having a first look at the SBIG pictures we see a slightly // misspointing of ~0.1 deg with the new LUTs. // // [2007-08-14 22:46:10] // Comparing the trigger rate with yesterday night we do not see an // improvement with the new focussing. // // [2007-10-27 email] // [...] // When removing the cover of the motor all 4 nuts which fix the gear of // the motor to the structure fell out. The motor was completely loose. // [...] // We checked also the second azimuth motor and .. the same situation. // [...] // Peter Sawallisch opened and fixed all 3 motors of MAGIC-I. We checked // all critical screws that came to our minds and fixed them as much as // possible with loctite and counter nuts. No damage whatsoever has been // found. // // // ToDo: // ----- // // * Is 0/0 the best assumption if the starguider partly fails? // // // Input Container: // MRawRunHeader // MReportStarguider // // Output Container: // MPointingDev // ///////////////////////////////////////////////////////////////////////////// #include "MPointingDevCalc.h" #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MAstro.h" #include "MPointing.h" #include "MPointingDev.h" #include "MRawRunHeader.h" #include "MReportStarguider.h" ClassImp(MPointingDevCalc); using namespace std; const TString MPointingDevCalc::fgFilePrefix="resources/starguider"; // -------------------------------------------------------------------------- // // Destructor. Call Clear() and delete fPointingModels if any. // MPointingDevCalc::~MPointingDevCalc() { Clear(); } // -------------------------------------------------------------------------- // // Delete fPointing and set pointing to NULL // void MPointingDevCalc::Clear(Option_t *o) { if (fPointing) delete fPointing; fPointing = NULL; } // -------------------------------------------------------------------------- // // Sort the entries in fPoinitngModels // void MPointingDevCalc::SortPointingModels() { const int n = fPointingModels.GetSize(); TArrayI idx(n); TMath::Sort(n, fPointingModels.GetArray(), idx.GetArray(), kFALSE); const TArrayI arr(fPointingModels); for (int i=0; iGetEntries(); fPointingModels.Set(n); for (int i=0; iGetName()); delete arr; SortPointingModels(); } // -------------------------------------------------------------------------- // // Return a string with the pointing models, seperated by a space. // TString MPointingDevCalc::GetPointingModels() const { TString rc; for (int i=0; i= 87751 read the new // pointing model with fFilePrefix // Bool_t MPointingDevCalc::ReadPointingModel(const MRawRunHeader &run) { const UInt_t num = FindPointingModel(run.GetRunNumber()); // No poinitng models are defined. Use simple dx/dy-calibration if (num==(UInt_t)-1) { Clear(); return kTRUE; } // compile the name for the starguider files // The file with the number 00000000 is the default file TString fname = Form("%s%08d.txt", fFilePrefix.Data(), num); if (!fPointing) fPointing = new MPointing; if (fname==fPointing->GetName()) { *fLog << inf << fname << " already loaded." << endl; return kTRUE; } return fPointing->Load(fname); } // -------------------------------------------------------------------------- // // Check the file/run type from the run-header and if it is a data file // load starguider calibration. // Bool_t MPointingDevCalc::ReInit(MParList *plist) { MRawRunHeader *run = (MRawRunHeader*)plist->FindObject("MRawRunHeader"); if (!run) { *fLog << err << "MRawRunHeader not found... aborting." << endl; return kFALSE; } fNsbSum = 0; fNsbSq = 0; fNsbCount = 0; fRunType = run->GetRunType(); switch (fRunType) { case MRawRunHeader::kRTData: if (!fReport) *fLog << warn << "MReportStarguider not found... skipped." << endl; return ReadPointingModel(*run); case MRawRunHeader::kRTMonteCarlo: return kTRUE; case MRawRunHeader::kRTPedestal: *fLog << err << "Cannot work in a pedestal Run!... aborting." << endl; return kFALSE; case MRawRunHeader::kRTCalibration: *fLog << err << "Cannot work in a calibration Run!... aborting." << endl; return kFALSE; default: *fLog << err << "Run Type " << fRunType << " unknown!... aborting." << endl; return kFALSE; } return kTRUE; } // -------------------------------------------------------------------------- // // Search for 'MPointingPos'. Create if not found. // Int_t MPointingDevCalc::PreProcess(MParList *plist) { fDeviation = (MPointingDev*)plist->FindCreateObj("MPointingDev"); fReport = (MReportStarguider*)plist->FindObject("MReportStarguider"); // We use kRTNone here as a placeholder for data runs. fRunType = MRawRunHeader::kRTNone; fLastMjd = -1; fSkip.Reset(); return fDeviation ? kTRUE : kFALSE; } // -------------------------------------------------------------------------- // // Increase fSkip[i] by one. If the data in fDeviation is outdated (older // than fMaxAge) and the current report should be skipped reset DevZdAz and // DevXY and fSkip[6] is increased by one. // void MPointingDevCalc::Skip(Int_t i) { fSkip[i]++; const Double_t diff = (fReport->GetMjd()-fLastMjd)*1440; // [min] 1440=24*60 if (diff0) return; fDeviation->SetDevZdAz(0, 0); fDeviation->SetDevXY(0, 0); fSkip[6]++; } // -------------------------------------------------------------------------- // // Do a full starguider calibration using a pointing model for the starguider. // void MPointingDevCalc::DoCalibration(Double_t devzd, Double_t devaz) const { if (!fPointing) { // Do a simple starguider calibration using a simple offset in x and y fDeviation->SetDevZdAz(devzd, devaz); // Linear starguider calibration taken from April/May data // For calibration add MDriveReport::GetErrorZd/Az ! fDeviation->SetDevXY(fDx, fDy); // 1arcmin ~ 5mm return; } // Get the nominal position the star is at the sky // Unit: deg ZdAz nom(fReport->GetNominalZd(), fReport->GetNominalAz()); nom *= TMath::DegToRad(); // Get the mispointing measured by the telescope. It is // calculate as follows: // // The mispointing measured by the starguider: // ZdAz mis(devzd, devaz); // mis *= TMath::DegToRad(); // The pointing model is the conversion from the real pointing // position of the telescope into the pointing position measured // by the starguider. // // To keep as close to the fitted model we use the forward correction. // Position at which the starguider camera is pointing in real: // pointing position = nominal position - dev // // The position measured as the starguider's pointing position ZdAz pos(nom); // cpos = sao - dev pos -= ZdAz(devzd, devaz)*TMath::DegToRad(); // Now we convert the starguider's pointing position into the // telescope pointing position (the pointing model converts // the telescope pointing position into the starguider pointing // position) ZdAz point = fPointing->CorrectBack(pos); //FWD!!! // MSrcPosCalc uses the following condition to calculate the // source position in the camera: // real pointing pos = nominal pointing pos - dev // --> dev = nominal - real // Therefor we calculate dev as follows: ZdAz dev(nom); dev -= point; dev *= TMath::RadToDeg(); /* // We chose the other way. It is less accurate because is is the // other was than the poinitng model was fittet, but it is more // accurate because the nominal (i.e. real) pointing position // is less accurately known than the position returned by the // starguider. // // Calculate the deviation which would be measured by the starguider // if applied to a perfectly pointing telescope. ZdAz dev = fPointing->Correct(nom); dev -= nom; // Now add these offsets and the starguider measured offsets to // the real pointing deviation of the telescope (note, that // signs here are just conventions) dev += ZdAz(devzd, devaz)*TMath::DegToRad(); // --> nom-mis dev *= TMath::RadToDeg(); */ // Check if the starguider pointing model requests overwriting // of the values with constants (e.g. 0) devaz = fPointing->IsPxValid() ? fPointing->GetPx() : dev.Az(); devzd = fPointing->IsPyValid() ? fPointing->GetPy() : dev.Zd(); fDeviation->SetDevZdAz(devzd, devaz); fDeviation->SetDevXY(fPointing->GetDxy()); } Int_t MPointingDevCalc::ProcessStarguiderReport() { Double_t devzd = fReport->GetDevZd(); // [arcmin] Double_t devaz = fReport->GetDevAz(); // [arcmin] if (devzd==0 && devaz==0) { Skip(1); return kTRUE; } if (!fReport->IsMonitoring()) { Skip(2); return kTRUE; } devzd /= 60; // Convert from arcmin to deg devaz /= 60; // Convert from arcmin to deg const Double_t nsb = fReport->GetSkyBrightness(); if (nsb>0) { if (nsb>fNsbMin && nsb0) { const Double_t sum = fNsbSum/fNsbCount; const Double_t sq = fNsbSq /fNsbCount; const Double_t rms = fNsbLevel*TMath::Sqrt(sq - sum*sum); if (nsbsum+rms) { Skip(3); return kTRUE; } } if (fReport->GetNumIdentifiedStars()= 87751 (31.3.06 12:00) // Calculate absolute deviation const Double_t dev = MAstro::GetDevAbs(fReport->GetNominalZd(), devzd, devaz); // Sanity check... larger deviation are strange and ignored if (dev*60>fMaxAbsDev) { Skip(5); return kTRUE; } DoCalibration(devzd, devaz); fSkip[0]++; fLastMjd = fReport->GetMjd(); return kTRUE; } // -------------------------------------------------------------------------- // // See class description. // Int_t MPointingDevCalc::Process() { switch (fRunType) { case MRawRunHeader::kRTNone: case MRawRunHeader::kRTData: return fReport ? ProcessStarguiderReport() : kTRUE; case MRawRunHeader::kRTMonteCarlo: fSkip[0]++; fDeviation->SetDevZdAz(0, 0); fDeviation->SetDevXY(0, 0); return kTRUE; } return kTRUE; } // -------------------------------------------------------------------------- // // Print execution statistics // Int_t MPointingDevCalc::PostProcess() { if (GetNumExecutions()==0) return kTRUE; *fLog << inf << endl; *fLog << GetDescriptor() << " execution statistics:" << endl; PrintSkipped(fSkip[1], "Starguider deviation not set, is exactly 0/0"); PrintSkipped(fSkip[2], "Starguider was not monitoring (eg. LEDs off)"); PrintSkipped(fSkip[3], Form("NSB out of %.1f sigma range", fNsbLevel)); PrintSkipped(fSkip[4], Form("Number of identified stars < %d", fNumMinStars)); PrintSkipped(fSkip[5], Form("Absolute deviation > %.1farcmin", fMaxAbsDev)); PrintSkipped(fSkip[6], Form("Events set to 0 because older than %.1fmin", fMaxAge)); *fLog << " " << (int)fSkip[0] << " (" << Form("%5.1f", 100.*fSkip[0]/GetNumExecutions()) << "%) Evts survived calculation!" << endl; *fLog << endl; return kTRUE; } // -------------------------------------------------------------------------- // // MPointingDevCalc.NumMinStars: 8 // MPointingDevCalc.NsbLevel: 3.0 // MPointingDevCalc.NsbMin: 30 // MPointingDevCalc.NsbMax: 60 // MPointingDevCalc.MaxAbsDev: 15 // MPointingDevCalc.MaxAge: 1.0 // MPointingDevCalc.Dx: -0.001 // MPointingDevCalc.Dy: -0.004 // // For a detailed description see the class reference. // Int_t MPointingDevCalc::ReadEnv(const TEnv &env, TString prefix, Bool_t print) { Bool_t rc = kFALSE; if (IsEnvDefined(env, prefix, "NumMinStars", print)) { SetNumMinStars(GetEnvValue(env, prefix, "NumMinStars", (Int_t)fNumMinStars)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "NsbLevel", print)) { SetNsbLevel(GetEnvValue(env, prefix, "NsbLevel", fNsbLevel)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "NsbMin", print)) { SetNsbMin(GetEnvValue(env, prefix, "NsbMin", fNsbMin)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "NsbMax", print)) { SetNsbMax(GetEnvValue(env, prefix, "NsbMax", fNsbMax)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "MaxAbsDev", print)) { SetMaxAbsDev(GetEnvValue(env, prefix, "MaxAbsDev", fMaxAbsDev)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "Dx", print)) { fDx = GetEnvValue(env, prefix, "Dx", fDx); rc = kTRUE; } if (IsEnvDefined(env, prefix, "Dy", print)) { fDy = GetEnvValue(env, prefix, "Dy", fDy); rc = kTRUE; } if (IsEnvDefined(env, prefix, "MaxAge", print)) { fMaxAge = GetEnvValue(env, prefix, "MaxAge", fMaxAge); rc = kTRUE; } if (IsEnvDefined(env, prefix, "FilePrefix", print)) { fFilePrefix = GetEnvValue(env, prefix, "FilePrefix", fFilePrefix); rc = kTRUE; } if (IsEnvDefined(env, prefix, "PointingModels", print)) { SetPointingModels(GetEnvValue(env, prefix, "PointingModels", GetPointingModels())); rc = kTRUE; } return rc; }