| 1 | /* ======================================================================== *\
|
|---|
| 2 | ! $Name: not supported by cvs2svn $:$Id: MRanForest.cc,v 1.27 2007-07-24 13:35:39 tbretz Exp $
|
|---|
| 3 | ! --------------------------------------------------------------------------
|
|---|
| 4 | !
|
|---|
| 5 | ! *
|
|---|
| 6 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 7 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 8 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 9 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 10 | ! *
|
|---|
| 11 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 12 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 13 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 14 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 15 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 16 | ! * or implied warranty.
|
|---|
| 17 | ! *
|
|---|
| 18 | !
|
|---|
| 19 | !
|
|---|
| 20 | ! Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@physik.hu-berlin.de>
|
|---|
| 21 | ! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzburg.de>
|
|---|
| 22 | !
|
|---|
| 23 | ! Copyright: MAGIC Software Development, 2000-2006
|
|---|
| 24 | !
|
|---|
| 25 | !
|
|---|
| 26 | \* ======================================================================== */
|
|---|
| 27 |
|
|---|
| 28 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 29 | //
|
|---|
| 30 | // MRanForest
|
|---|
| 31 | //
|
|---|
| 32 | // ParameterContainer for Forest structure
|
|---|
| 33 | //
|
|---|
| 34 | // A random forest can be grown by calling GrowForest.
|
|---|
| 35 | // In advance SetupGrow must be called in order to initialize arrays and
|
|---|
| 36 | // do some preprocessing.
|
|---|
| 37 | // GrowForest() provides the training data for a single tree (bootstrap
|
|---|
| 38 | // aggregate procedure)
|
|---|
| 39 | //
|
|---|
| 40 | // Essentially two random elements serve to provide a "random" forest,
|
|---|
| 41 | // namely bootstrap aggregating (which is done in GrowForest()) and random
|
|---|
| 42 | // split selection (which is subject to MRanTree::GrowTree())
|
|---|
| 43 | //
|
|---|
| 44 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 45 | #include "MRanForest.h"
|
|---|
| 46 |
|
|---|
| 47 | #include <TRandom.h>
|
|---|
| 48 |
|
|---|
| 49 | #include "MHMatrix.h"
|
|---|
| 50 | #include "MRanTree.h"
|
|---|
| 51 | #include "MData.h"
|
|---|
| 52 | #include "MDataArray.h"
|
|---|
| 53 | #include "MParList.h"
|
|---|
| 54 |
|
|---|
| 55 | #include "MArrayI.h"
|
|---|
| 56 | #include "MArrayF.h"
|
|---|
| 57 |
|
|---|
| 58 | #include "MLog.h"
|
|---|
| 59 | #include "MLogManip.h"
|
|---|
| 60 |
|
|---|
| 61 | ClassImp(MRanForest);
|
|---|
| 62 |
|
|---|
| 63 | using namespace std;
|
|---|
| 64 |
|
|---|
| 65 | // --------------------------------------------------------------------------
|
|---|
| 66 | //
|
|---|
| 67 | // Default constructor.
|
|---|
| 68 | //
|
|---|
| 69 | MRanForest::MRanForest(const char *name, const char *title)
|
|---|
| 70 | : fClassify(kTRUE), fNumTrees(100), fNumTry(0), fNdSize(1),
|
|---|
| 71 | fRanTree(NULL), fRules(NULL), fMatrix(NULL), fUserVal(-1)
|
|---|
| 72 | {
|
|---|
| 73 | fName = name ? name : "MRanForest";
|
|---|
| 74 | fTitle = title ? title : "Storage container for Random Forest";
|
|---|
| 75 |
|
|---|
| 76 | fForest=new TObjArray();
|
|---|
| 77 | fForest->SetOwner(kTRUE);
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | MRanForest::MRanForest(const MRanForest &rf)
|
|---|
| 81 | {
|
|---|
| 82 | // Copy constructor
|
|---|
| 83 | fName = rf.fName;
|
|---|
| 84 | fTitle = rf.fTitle;
|
|---|
| 85 |
|
|---|
| 86 | fClassify = rf.fClassify;
|
|---|
| 87 | fNumTrees = rf.fNumTrees;
|
|---|
| 88 | fNumTry = rf.fNumTry;
|
|---|
| 89 | fNdSize = rf.fNdSize;
|
|---|
| 90 | fTreeNo = rf.fTreeNo;
|
|---|
| 91 | fRanTree = NULL;
|
|---|
| 92 |
|
|---|
| 93 | fRules=new MDataArray();
|
|---|
| 94 | fRules->Reset();
|
|---|
| 95 |
|
|---|
| 96 | MDataArray *newrules=rf.fRules;
|
|---|
| 97 |
|
|---|
| 98 | for(Int_t i=0;i<newrules->GetNumEntries();i++)
|
|---|
| 99 | {
|
|---|
| 100 | MData &data=(*newrules)[i];
|
|---|
| 101 | fRules->AddEntry(data.GetRule());
|
|---|
| 102 | }
|
|---|
| 103 |
|
|---|
| 104 | // trees
|
|---|
| 105 | fForest=new TObjArray();
|
|---|
| 106 | fForest->SetOwner(kTRUE);
|
|---|
| 107 |
|
|---|
| 108 | TObjArray *newforest=rf.fForest;
|
|---|
| 109 | for(Int_t i=0;i<newforest->GetEntries();i++)
|
|---|
| 110 | {
|
|---|
| 111 | MRanTree *rantree=(MRanTree*)newforest->At(i);
|
|---|
| 112 |
|
|---|
| 113 | MRanTree *newtree=new MRanTree(*rantree);
|
|---|
| 114 | fForest->Add(newtree);
|
|---|
| 115 | }
|
|---|
| 116 |
|
|---|
| 117 | fHadTrue = rf.fHadTrue;
|
|---|
| 118 | fHadEst = rf.fHadEst;
|
|---|
| 119 | fDataSort = rf.fDataSort;
|
|---|
| 120 | fDataRang = rf.fDataRang;
|
|---|
| 121 | fClassPop = rf.fClassPop;
|
|---|
| 122 | fWeight = rf.fWeight;
|
|---|
| 123 | fTreeHad = rf.fTreeHad;
|
|---|
| 124 |
|
|---|
| 125 | fNTimesOutBag = rf.fNTimesOutBag;
|
|---|
| 126 | }
|
|---|
| 127 |
|
|---|
| 128 | // --------------------------------------------------------------------------
|
|---|
| 129 | // Destructor.
|
|---|
| 130 | MRanForest::~MRanForest()
|
|---|
| 131 | {
|
|---|
| 132 | delete fForest;
|
|---|
| 133 | if (fMatrix)
|
|---|
| 134 | delete fMatrix;
|
|---|
| 135 | if (fRules)
|
|---|
| 136 | delete fRules;
|
|---|
| 137 | }
|
|---|
| 138 |
|
|---|
| 139 | void MRanForest::Print(Option_t *o) const
|
|---|
| 140 | {
|
|---|
| 141 | *fLog << inf << GetDescriptor() << ": " << endl;
|
|---|
| 142 | MRanTree *t = GetTree(0);
|
|---|
| 143 | if (t)
|
|---|
| 144 | {
|
|---|
| 145 | *fLog << "Setting up RF for training on target:" << endl;
|
|---|
| 146 | *fLog << " " << t->GetTitle() << endl;
|
|---|
| 147 | }
|
|---|
| 148 | if (fRules)
|
|---|
| 149 | {
|
|---|
| 150 | *fLog << "Following rules are used as input to RF:" << endl;
|
|---|
| 151 | for (Int_t i=0;i<fRules->GetNumEntries();i++)
|
|---|
| 152 | *fLog << " " << i << ") " << (*fRules)[i].GetRule() << endl;
|
|---|
| 153 | }
|
|---|
| 154 | *fLog << "Random forest parameters:" << endl;
|
|---|
| 155 | if (t)
|
|---|
| 156 | {
|
|---|
| 157 | *fLog << " - " << (t->IsClassify()?"classification":"regression") << " tree" << endl;
|
|---|
| 158 | *fLog << " - Number of trys: " << t->GetNumTry() << endl;
|
|---|
| 159 | *fLog << " - Node size: " << t->GetNdSize() << endl;
|
|---|
| 160 | }
|
|---|
| 161 | *fLog << " - Number of trees: " << fNumTrees << endl;
|
|---|
| 162 | *fLog << " - User value: " << fUserVal << endl;
|
|---|
| 163 | *fLog << endl;
|
|---|
| 164 | }
|
|---|
| 165 |
|
|---|
| 166 | void MRanForest::SetNumTrees(Int_t n)
|
|---|
| 167 | {
|
|---|
| 168 | //at least 1 tree
|
|---|
| 169 | fNumTrees=TMath::Max(n,1);
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 | void MRanForest::SetNumTry(Int_t n)
|
|---|
| 173 | {
|
|---|
| 174 | fNumTry=TMath::Max(n,0);
|
|---|
| 175 | }
|
|---|
| 176 |
|
|---|
| 177 | void MRanForest::SetNdSize(Int_t n)
|
|---|
| 178 | {
|
|---|
| 179 | fNdSize=TMath::Max(n,1);
|
|---|
| 180 | }
|
|---|
| 181 |
|
|---|
| 182 | void MRanForest::SetWeights(const TArrayF &weights)
|
|---|
| 183 | {
|
|---|
| 184 | fWeight=weights;
|
|---|
| 185 | }
|
|---|
| 186 |
|
|---|
| 187 | void MRanForest::SetGrid(const TArrayD &grid)
|
|---|
| 188 | {
|
|---|
| 189 | const int n=grid.GetSize();
|
|---|
| 190 |
|
|---|
| 191 | for(int i=0;i<n-1;i++)
|
|---|
| 192 | if(grid[i]>=grid[i+1])
|
|---|
| 193 | {
|
|---|
| 194 | *fLog<<warn<<"Grid points must be in increasing order! Ignoring grid."<<endl;
|
|---|
| 195 | return;
|
|---|
| 196 | }
|
|---|
| 197 |
|
|---|
| 198 | fGrid=grid;
|
|---|
| 199 |
|
|---|
| 200 | //*fLog<<inf<<"Following "<<n<<" grid points are used:"<<endl;
|
|---|
| 201 | //for(int i=0;i<n;i++)
|
|---|
| 202 | // *fLog<<inf<<" "<<i<<") "<<fGrid[i]<<endl;
|
|---|
| 203 | }
|
|---|
| 204 |
|
|---|
| 205 | MRanTree *MRanForest::GetTree(Int_t i) const
|
|---|
| 206 | {
|
|---|
| 207 | return static_cast<MRanTree*>(fForest->UncheckedAt(i));
|
|---|
| 208 | }
|
|---|
| 209 |
|
|---|
| 210 | Int_t MRanForest::GetNumDim() const
|
|---|
| 211 | {
|
|---|
| 212 | return fMatrix ? fMatrix->GetNcols() : 0;
|
|---|
| 213 | }
|
|---|
| 214 |
|
|---|
| 215 | Int_t MRanForest::GetNumData() const
|
|---|
| 216 | {
|
|---|
| 217 | return fMatrix ? fMatrix->GetNrows() : 0;
|
|---|
| 218 | }
|
|---|
| 219 |
|
|---|
| 220 | Int_t MRanForest::GetNclass() const
|
|---|
| 221 | {
|
|---|
| 222 | int maxidx = TMath::LocMax(fClass.GetSize(),fClass.GetArray());
|
|---|
| 223 |
|
|---|
| 224 | return int(fClass[maxidx])+1;
|
|---|
| 225 | }
|
|---|
| 226 |
|
|---|
| 227 | void MRanForest::PrepareClasses()
|
|---|
| 228 | {
|
|---|
| 229 | const int numdata=fHadTrue.GetSize();
|
|---|
| 230 |
|
|---|
| 231 | if(fGrid.GetSize()>0)
|
|---|
| 232 | {
|
|---|
| 233 | // classes given by grid
|
|---|
| 234 | const int ngrid=fGrid.GetSize();
|
|---|
| 235 |
|
|---|
| 236 | for(int j=0;j<numdata;j++)
|
|---|
| 237 | {
|
|---|
| 238 | // Array is supposed to be sorted prior to this call.
|
|---|
| 239 | // If match is found, function returns position of element.
|
|---|
| 240 | // If no match found, function gives nearest element smaller
|
|---|
| 241 | // than value.
|
|---|
| 242 | int k=TMath::BinarySearch(ngrid, fGrid.GetArray(), fHadTrue[j]);
|
|---|
| 243 |
|
|---|
| 244 | fClass[j] = k;
|
|---|
| 245 | }
|
|---|
| 246 |
|
|---|
| 247 | int minidx = TMath::LocMin(fClass.GetSize(),fClass.GetArray());
|
|---|
| 248 | int min = fClass[minidx];
|
|---|
| 249 | if(min!=0) for(int j=0;j<numdata;j++)fClass[j]-=min;
|
|---|
| 250 |
|
|---|
| 251 | }else{
|
|---|
| 252 | // classes directly given
|
|---|
| 253 | for (Int_t j=0;j<numdata;j++)
|
|---|
| 254 | fClass[j] = TMath::Nint(fHadTrue[j]);
|
|---|
| 255 | }
|
|---|
| 256 | }
|
|---|
| 257 |
|
|---|
| 258 | Double_t MRanForest::CalcHadroness()
|
|---|
| 259 | {
|
|---|
| 260 | TVector event;
|
|---|
| 261 | *fRules >> event;
|
|---|
| 262 |
|
|---|
| 263 | return CalcHadroness(event);
|
|---|
| 264 | }
|
|---|
| 265 |
|
|---|
| 266 | Double_t MRanForest::CalcHadroness(const TVector &event)
|
|---|
| 267 | {
|
|---|
| 268 | fTreeHad.Set(fNumTrees);
|
|---|
| 269 |
|
|---|
| 270 | Double_t hadroness=0;
|
|---|
| 271 | Int_t ntree =0;
|
|---|
| 272 |
|
|---|
| 273 | TIter Next(fForest);
|
|---|
| 274 |
|
|---|
| 275 | MRanTree *tree;
|
|---|
| 276 | while ((tree=(MRanTree*)Next()))
|
|---|
| 277 | hadroness += (fTreeHad[ntree++]=tree->TreeHad(event));
|
|---|
| 278 |
|
|---|
| 279 | return hadroness/ntree;
|
|---|
| 280 | }
|
|---|
| 281 |
|
|---|
| 282 | Bool_t MRanForest::AddTree(MRanTree *rantree=NULL)
|
|---|
| 283 | {
|
|---|
| 284 | fRanTree = rantree ? rantree : fRanTree;
|
|---|
| 285 |
|
|---|
| 286 | if (!fRanTree) return kFALSE;
|
|---|
| 287 |
|
|---|
| 288 | MRanTree *newtree=new MRanTree(*fRanTree);
|
|---|
| 289 | fForest->Add(newtree);
|
|---|
| 290 |
|
|---|
| 291 | return kTRUE;
|
|---|
| 292 | }
|
|---|
| 293 |
|
|---|
| 294 | Bool_t MRanForest::SetupGrow(MHMatrix *mat,MParList *plist)
|
|---|
| 295 | {
|
|---|
| 296 | //-------------------------------------------------------------------
|
|---|
| 297 | // access matrix, copy last column (target) preliminarily
|
|---|
| 298 | // into fHadTrue
|
|---|
| 299 | if (fMatrix)
|
|---|
| 300 | delete fMatrix;
|
|---|
| 301 | fMatrix = new TMatrix(mat->GetM());
|
|---|
| 302 |
|
|---|
| 303 | int dim = fMatrix->GetNcols()-1;
|
|---|
| 304 | int numdata = fMatrix->GetNrows();
|
|---|
| 305 |
|
|---|
| 306 | fHadTrue.Set(numdata);
|
|---|
| 307 | fHadTrue.Reset();
|
|---|
| 308 |
|
|---|
| 309 | for (Int_t j=0;j<numdata;j++)
|
|---|
| 310 | fHadTrue[j] = (*fMatrix)(j,dim);
|
|---|
| 311 |
|
|---|
| 312 | // remove last col
|
|---|
| 313 | fMatrix->ResizeTo(numdata,dim);
|
|---|
| 314 |
|
|---|
| 315 | //-------------------------------------------------------------------
|
|---|
| 316 | // setup labels for classification/regression
|
|---|
| 317 | fClass.Set(numdata);
|
|---|
| 318 | fClass.Reset();
|
|---|
| 319 |
|
|---|
| 320 | if (fClassify)
|
|---|
| 321 | PrepareClasses();
|
|---|
| 322 |
|
|---|
| 323 | //-------------------------------------------------------------------
|
|---|
| 324 | // allocating and initializing arrays
|
|---|
| 325 | fHadEst.Set(numdata);
|
|---|
| 326 | fHadEst.Reset();
|
|---|
| 327 |
|
|---|
| 328 | fNTimesOutBag.Set(numdata);
|
|---|
| 329 | fNTimesOutBag.Reset();
|
|---|
| 330 |
|
|---|
| 331 | fDataSort.Set(dim*numdata);
|
|---|
| 332 | fDataSort.Reset();
|
|---|
| 333 |
|
|---|
| 334 | fDataRang.Set(dim*numdata);
|
|---|
| 335 | fDataRang.Reset();
|
|---|
| 336 |
|
|---|
| 337 | Bool_t useweights = fWeight.GetSize()==numdata;
|
|---|
| 338 | if (!useweights)
|
|---|
| 339 | {
|
|---|
| 340 | fWeight.Set(numdata);
|
|---|
| 341 | fWeight.Reset(1.);
|
|---|
| 342 | *fLog << inf <<"Setting weights to 1 (no weighting)"<< endl;
|
|---|
| 343 | }
|
|---|
| 344 |
|
|---|
| 345 | //-------------------------------------------------------------------
|
|---|
| 346 | // setup rules to be used for classification/regression
|
|---|
| 347 | const MDataArray *allrules=(MDataArray*)mat->GetColumns();
|
|---|
| 348 | if (allrules==NULL)
|
|---|
| 349 | {
|
|---|
| 350 | *fLog << err <<"Rules of matrix == null, exiting"<< endl;
|
|---|
| 351 | return kFALSE;
|
|---|
| 352 | }
|
|---|
| 353 |
|
|---|
| 354 | if (allrules->GetNumEntries()!=dim+1)
|
|---|
| 355 | {
|
|---|
| 356 | *fLog << err <<"Rules of matrix " << allrules->GetNumEntries() << " mismatch dimension+1 " << dim+1 << "...exiting."<< endl;
|
|---|
| 357 | return kFALSE;
|
|---|
| 358 | }
|
|---|
| 359 |
|
|---|
| 360 | if (fRules)
|
|---|
| 361 | delete fRules;
|
|---|
| 362 |
|
|---|
| 363 | fRules = new MDataArray();
|
|---|
| 364 | fRules->Reset();
|
|---|
| 365 |
|
|---|
| 366 | const TString target_rule = (*allrules)[dim].GetRule();
|
|---|
| 367 | for (Int_t i=0;i<dim;i++)
|
|---|
| 368 | fRules->AddEntry((*allrules)[i].GetRule());
|
|---|
| 369 |
|
|---|
| 370 | *fLog << inf << endl;
|
|---|
| 371 | *fLog << "Setting up RF for training on target:" << endl;
|
|---|
| 372 | *fLog << " " << target_rule.Data() << endl;
|
|---|
| 373 | *fLog << "Following rules are used as input to RF:" << endl;
|
|---|
| 374 | for (Int_t i=0;i<dim;i++)
|
|---|
| 375 | *fLog << " " << i << ") " << (*fRules)[i].GetRule() << endl;
|
|---|
| 376 | *fLog << endl;
|
|---|
| 377 |
|
|---|
| 378 | //-------------------------------------------------------------------
|
|---|
| 379 | // prepare (sort) data for fast optimization algorithm
|
|---|
| 380 | if (!CreateDataSort())
|
|---|
| 381 | return kFALSE;
|
|---|
| 382 |
|
|---|
| 383 | //-------------------------------------------------------------------
|
|---|
| 384 | // access and init tree container
|
|---|
| 385 | fRanTree = (MRanTree*)plist->FindCreateObj("MRanTree");
|
|---|
| 386 | if(!fRanTree)
|
|---|
| 387 | {
|
|---|
| 388 | *fLog << err << dbginf << "MRanForest, fRanTree not initialized... aborting." << endl;
|
|---|
| 389 | return kFALSE;
|
|---|
| 390 | }
|
|---|
| 391 | //fRanTree->SetName(target_rule); // Is not stored anyhow
|
|---|
| 392 |
|
|---|
| 393 | const Int_t tryest = TMath::Nint(TMath::Sqrt(dim));
|
|---|
| 394 |
|
|---|
| 395 | *fLog << inf << endl;
|
|---|
| 396 | *fLog << "Following input for the tree growing are used:"<<endl;
|
|---|
| 397 | *fLog << " Forest type : "<<(fClassify?"classification":"regression")<<endl;
|
|---|
| 398 | *fLog << " Number of Trees : "<<fNumTrees<<endl;
|
|---|
| 399 | *fLog << " Number of Trials: "<<(fNumTry==0?tryest:fNumTry)<<(fNumTry==0?" (auto)":"")<<endl;
|
|---|
| 400 | *fLog << " Final Node size : "<<fNdSize<<endl;
|
|---|
| 401 | *fLog << " Using Grid : "<<(fGrid.GetSize()>0?"Yes":"No")<<endl;
|
|---|
| 402 | *fLog << " Using Weights : "<<(useweights?"Yes":"No")<<endl;
|
|---|
| 403 | *fLog << " Number of Events: "<<numdata<<endl;
|
|---|
| 404 | *fLog << " Number of Params: "<<dim<<endl;
|
|---|
| 405 |
|
|---|
| 406 | if(fNumTry==0)
|
|---|
| 407 | {
|
|---|
| 408 | fNumTry=tryest;
|
|---|
| 409 | *fLog << inf << endl;
|
|---|
| 410 | *fLog << "Set no. of trials to the recommended value of round(";
|
|---|
| 411 | *fLog << TMath::Sqrt(dim) << ") = " << fNumTry << endl;
|
|---|
| 412 | }
|
|---|
| 413 |
|
|---|
| 414 | fRanTree->SetNumTry(fNumTry);
|
|---|
| 415 | fRanTree->SetClassify(fClassify);
|
|---|
| 416 | fRanTree->SetNdSize(fNdSize);
|
|---|
| 417 |
|
|---|
| 418 | fTreeNo=0;
|
|---|
| 419 |
|
|---|
| 420 | return kTRUE;
|
|---|
| 421 | }
|
|---|
| 422 |
|
|---|
| 423 | Bool_t MRanForest::GrowForest()
|
|---|
| 424 | {
|
|---|
| 425 | if(!gRandom)
|
|---|
| 426 | {
|
|---|
| 427 | *fLog << err << dbginf << "gRandom not initialized... aborting." << endl;
|
|---|
| 428 | return kFALSE;
|
|---|
| 429 | }
|
|---|
| 430 |
|
|---|
| 431 | fTreeNo++;
|
|---|
| 432 |
|
|---|
| 433 | //-------------------------------------------------------------------
|
|---|
| 434 | // initialize running output
|
|---|
| 435 |
|
|---|
| 436 | float minfloat=TMath::MinElement(fHadTrue.GetSize(),fHadTrue.GetArray());
|
|---|
| 437 | Bool_t calcResolution=(minfloat>FLT_MIN);
|
|---|
| 438 |
|
|---|
| 439 | if (fTreeNo==1)
|
|---|
| 440 | {
|
|---|
| 441 | *fLog << inf << endl << underline;
|
|---|
| 442 |
|
|---|
| 443 | if(calcResolution)
|
|---|
| 444 | *fLog << "TreeNum BagSize NumNodes TestSize Bias/% var/% res/% (from oob-data)" << endl;
|
|---|
| 445 | else
|
|---|
| 446 | *fLog << "TreeNum BagSize NumNodes TestSize Bias/au var/au rms/au (from oob-data)" << endl;
|
|---|
| 447 | // 12345678901234567890123456789012345678901234567890
|
|---|
| 448 | }
|
|---|
| 449 |
|
|---|
| 450 | const Int_t numdata = GetNumData();
|
|---|
| 451 | const Int_t nclass = GetNclass();
|
|---|
| 452 |
|
|---|
| 453 | //-------------------------------------------------------------------
|
|---|
| 454 | // bootstrap aggregating (bagging) -> sampling with replacement:
|
|---|
| 455 |
|
|---|
| 456 | MArrayF classpopw(nclass);
|
|---|
| 457 | MArrayI jinbag(numdata); // Initialization includes filling with 0
|
|---|
| 458 | MArrayF winbag(numdata); // Initialization includes filling with 0
|
|---|
| 459 |
|
|---|
| 460 | float square=0;
|
|---|
| 461 | float mean=0;
|
|---|
| 462 |
|
|---|
| 463 | for (Int_t n=0; n<numdata; n++)
|
|---|
| 464 | {
|
|---|
| 465 | // The integer k is randomly (uniformly) chosen from the set
|
|---|
| 466 | // {0,1,...,numdata-1}, which is the set of the index numbers of
|
|---|
| 467 | // all events in the training sample
|
|---|
| 468 |
|
|---|
| 469 | const Int_t k = gRandom->Integer(numdata);
|
|---|
| 470 |
|
|---|
| 471 | if(fClassify)
|
|---|
| 472 | classpopw[fClass[k]]+=fWeight[k];
|
|---|
| 473 | else
|
|---|
| 474 | classpopw[0]+=fWeight[k];
|
|---|
| 475 |
|
|---|
| 476 | mean +=fHadTrue[k]*fWeight[k];
|
|---|
| 477 | square+=fHadTrue[k]*fHadTrue[k]*fWeight[k];
|
|---|
| 478 |
|
|---|
| 479 | winbag[k]+=fWeight[k]; // Increase weight if chosen more than once
|
|---|
| 480 | jinbag[k]=1;
|
|---|
| 481 | }
|
|---|
| 482 |
|
|---|
| 483 | //-------------------------------------------------------------------
|
|---|
| 484 | // modifying sorted-data array for in-bag data:
|
|---|
| 485 |
|
|---|
| 486 | // In bagging procedure ca. 2/3 of all elements in the original
|
|---|
| 487 | // training sample are used to build the in-bag data
|
|---|
| 488 | const MArrayF hadtrue(fHadTrue.GetSize(), fHadTrue.GetArray());
|
|---|
| 489 | const MArrayI fclass(fClass.GetSize(), fClass.GetArray());
|
|---|
| 490 | const MArrayI datarang(fDataRang.GetSize(), fDataRang.GetArray());
|
|---|
| 491 |
|
|---|
| 492 | MArrayI datsortinbag(fDataSort.GetSize(), fDataSort.GetArray());
|
|---|
| 493 |
|
|---|
| 494 | ModifyDataSort(datsortinbag, jinbag);
|
|---|
| 495 |
|
|---|
| 496 | fRanTree->GrowTree(fMatrix,hadtrue,fclass,datsortinbag,datarang,classpopw,mean,square,
|
|---|
| 497 | jinbag,winbag,nclass);
|
|---|
| 498 |
|
|---|
| 499 | const Double_t ferr = EstimateError(jinbag, calcResolution);
|
|---|
| 500 |
|
|---|
| 501 | fRanTree->SetError(ferr);
|
|---|
| 502 |
|
|---|
| 503 | // adding tree to forest
|
|---|
| 504 | AddTree();
|
|---|
| 505 |
|
|---|
| 506 | return fTreeNo<fNumTrees;
|
|---|
| 507 | }
|
|---|
| 508 |
|
|---|
| 509 | //-------------------------------------------------------------------
|
|---|
| 510 | // error-estimates from out-of-bag data (oob data):
|
|---|
| 511 | //
|
|---|
| 512 | // For a single tree the events not(!) contained in the bootstrap
|
|---|
| 513 | // sample of this tree can be used to obtain estimates for the
|
|---|
| 514 | // classification error of this tree.
|
|---|
| 515 | // If you take a certain event, it is contained in the oob-data of
|
|---|
| 516 | // 1/3 of the trees (see comment to ModifyData). This means that the
|
|---|
| 517 | // classification error determined from oob-data is underestimated,
|
|---|
| 518 | // but can still be taken as upper limit.
|
|---|
| 519 | //
|
|---|
| 520 | Double_t MRanForest::EstimateError(const MArrayI &jinbag, Bool_t calcResolution)
|
|---|
| 521 | {
|
|---|
| 522 | const Int_t numdata = GetNumData();
|
|---|
| 523 |
|
|---|
| 524 | Int_t ninbag = 0;
|
|---|
| 525 | for (Int_t ievt=0;ievt<numdata;ievt++)
|
|---|
| 526 | {
|
|---|
| 527 | if (jinbag[ievt]>0)
|
|---|
| 528 | {
|
|---|
| 529 | ninbag++;
|
|---|
| 530 | continue;
|
|---|
| 531 | }
|
|---|
| 532 |
|
|---|
| 533 | fHadEst[ievt] +=fRanTree->TreeHad((*fMatrix), ievt);
|
|---|
| 534 | fNTimesOutBag[ievt]++;
|
|---|
| 535 | }
|
|---|
| 536 |
|
|---|
| 537 | Int_t n=0;
|
|---|
| 538 |
|
|---|
| 539 | Double_t sum=0;
|
|---|
| 540 | Double_t sq =0;
|
|---|
| 541 | for (Int_t i=0; i<numdata; i++)
|
|---|
| 542 | {
|
|---|
| 543 | if (fNTimesOutBag[i]==0)
|
|---|
| 544 | continue;
|
|---|
| 545 |
|
|---|
| 546 | const Float_t hadest = fHadEst[i]/fNTimesOutBag[i];
|
|---|
| 547 |
|
|---|
| 548 | const Float_t val = calcResolution ?
|
|---|
| 549 | hadest/fHadTrue[i] - 1 : hadest - fHadTrue[i];
|
|---|
| 550 |
|
|---|
| 551 | sum += val;
|
|---|
| 552 | sq += val*val;
|
|---|
| 553 | n++;
|
|---|
| 554 | }
|
|---|
| 555 |
|
|---|
| 556 | if (calcResolution)
|
|---|
| 557 | {
|
|---|
| 558 | sum *= 100;
|
|---|
| 559 | sq *= 10000;
|
|---|
| 560 | }
|
|---|
| 561 |
|
|---|
| 562 | sum /= n;
|
|---|
| 563 | sq /= n;
|
|---|
| 564 |
|
|---|
| 565 | const Double_t var = TMath::Sqrt(sq-sum*sum);
|
|---|
| 566 | const Double_t ferr = TMath::Sqrt(sq);
|
|---|
| 567 |
|
|---|
| 568 | //-------------------------------------------------------------------
|
|---|
| 569 | // give running output
|
|---|
| 570 | *fLog << setw(4) << fTreeNo;
|
|---|
| 571 | *fLog << Form(" %8.1f", 100.*ninbag/numdata);
|
|---|
| 572 | *fLog << setw(9) << fRanTree->GetNumEndNodes();
|
|---|
| 573 | *fLog << Form(" %9.1f", 100.*n/numdata);
|
|---|
| 574 | *fLog << Form(" %7.2f", sum);
|
|---|
| 575 | *fLog << Form(" %7.2f", var);
|
|---|
| 576 | *fLog << Form(" %7.2f", ferr);
|
|---|
| 577 | *fLog << endl;
|
|---|
| 578 |
|
|---|
| 579 | return ferr;
|
|---|
| 580 | }
|
|---|
| 581 |
|
|---|
| 582 | Bool_t MRanForest::CreateDataSort()
|
|---|
| 583 | {
|
|---|
| 584 | // fDataSort(m,n) is the event number in which fMatrix(m,n) occurs.
|
|---|
| 585 | // fDataRang(m,n) is the rang of fMatrix(m,n), i.e. if rang = r:
|
|---|
| 586 | // fMatrix(m,n) is the r-th highest value of all fMatrix(m,.).
|
|---|
| 587 | //
|
|---|
| 588 | // There may be more then 1 event with rang r (due to bagging).
|
|---|
| 589 |
|
|---|
| 590 | const Int_t numdata = GetNumData();
|
|---|
| 591 | const Int_t dim = GetNumDim();
|
|---|
| 592 |
|
|---|
| 593 | TArrayF v(numdata);
|
|---|
| 594 | TArrayI isort(numdata);
|
|---|
| 595 |
|
|---|
| 596 |
|
|---|
| 597 | for (Int_t mvar=0;mvar<dim;mvar++)
|
|---|
| 598 | {
|
|---|
| 599 |
|
|---|
| 600 | for(Int_t n=0;n<numdata;n++)
|
|---|
| 601 | {
|
|---|
| 602 | v[n]=(*fMatrix)(n,mvar);
|
|---|
| 603 | //isort[n]=n;
|
|---|
| 604 |
|
|---|
| 605 | if (!TMath::Finite(v[n]))
|
|---|
| 606 | {
|
|---|
| 607 | *fLog << err <<"Event no. "<<n<<", matrix column no. "<<mvar;
|
|---|
| 608 | *fLog << err <<" has a non finite value (eg. NaN)."<<endl;
|
|---|
| 609 | return kFALSE;
|
|---|
| 610 | }
|
|---|
| 611 | }
|
|---|
| 612 |
|
|---|
| 613 | TMath::Sort(numdata,v.GetArray(),isort.GetArray(),kFALSE);
|
|---|
| 614 |
|
|---|
| 615 | // this sorts the v[n] in ascending order. isort[n] is the
|
|---|
| 616 | // event number of that v[n], which is the n-th from the
|
|---|
| 617 | // lowest (assume the original event numbers are 0,1,...).
|
|---|
| 618 |
|
|---|
| 619 | // control sorting
|
|---|
| 620 | /*
|
|---|
| 621 | for(int n=0;n<numdata-1;n++)
|
|---|
| 622 | if(v[isort[n]]>v[isort[n+1]])
|
|---|
| 623 | {
|
|---|
| 624 | *fLog << err <<"Event no. "<<n<<", matrix column no. "<<mvar;
|
|---|
| 625 | *fLog << err <<" not at correct sorting position."<<endl;
|
|---|
| 626 | return kFALSE;
|
|---|
| 627 | }
|
|---|
| 628 | */
|
|---|
| 629 |
|
|---|
| 630 | // DataRang is similar to the isort index starting from 0 it is
|
|---|
| 631 | // increased by one for each event which is greater, but stays
|
|---|
| 632 | // the same for the same value. (So to say it counts how many
|
|---|
| 633 | // different values we have)
|
|---|
| 634 | for(Int_t n=0;n<numdata-1;n++)
|
|---|
| 635 | {
|
|---|
| 636 | const Int_t n1=isort[n];
|
|---|
| 637 | const Int_t n2=isort[n+1];
|
|---|
| 638 |
|
|---|
| 639 | // FIXME: Copying isort[n] to fDataSort[mvar*numdata]
|
|---|
| 640 | // can be accelerated!
|
|---|
| 641 | fDataSort[mvar*numdata+n]=n1;
|
|---|
| 642 | if(n==0) fDataRang[mvar*numdata+n1]=0;
|
|---|
| 643 | if(v[n1]<v[n2])
|
|---|
| 644 | {
|
|---|
| 645 | fDataRang[mvar*numdata+n2]=fDataRang[mvar*numdata+n1]+1;
|
|---|
| 646 | }else{
|
|---|
| 647 | fDataRang[mvar*numdata+n2]=fDataRang[mvar*numdata+n1];
|
|---|
| 648 | }
|
|---|
| 649 | }
|
|---|
| 650 | fDataSort[(mvar+1)*numdata-1]=isort[numdata-1];
|
|---|
| 651 | }
|
|---|
| 652 | return kTRUE;
|
|---|
| 653 | }
|
|---|
| 654 |
|
|---|
| 655 | // Reoves all indices which are not in the bag from the datsortinbag
|
|---|
| 656 | void MRanForest::ModifyDataSort(MArrayI &datsortinbag, const MArrayI &jinbag)
|
|---|
| 657 | {
|
|---|
| 658 | const Int_t numdim=GetNumDim();
|
|---|
| 659 | const Int_t numdata=GetNumData();
|
|---|
| 660 |
|
|---|
| 661 | Int_t ninbag=0;
|
|---|
| 662 | for (Int_t n=0;n<numdata;n++)
|
|---|
| 663 | if(jinbag[n]==1) ninbag++;
|
|---|
| 664 |
|
|---|
| 665 | for(Int_t m=0;m<numdim;m++)
|
|---|
| 666 | {
|
|---|
| 667 | Int_t *subsort = &datsortinbag[m*numdata];
|
|---|
| 668 |
|
|---|
| 669 | Int_t k=0;
|
|---|
| 670 | for(Int_t n=0;n<ninbag;n++)
|
|---|
| 671 | {
|
|---|
| 672 | if(jinbag[subsort[k]]==1)
|
|---|
| 673 | {
|
|---|
| 674 | subsort[n] = subsort[k];
|
|---|
| 675 | k++;
|
|---|
| 676 | }else{
|
|---|
| 677 | for(Int_t j=k+1;j<numdata;j++)
|
|---|
| 678 | {
|
|---|
| 679 | if(jinbag[subsort[j]]==1)
|
|---|
| 680 | {
|
|---|
| 681 | subsort[n] = subsort[j];
|
|---|
| 682 | k = j+1;
|
|---|
| 683 | break;
|
|---|
| 684 | }
|
|---|
| 685 | }
|
|---|
| 686 | }
|
|---|
| 687 | }
|
|---|
| 688 | }
|
|---|
| 689 | }
|
|---|
| 690 |
|
|---|
| 691 | Bool_t MRanForest::AsciiWrite(ostream &out) const
|
|---|
| 692 | {
|
|---|
| 693 | Int_t n=0;
|
|---|
| 694 | MRanTree *tree;
|
|---|
| 695 | TIter forest(fForest);
|
|---|
| 696 |
|
|---|
| 697 | while ((tree=(MRanTree*)forest.Next()))
|
|---|
| 698 | {
|
|---|
| 699 | tree->AsciiWrite(out);
|
|---|
| 700 | n++;
|
|---|
| 701 | }
|
|---|
| 702 |
|
|---|
| 703 | return n==fNumTrees;
|
|---|
| 704 | }
|
|---|