| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@alwa02.physik.uni-siegen.de> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2000-2003 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | //                                                                         // | 
|---|
| 27 | // MRanForest                                                              // | 
|---|
| 28 | //                                                                         // | 
|---|
| 29 | // ParameterContainer for Forest structure                                 // | 
|---|
| 30 | //                                                                         // | 
|---|
| 31 | // A random forest can be grown by calling GrowForest.                     // | 
|---|
| 32 | // In advance SetupGrow must be called in order to initialize arrays and   // | 
|---|
| 33 | // do some preprocessing.                                                  // | 
|---|
| 34 | // GrowForest() provides the training data for a single tree (bootstrap    // | 
|---|
| 35 | // aggregate procedure)                                                    // | 
|---|
| 36 | //                                                                         // | 
|---|
| 37 | // Essentially two random elements serve to provide a "random" forest,     // | 
|---|
| 38 | // namely bootstrap aggregating (which is done in GrowForest()) and random // | 
|---|
| 39 | // split selection (which is subject to MRanTree::GrowTree())              // | 
|---|
| 40 | //                                                                         // | 
|---|
| 41 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 42 | #include "MRanForest.h" | 
|---|
| 43 |  | 
|---|
| 44 | #include <TMatrix.h> | 
|---|
| 45 | #include <TRandom3.h> | 
|---|
| 46 |  | 
|---|
| 47 | #include "MHMatrix.h" | 
|---|
| 48 | #include "MRanTree.h" | 
|---|
| 49 |  | 
|---|
| 50 | #include "MLog.h" | 
|---|
| 51 | #include "MLogManip.h" | 
|---|
| 52 |  | 
|---|
| 53 | ClassImp(MRanForest); | 
|---|
| 54 |  | 
|---|
| 55 | using namespace std; | 
|---|
| 56 |  | 
|---|
| 57 | // -------------------------------------------------------------------------- | 
|---|
| 58 | // | 
|---|
| 59 | // Default constructor. | 
|---|
| 60 | // | 
|---|
| 61 | MRanForest::MRanForest(const char *name, const char *title) : fNumTrees(100), fRanTree(NULL),fUsePriors(kFALSE) | 
|---|
| 62 | { | 
|---|
| 63 | fName  = name  ? name  : "MRanForest"; | 
|---|
| 64 | fTitle = title ? title : "Storage container for Random Forest"; | 
|---|
| 65 |  | 
|---|
| 66 | fForest=new TObjArray(); | 
|---|
| 67 | fForest->SetOwner(kTRUE); | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 | // -------------------------------------------------------------------------- | 
|---|
| 71 | // | 
|---|
| 72 | // Destructor. | 
|---|
| 73 | // | 
|---|
| 74 | MRanForest::~MRanForest() | 
|---|
| 75 | { | 
|---|
| 76 | delete fForest; | 
|---|
| 77 | } | 
|---|
| 78 |  | 
|---|
| 79 | void MRanForest::SetNumTrees(Int_t n) | 
|---|
| 80 | { | 
|---|
| 81 | //at least 1 tree | 
|---|
| 82 | fNumTrees=TMath::Max(n,1); | 
|---|
| 83 | fTreeHad.Set(fNumTrees); | 
|---|
| 84 | fTreeHad.Reset(); | 
|---|
| 85 | } | 
|---|
| 86 |  | 
|---|
| 87 | void MRanForest::SetPriors(Float_t prior_had, Float_t prior_gam) | 
|---|
| 88 | { | 
|---|
| 89 | const Float_t sum=prior_gam+prior_had; | 
|---|
| 90 |  | 
|---|
| 91 | prior_gam/=sum; | 
|---|
| 92 | prior_had/=sum; | 
|---|
| 93 |  | 
|---|
| 94 | fPrior[0]=prior_had; | 
|---|
| 95 | fPrior[1]=prior_gam; | 
|---|
| 96 |  | 
|---|
| 97 | fUsePriors=kTRUE; | 
|---|
| 98 | } | 
|---|
| 99 |  | 
|---|
| 100 | Int_t MRanForest::GetNumDim() const | 
|---|
| 101 | { | 
|---|
| 102 | return fGammas ? fGammas->GetM().GetNcols() : 0; | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 |  | 
|---|
| 106 | Double_t MRanForest::CalcHadroness(const TVector &event) | 
|---|
| 107 | { | 
|---|
| 108 | Double_t hadroness=0; | 
|---|
| 109 | Int_t ntree=0; | 
|---|
| 110 |  | 
|---|
| 111 | TIter Next(fForest); | 
|---|
| 112 |  | 
|---|
| 113 | MRanTree *tree; | 
|---|
| 114 | while ((tree=(MRanTree*)Next())) | 
|---|
| 115 | { | 
|---|
| 116 | fTreeHad[ntree]=tree->TreeHad(event); | 
|---|
| 117 | hadroness+=fTreeHad[ntree]; | 
|---|
| 118 | ntree++; | 
|---|
| 119 | } | 
|---|
| 120 | return hadroness/ntree; | 
|---|
| 121 | } | 
|---|
| 122 |  | 
|---|
| 123 | Bool_t MRanForest::AddTree(MRanTree *rantree=NULL) | 
|---|
| 124 | { | 
|---|
| 125 | if (rantree) | 
|---|
| 126 | fRanTree=rantree; | 
|---|
| 127 | if (!fRanTree) | 
|---|
| 128 | return kFALSE; | 
|---|
| 129 |  | 
|---|
| 130 | fForest->Add((MRanTree*)fRanTree->Clone()); | 
|---|
| 131 |  | 
|---|
| 132 | return kTRUE; | 
|---|
| 133 | } | 
|---|
| 134 |  | 
|---|
| 135 | Int_t MRanForest::GetNumData() const | 
|---|
| 136 | { | 
|---|
| 137 | return fHadrons && fGammas ? fHadrons->GetM().GetNrows()+fGammas->GetM().GetNrows() : 0; | 
|---|
| 138 | } | 
|---|
| 139 |  | 
|---|
| 140 | Bool_t MRanForest::SetupGrow(MHMatrix *mhad,MHMatrix *mgam) | 
|---|
| 141 | { | 
|---|
| 142 | // pointer to training data | 
|---|
| 143 | fHadrons=mhad; | 
|---|
| 144 | fGammas=mgam; | 
|---|
| 145 |  | 
|---|
| 146 | // determine data entries and dimension of Hillas-parameter space | 
|---|
| 147 | //fNumHad=fHadrons->GetM().GetNrows(); | 
|---|
| 148 | //fNumGam=fGammas->GetM().GetNrows(); | 
|---|
| 149 |  | 
|---|
| 150 | const Int_t dim = GetNumDim(); | 
|---|
| 151 |  | 
|---|
| 152 | if (dim!=fGammas->GetM().GetNcols()) | 
|---|
| 153 | return kFALSE; | 
|---|
| 154 |  | 
|---|
| 155 | const Int_t numdata = GetNumData(); | 
|---|
| 156 |  | 
|---|
| 157 | // allocating and initializing arrays | 
|---|
| 158 | fHadTrue.Set(numdata); | 
|---|
| 159 | fHadTrue.Reset(); | 
|---|
| 160 | fHadEst.Set(numdata); | 
|---|
| 161 |  | 
|---|
| 162 | fPrior.Set(2); | 
|---|
| 163 | fClassPop.Set(2); | 
|---|
| 164 | fWeight.Set(numdata); | 
|---|
| 165 | fNTimesOutBag.Set(numdata); | 
|---|
| 166 | fNTimesOutBag.Reset(); | 
|---|
| 167 |  | 
|---|
| 168 | fDataSort.Set(dim*numdata); | 
|---|
| 169 | fDataRang.Set(dim*numdata); | 
|---|
| 170 |  | 
|---|
| 171 | // calculating class populations (= no. of gammas and hadrons) | 
|---|
| 172 | fClassPop.Reset(); | 
|---|
| 173 | for(Int_t n=0;n<numdata;n++) | 
|---|
| 174 | fClassPop[fHadTrue[n]]++; | 
|---|
| 175 |  | 
|---|
| 176 | // setting weights taking into account priors | 
|---|
| 177 | if (!fUsePriors) | 
|---|
| 178 | fWeight.Reset(1.); | 
|---|
| 179 | else | 
|---|
| 180 | { | 
|---|
| 181 | for(Int_t j=0;j<2;j++) | 
|---|
| 182 | fPrior[j] *= (fClassPop[j]>=1) ? (Float_t)numdata/fClassPop[j]:0; | 
|---|
| 183 |  | 
|---|
| 184 | for(Int_t n=0;n<numdata;n++) | 
|---|
| 185 | fWeight[n]=fPrior[fHadTrue[n]]; | 
|---|
| 186 | } | 
|---|
| 187 |  | 
|---|
| 188 | // create fDataSort | 
|---|
| 189 | CreateDataSort(); | 
|---|
| 190 |  | 
|---|
| 191 | if(!fRanTree) | 
|---|
| 192 | { | 
|---|
| 193 | *fLog << err << dbginf << "MRanForest, fRanTree not initialized... aborting." << endl; | 
|---|
| 194 | return kFALSE; | 
|---|
| 195 | } | 
|---|
| 196 | fRanTree->SetRules(fGammas->GetColumns()); | 
|---|
| 197 | fTreeNo=0; | 
|---|
| 198 |  | 
|---|
| 199 | return kTRUE; | 
|---|
| 200 | } | 
|---|
| 201 |  | 
|---|
| 202 | void MRanForest::InitHadEst(Int_t from, Int_t to, const TMatrix &m, TArrayI &jinbag) | 
|---|
| 203 | { | 
|---|
| 204 | for (Int_t ievt=from;ievt<to;ievt++) | 
|---|
| 205 | { | 
|---|
| 206 | if (jinbag[ievt]>0) | 
|---|
| 207 | continue; | 
|---|
| 208 | fHadEst[ievt] += fRanTree->TreeHad(m, ievt-from); | 
|---|
| 209 | fNTimesOutBag[ievt]++; | 
|---|
| 210 | } | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | Bool_t MRanForest::GrowForest() | 
|---|
| 214 | { | 
|---|
| 215 | if(!gRandom) | 
|---|
| 216 | { | 
|---|
| 217 | *fLog << err << dbginf << "gRandom not initialized... aborting." << endl; | 
|---|
| 218 | return kFALSE; | 
|---|
| 219 | } | 
|---|
| 220 |  | 
|---|
| 221 | fTreeNo++; | 
|---|
| 222 |  | 
|---|
| 223 | // initialize running output | 
|---|
| 224 | if (fTreeNo==1) | 
|---|
| 225 | { | 
|---|
| 226 | *fLog << inf << endl; | 
|---|
| 227 | *fLog << underline; // << "1st col        2nd col" << endl; | 
|---|
| 228 | *fLog << "no. of tree    error in % (calulated using oob-data -> overestim. of error)" << endl; | 
|---|
| 229 | } | 
|---|
| 230 |  | 
|---|
| 231 | const Int_t numdata = GetNumData(); | 
|---|
| 232 |  | 
|---|
| 233 | // bootstrap aggregating (bagging) -> sampling with replacement: | 
|---|
| 234 | // | 
|---|
| 235 | // The integer k is randomly (uniformly) chosen from the set | 
|---|
| 236 | // {0,1,...,fNumData-1}, which is the set of the index numbers of | 
|---|
| 237 | // all events in the training sample | 
|---|
| 238 | TArrayF classpopw(2); | 
|---|
| 239 | TArrayI jinbag(numdata); // Initialization includes filling with 0 | 
|---|
| 240 | TArrayF winbag(numdata); // Initialization includes filling with 0 | 
|---|
| 241 |  | 
|---|
| 242 | for (Int_t n=0; n<numdata; n++) | 
|---|
| 243 | { | 
|---|
| 244 | const Int_t k = Int_t(gRandom->Rndm()*numdata); | 
|---|
| 245 |  | 
|---|
| 246 | classpopw[fHadTrue[k]]+=fWeight[k]; | 
|---|
| 247 | winbag[k]+=fWeight[k]; | 
|---|
| 248 | jinbag[k]=1; | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 | // modifying sorted-data array for in-bag data: | 
|---|
| 252 | // | 
|---|
| 253 | // In bagging procedure ca. 2/3 of all elements in the original | 
|---|
| 254 | // training sample are used to build the in-bag data | 
|---|
| 255 | TArrayI datsortinbag=fDataSort; | 
|---|
| 256 | Int_t ninbag=0; | 
|---|
| 257 |  | 
|---|
| 258 | ModifyDataSort(datsortinbag, ninbag, jinbag); | 
|---|
| 259 |  | 
|---|
| 260 | const TMatrix &hadrons=fHadrons->GetM(); | 
|---|
| 261 | const TMatrix &gammas =fGammas->GetM(); | 
|---|
| 262 |  | 
|---|
| 263 | // growing single tree | 
|---|
| 264 | fRanTree->GrowTree(hadrons,gammas,fHadTrue,datsortinbag, | 
|---|
| 265 | fDataRang,classpopw,jinbag,winbag); | 
|---|
| 266 |  | 
|---|
| 267 | // error-estimates from out-of-bag data (oob data): | 
|---|
| 268 | // | 
|---|
| 269 | // For a single tree the events not(!) contained in the bootstrap sample of | 
|---|
| 270 | // this tree can be used to obtain estimates for the classification error of | 
|---|
| 271 | // this tree. | 
|---|
| 272 | // If you take a certain event, it is contained in the oob-data of 1/3 of | 
|---|
| 273 | // the trees (see comment to ModifyData). This means that the classification error | 
|---|
| 274 | // determined from oob-data is underestimated, but can still be taken as upper limit. | 
|---|
| 275 |  | 
|---|
| 276 | const Int_t numhad = hadrons.GetNrows(); | 
|---|
| 277 | InitHadEst(0, numhad, hadrons, jinbag); | 
|---|
| 278 | InitHadEst(numhad, numdata, gammas, jinbag); | 
|---|
| 279 | /* | 
|---|
| 280 | for (Int_t ievt=0;ievt<numhad;ievt++) | 
|---|
| 281 | { | 
|---|
| 282 | if (jinbag[ievt]>0) | 
|---|
| 283 | continue; | 
|---|
| 284 | fHadEst[ievt] += fRanTree->TreeHad(hadrons, ievt); | 
|---|
| 285 | fNTimesOutBag[ievt]++; | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 | for (Int_t ievt=numhad;ievt<numdata;ievt++) | 
|---|
| 289 | { | 
|---|
| 290 | if (jinbag[ievt]>0) | 
|---|
| 291 | continue; | 
|---|
| 292 | fHadEst[ievt] += fRanTree->TreeHad(gammas, ievt-numhad); | 
|---|
| 293 | fNTimesOutBag[ievt]++; | 
|---|
| 294 | } | 
|---|
| 295 | */ | 
|---|
| 296 | Int_t n=0; | 
|---|
| 297 | Double_t ferr=0; | 
|---|
| 298 | for (Int_t ievt=0;ievt<numdata;ievt++) | 
|---|
| 299 | if (fNTimesOutBag[ievt]!=0) | 
|---|
| 300 | { | 
|---|
| 301 | const Double_t val = fHadEst[ievt]/fNTimesOutBag[ievt]-fHadTrue[ievt]; | 
|---|
| 302 | ferr += val*val; | 
|---|
| 303 | n++; | 
|---|
| 304 | } | 
|---|
| 305 |  | 
|---|
| 306 | ferr = TMath::Sqrt(ferr/n); | 
|---|
| 307 |  | 
|---|
| 308 | // give running output | 
|---|
| 309 | *fLog << inf << setw(5) << fTreeNo << Form("%15.2f", ferr*100) << endl; | 
|---|
| 310 |  | 
|---|
| 311 | // adding tree to forest | 
|---|
| 312 | AddTree(); | 
|---|
| 313 |  | 
|---|
| 314 | return fTreeNo<fNumTrees; | 
|---|
| 315 | } | 
|---|
| 316 |  | 
|---|
| 317 | void MRanForest::CreateDataSort() | 
|---|
| 318 | { | 
|---|
| 319 | // The values of concatenated data arrays fHadrons and fGammas (denoted in the following by fData, | 
|---|
| 320 | // which does actually not exist) are sorted from lowest to highest. | 
|---|
| 321 | // | 
|---|
| 322 | // | 
|---|
| 323 | //                   fHadrons(0,0) ... fHadrons(0,nhad-1)   fGammas(0,0) ... fGammas(0,ngam-1) | 
|---|
| 324 | //                        .                 .                   .                . | 
|---|
| 325 | //  fData(m,n)   =        .                 .                   .                . | 
|---|
| 326 | //                        .                 .                   .                . | 
|---|
| 327 | //                   fHadrons(m-1,0)...fHadrons(m-1,nhad-1) fGammas(m-1,0)...fGammas(m-1,ngam-1) | 
|---|
| 328 | // | 
|---|
| 329 | // | 
|---|
| 330 | // Then fDataSort(m,n) is the event number in which fData(m,n) occurs. | 
|---|
| 331 | // fDataRang(m,n) is the rang of fData(m,n), i.e. if rang = r, fData(m,n) is the r-th highest | 
|---|
| 332 | // value of all fData(m,.). There may be more then 1 event with rang r (due to bagging). | 
|---|
| 333 | const Int_t numdata = GetNumData(); | 
|---|
| 334 |  | 
|---|
| 335 | TArrayF v(numdata); | 
|---|
| 336 | TArrayI isort(numdata); | 
|---|
| 337 |  | 
|---|
| 338 | const TMatrix &hadrons=fHadrons->GetM(); | 
|---|
| 339 | const TMatrix &gammas=fGammas->GetM(); | 
|---|
| 340 |  | 
|---|
| 341 | const Int_t numgam = gammas.GetNrows(); | 
|---|
| 342 | const Int_t numhad = hadrons.GetNrows(); | 
|---|
| 343 |  | 
|---|
| 344 | for (Int_t j=0;j<numhad;j++) | 
|---|
| 345 | fHadTrue[j]=1; | 
|---|
| 346 |  | 
|---|
| 347 | for (Int_t j=0;j<numgam;j++) | 
|---|
| 348 | fHadTrue[j+numhad]=0; | 
|---|
| 349 |  | 
|---|
| 350 | const Int_t dim = GetNumDim(); | 
|---|
| 351 | for (Int_t mvar=0;mvar<dim;mvar++) | 
|---|
| 352 | { | 
|---|
| 353 | for(Int_t n=0;n<numhad;n++) | 
|---|
| 354 | { | 
|---|
| 355 | v[n]=hadrons(n,mvar); | 
|---|
| 356 | isort[n]=n; | 
|---|
| 357 | } | 
|---|
| 358 |  | 
|---|
| 359 | for(Int_t n=0;n<numgam;n++) | 
|---|
| 360 | { | 
|---|
| 361 | v[n+numhad]=gammas(n,mvar); | 
|---|
| 362 | isort[n+numhad]=n; | 
|---|
| 363 | } | 
|---|
| 364 |  | 
|---|
| 365 | TMath::Sort(numdata,v.GetArray(),isort.GetArray(),kFALSE); | 
|---|
| 366 |  | 
|---|
| 367 | // this sorts the v[n] in ascending order. isort[n] is the event number | 
|---|
| 368 | // of that v[n], which is the n-th from the lowest (assume the original | 
|---|
| 369 | // event numbers are 0,1,...). | 
|---|
| 370 |  | 
|---|
| 371 | for(Int_t n=0;n<numdata-1;n++) | 
|---|
| 372 | { | 
|---|
| 373 | const Int_t n1=isort[n]; | 
|---|
| 374 | const Int_t n2=isort[n+1]; | 
|---|
| 375 |  | 
|---|
| 376 | fDataSort[mvar*numdata+n]=n1; | 
|---|
| 377 | if(n==0) fDataRang[mvar*numdata+n1]=0; | 
|---|
| 378 | if(v[n1]<v[n2]) | 
|---|
| 379 | { | 
|---|
| 380 | fDataRang[mvar*numdata+n2]=fDataRang[mvar*numdata+n1]+1; | 
|---|
| 381 | }else{ | 
|---|
| 382 | fDataRang[mvar*numdata+n2]=fDataRang[mvar*numdata+n1]; | 
|---|
| 383 | } | 
|---|
| 384 | } | 
|---|
| 385 | fDataSort[(mvar+1)*numdata-1]=isort[numdata-1]; | 
|---|
| 386 | } | 
|---|
| 387 | } | 
|---|
| 388 |  | 
|---|
| 389 | void MRanForest::ModifyDataSort(TArrayI &datsortinbag, Int_t ninbag, const TArrayI &jinbag) | 
|---|
| 390 | { | 
|---|
| 391 | const Int_t numdim=GetNumDim(); | 
|---|
| 392 | const Int_t numdata=GetNumData(); | 
|---|
| 393 |  | 
|---|
| 394 | ninbag=0; | 
|---|
| 395 | for (Int_t n=0;n<numdata;n++) | 
|---|
| 396 | if(jinbag[n]==1) ninbag++; | 
|---|
| 397 |  | 
|---|
| 398 | for(Int_t m=0;m<numdim;m++) | 
|---|
| 399 | { | 
|---|
| 400 | Int_t k=0; | 
|---|
| 401 | Int_t nt=0; | 
|---|
| 402 | for(Int_t n=0;n<numdata;n++) | 
|---|
| 403 | { | 
|---|
| 404 | if(jinbag[datsortinbag[m*numdata+k]]==1) | 
|---|
| 405 | { | 
|---|
| 406 | datsortinbag[m*numdata+nt]=datsortinbag[m*numdata+k]; | 
|---|
| 407 | k++; | 
|---|
| 408 | }else{ | 
|---|
| 409 | for(Int_t j=1;j<numdata-k;j++) | 
|---|
| 410 | { | 
|---|
| 411 | if(jinbag[datsortinbag[m*numdata+k+j]]==1) | 
|---|
| 412 | { | 
|---|
| 413 | datsortinbag[m*numdata+nt]=datsortinbag[m*numdata+k+j]; | 
|---|
| 414 | k+=j+1; | 
|---|
| 415 | break; | 
|---|
| 416 | } | 
|---|
| 417 | } | 
|---|
| 418 | } | 
|---|
| 419 | nt++; | 
|---|
| 420 | if(nt>=ninbag) break; | 
|---|
| 421 | } | 
|---|
| 422 | } | 
|---|
| 423 | } | 
|---|
| 424 |  | 
|---|
| 425 | Bool_t MRanForest::AsciiWrite(ostream &out) const | 
|---|
| 426 | { | 
|---|
| 427 | Int_t n=0; | 
|---|
| 428 | MRanTree *tree; | 
|---|
| 429 | TIter forest(fForest); | 
|---|
| 430 |  | 
|---|
| 431 | while ((tree=(MRanTree*)forest.Next())) | 
|---|
| 432 | { | 
|---|
| 433 | tree->AsciiWrite(out); | 
|---|
| 434 | n++; | 
|---|
| 435 | } | 
|---|
| 436 |  | 
|---|
| 437 | return n==fNumTrees; | 
|---|
| 438 | } | 
|---|