1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@alwa02.physik.uni-siegen.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MRanForest
|
---|
28 | //
|
---|
29 | // ParameterContainer for Forest structure
|
---|
30 | //
|
---|
31 | // A random forest can be grown by calling GrowForest.
|
---|
32 | // In advance SetupGrow must be called in order to initialize arrays and
|
---|
33 | // do some preprocessing.
|
---|
34 | // GrowForest() provides the training data for a single tree (bootstrap
|
---|
35 | // aggregate procedure)
|
---|
36 | //
|
---|
37 | // Essentially two random elements serve to provide a "random" forest,
|
---|
38 | // namely bootstrap aggregating (which is done in GrowForest()) and random
|
---|
39 | // split selection (which is subject to MRanTree::GrowTree())
|
---|
40 | //
|
---|
41 | // Version 2:
|
---|
42 | // + fUserVal
|
---|
43 | //
|
---|
44 | /////////////////////////////////////////////////////////////////////////////
|
---|
45 | #include "MRanForest.h"
|
---|
46 |
|
---|
47 | #include <TMatrix.h>
|
---|
48 | #include <TRandom3.h>
|
---|
49 |
|
---|
50 | #include "MHMatrix.h"
|
---|
51 | #include "MRanTree.h"
|
---|
52 |
|
---|
53 | #include "MLog.h"
|
---|
54 | #include "MLogManip.h"
|
---|
55 |
|
---|
56 | ClassImp(MRanForest);
|
---|
57 |
|
---|
58 | using namespace std;
|
---|
59 |
|
---|
60 | // --------------------------------------------------------------------------
|
---|
61 | //
|
---|
62 | // Default constructor.
|
---|
63 | //
|
---|
64 | MRanForest::MRanForest(const char *name, const char *title) : fNumTrees(100), fRanTree(NULL),fUsePriors(kFALSE), fUserVal(-1)
|
---|
65 | {
|
---|
66 | fName = name ? name : "MRanForest";
|
---|
67 | fTitle = title ? title : "Storage container for Random Forest";
|
---|
68 |
|
---|
69 | fForest=new TObjArray();
|
---|
70 | fForest->SetOwner(kTRUE);
|
---|
71 | }
|
---|
72 |
|
---|
73 | // --------------------------------------------------------------------------
|
---|
74 | //
|
---|
75 | // Destructor.
|
---|
76 | //
|
---|
77 | MRanForest::~MRanForest()
|
---|
78 | {
|
---|
79 | delete fForest;
|
---|
80 | }
|
---|
81 |
|
---|
82 | void MRanForest::SetNumTrees(Int_t n)
|
---|
83 | {
|
---|
84 | //at least 1 tree
|
---|
85 | fNumTrees=TMath::Max(n,1);
|
---|
86 | fTreeHad.Set(fNumTrees);
|
---|
87 | fTreeHad.Reset();
|
---|
88 | }
|
---|
89 |
|
---|
90 | void MRanForest::SetPriors(Float_t prior_had, Float_t prior_gam)
|
---|
91 | {
|
---|
92 | const Float_t sum=prior_gam+prior_had;
|
---|
93 |
|
---|
94 | prior_gam/=sum;
|
---|
95 | prior_had/=sum;
|
---|
96 |
|
---|
97 | fPrior[0]=prior_had;
|
---|
98 | fPrior[1]=prior_gam;
|
---|
99 |
|
---|
100 | fUsePriors=kTRUE;
|
---|
101 | }
|
---|
102 |
|
---|
103 | Int_t MRanForest::GetNumDim() const
|
---|
104 | {
|
---|
105 | return fGammas ? fGammas->GetM().GetNcols() : 0;
|
---|
106 | }
|
---|
107 |
|
---|
108 |
|
---|
109 | Double_t MRanForest::CalcHadroness(const TVector &event)
|
---|
110 | {
|
---|
111 | Double_t hadroness=0;
|
---|
112 | Int_t ntree=0;
|
---|
113 |
|
---|
114 | TIter Next(fForest);
|
---|
115 |
|
---|
116 | MRanTree *tree;
|
---|
117 | while ((tree=(MRanTree*)Next()))
|
---|
118 | {
|
---|
119 | fTreeHad[ntree]=tree->TreeHad(event);
|
---|
120 | hadroness+=fTreeHad[ntree];
|
---|
121 | ntree++;
|
---|
122 | }
|
---|
123 | return hadroness/ntree;
|
---|
124 | }
|
---|
125 |
|
---|
126 | Bool_t MRanForest::AddTree(MRanTree *rantree=NULL)
|
---|
127 | {
|
---|
128 | if (rantree)
|
---|
129 | fRanTree=rantree;
|
---|
130 | if (!fRanTree)
|
---|
131 | return kFALSE;
|
---|
132 |
|
---|
133 | fForest->Add((MRanTree*)fRanTree->Clone());
|
---|
134 |
|
---|
135 | return kTRUE;
|
---|
136 | }
|
---|
137 |
|
---|
138 | Int_t MRanForest::GetNumData() const
|
---|
139 | {
|
---|
140 | return fHadrons && fGammas ? fHadrons->GetM().GetNrows()+fGammas->GetM().GetNrows() : 0;
|
---|
141 | }
|
---|
142 |
|
---|
143 | Bool_t MRanForest::SetupGrow(MHMatrix *mhad,MHMatrix *mgam)
|
---|
144 | {
|
---|
145 | // pointer to training data
|
---|
146 | fHadrons=mhad;
|
---|
147 | fGammas=mgam;
|
---|
148 |
|
---|
149 | // determine data entries and dimension of Hillas-parameter space
|
---|
150 | //fNumHad=fHadrons->GetM().GetNrows();
|
---|
151 | //fNumGam=fGammas->GetM().GetNrows();
|
---|
152 |
|
---|
153 | const Int_t dim = GetNumDim();
|
---|
154 |
|
---|
155 | if (dim!=fGammas->GetM().GetNcols())
|
---|
156 | return kFALSE;
|
---|
157 |
|
---|
158 | const Int_t numdata = GetNumData();
|
---|
159 |
|
---|
160 | // allocating and initializing arrays
|
---|
161 | fHadTrue.Set(numdata);
|
---|
162 | fHadTrue.Reset();
|
---|
163 | fHadEst.Set(numdata);
|
---|
164 |
|
---|
165 | fPrior.Set(2);
|
---|
166 | fClassPop.Set(2);
|
---|
167 | fWeight.Set(numdata);
|
---|
168 | fNTimesOutBag.Set(numdata);
|
---|
169 | fNTimesOutBag.Reset();
|
---|
170 |
|
---|
171 | fDataSort.Set(dim*numdata);
|
---|
172 | fDataRang.Set(dim*numdata);
|
---|
173 |
|
---|
174 | // calculating class populations (= no. of gammas and hadrons)
|
---|
175 | fClassPop.Reset();
|
---|
176 | for(Int_t n=0;n<numdata;n++)
|
---|
177 | fClassPop[fHadTrue[n]]++;
|
---|
178 |
|
---|
179 | // setting weights taking into account priors
|
---|
180 | if (!fUsePriors)
|
---|
181 | fWeight.Reset(1.);
|
---|
182 | else
|
---|
183 | {
|
---|
184 | for(Int_t j=0;j<2;j++)
|
---|
185 | fPrior[j] *= (fClassPop[j]>=1) ? (Float_t)numdata/fClassPop[j]:0;
|
---|
186 |
|
---|
187 | for(Int_t n=0;n<numdata;n++)
|
---|
188 | fWeight[n]=fPrior[fHadTrue[n]];
|
---|
189 | }
|
---|
190 |
|
---|
191 | // create fDataSort
|
---|
192 | CreateDataSort();
|
---|
193 |
|
---|
194 | if(!fRanTree)
|
---|
195 | {
|
---|
196 | *fLog << err << dbginf << "MRanForest, fRanTree not initialized... aborting." << endl;
|
---|
197 | return kFALSE;
|
---|
198 | }
|
---|
199 | fRanTree->SetRules(fGammas->GetColumns());
|
---|
200 | fTreeNo=0;
|
---|
201 |
|
---|
202 | return kTRUE;
|
---|
203 | }
|
---|
204 |
|
---|
205 | void MRanForest::InitHadEst(Int_t from, Int_t to, const TMatrix &m, TArrayI &jinbag)
|
---|
206 | {
|
---|
207 | for (Int_t ievt=from;ievt<to;ievt++)
|
---|
208 | {
|
---|
209 | if (jinbag[ievt]>0)
|
---|
210 | continue;
|
---|
211 | fHadEst[ievt] += fRanTree->TreeHad(m, ievt-from);
|
---|
212 | fNTimesOutBag[ievt]++;
|
---|
213 | }
|
---|
214 | }
|
---|
215 |
|
---|
216 | Bool_t MRanForest::GrowForest()
|
---|
217 | {
|
---|
218 | if(!gRandom)
|
---|
219 | {
|
---|
220 | *fLog << err << dbginf << "gRandom not initialized... aborting." << endl;
|
---|
221 | return kFALSE;
|
---|
222 | }
|
---|
223 |
|
---|
224 | fTreeNo++;
|
---|
225 |
|
---|
226 | // initialize running output
|
---|
227 | if (fTreeNo==1)
|
---|
228 | {
|
---|
229 | *fLog << inf << endl;
|
---|
230 | *fLog << underline; // << "1st col 2nd col" << endl;
|
---|
231 | *fLog << "no. of tree error in % (calulated using oob-data -> overestim. of error)" << endl;
|
---|
232 | }
|
---|
233 |
|
---|
234 | const Int_t numdata = GetNumData();
|
---|
235 |
|
---|
236 | // bootstrap aggregating (bagging) -> sampling with replacement:
|
---|
237 | //
|
---|
238 | // The integer k is randomly (uniformly) chosen from the set
|
---|
239 | // {0,1,...,fNumData-1}, which is the set of the index numbers of
|
---|
240 | // all events in the training sample
|
---|
241 | TArrayF classpopw(2);
|
---|
242 | TArrayI jinbag(numdata); // Initialization includes filling with 0
|
---|
243 | TArrayF winbag(numdata); // Initialization includes filling with 0
|
---|
244 |
|
---|
245 | for (Int_t n=0; n<numdata; n++)
|
---|
246 | {
|
---|
247 | const Int_t k = Int_t(gRandom->Rndm()*numdata);
|
---|
248 |
|
---|
249 | classpopw[fHadTrue[k]]+=fWeight[k];
|
---|
250 | winbag[k]+=fWeight[k];
|
---|
251 | jinbag[k]=1;
|
---|
252 | }
|
---|
253 |
|
---|
254 | // modifying sorted-data array for in-bag data:
|
---|
255 | //
|
---|
256 | // In bagging procedure ca. 2/3 of all elements in the original
|
---|
257 | // training sample are used to build the in-bag data
|
---|
258 | TArrayI datsortinbag=fDataSort;
|
---|
259 | Int_t ninbag=0;
|
---|
260 |
|
---|
261 | ModifyDataSort(datsortinbag, ninbag, jinbag);
|
---|
262 |
|
---|
263 | const TMatrix &hadrons=fHadrons->GetM();
|
---|
264 | const TMatrix &gammas =fGammas->GetM();
|
---|
265 |
|
---|
266 | // growing single tree
|
---|
267 | fRanTree->GrowTree(hadrons,gammas,fHadTrue,datsortinbag,
|
---|
268 | fDataRang,classpopw,jinbag,winbag);
|
---|
269 |
|
---|
270 | // error-estimates from out-of-bag data (oob data):
|
---|
271 | //
|
---|
272 | // For a single tree the events not(!) contained in the bootstrap sample of
|
---|
273 | // this tree can be used to obtain estimates for the classification error of
|
---|
274 | // this tree.
|
---|
275 | // If you take a certain event, it is contained in the oob-data of 1/3 of
|
---|
276 | // the trees (see comment to ModifyData). This means that the classification error
|
---|
277 | // determined from oob-data is underestimated, but can still be taken as upper limit.
|
---|
278 |
|
---|
279 | const Int_t numhad = hadrons.GetNrows();
|
---|
280 | InitHadEst(0, numhad, hadrons, jinbag);
|
---|
281 | InitHadEst(numhad, numdata, gammas, jinbag);
|
---|
282 | /*
|
---|
283 | for (Int_t ievt=0;ievt<numhad;ievt++)
|
---|
284 | {
|
---|
285 | if (jinbag[ievt]>0)
|
---|
286 | continue;
|
---|
287 | fHadEst[ievt] += fRanTree->TreeHad(hadrons, ievt);
|
---|
288 | fNTimesOutBag[ievt]++;
|
---|
289 | }
|
---|
290 |
|
---|
291 | for (Int_t ievt=numhad;ievt<numdata;ievt++)
|
---|
292 | {
|
---|
293 | if (jinbag[ievt]>0)
|
---|
294 | continue;
|
---|
295 | fHadEst[ievt] += fRanTree->TreeHad(gammas, ievt-numhad);
|
---|
296 | fNTimesOutBag[ievt]++;
|
---|
297 | }
|
---|
298 | */
|
---|
299 | Int_t n=0;
|
---|
300 | Double_t ferr=0;
|
---|
301 | for (Int_t ievt=0;ievt<numdata;ievt++)
|
---|
302 | if (fNTimesOutBag[ievt]!=0)
|
---|
303 | {
|
---|
304 | const Double_t val = fHadEst[ievt]/fNTimesOutBag[ievt]-fHadTrue[ievt];
|
---|
305 | ferr += val*val;
|
---|
306 | n++;
|
---|
307 | }
|
---|
308 |
|
---|
309 | ferr = TMath::Sqrt(ferr/n);
|
---|
310 |
|
---|
311 | // give running output
|
---|
312 | *fLog << inf << setw(5) << fTreeNo << Form("%15.2f", ferr*100) << endl;
|
---|
313 |
|
---|
314 | // adding tree to forest
|
---|
315 | AddTree();
|
---|
316 |
|
---|
317 | return fTreeNo<fNumTrees;
|
---|
318 | }
|
---|
319 |
|
---|
320 | void MRanForest::CreateDataSort()
|
---|
321 | {
|
---|
322 | // The values of concatenated data arrays fHadrons and fGammas (denoted in the following by fData,
|
---|
323 | // which does actually not exist) are sorted from lowest to highest.
|
---|
324 | //
|
---|
325 | //
|
---|
326 | // fHadrons(0,0) ... fHadrons(0,nhad-1) fGammas(0,0) ... fGammas(0,ngam-1)
|
---|
327 | // . . . .
|
---|
328 | // fData(m,n) = . . . .
|
---|
329 | // . . . .
|
---|
330 | // fHadrons(m-1,0)...fHadrons(m-1,nhad-1) fGammas(m-1,0)...fGammas(m-1,ngam-1)
|
---|
331 | //
|
---|
332 | //
|
---|
333 | // Then fDataSort(m,n) is the event number in which fData(m,n) occurs.
|
---|
334 | // fDataRang(m,n) is the rang of fData(m,n), i.e. if rang = r, fData(m,n) is the r-th highest
|
---|
335 | // value of all fData(m,.). There may be more then 1 event with rang r (due to bagging).
|
---|
336 | const Int_t numdata = GetNumData();
|
---|
337 |
|
---|
338 | TArrayF v(numdata);
|
---|
339 | TArrayI isort(numdata);
|
---|
340 |
|
---|
341 | const TMatrix &hadrons=fHadrons->GetM();
|
---|
342 | const TMatrix &gammas=fGammas->GetM();
|
---|
343 |
|
---|
344 | const Int_t numgam = gammas.GetNrows();
|
---|
345 | const Int_t numhad = hadrons.GetNrows();
|
---|
346 |
|
---|
347 | for (Int_t j=0;j<numhad;j++)
|
---|
348 | fHadTrue[j]=1;
|
---|
349 |
|
---|
350 | for (Int_t j=0;j<numgam;j++)
|
---|
351 | fHadTrue[j+numhad]=0;
|
---|
352 |
|
---|
353 | const Int_t dim = GetNumDim();
|
---|
354 | for (Int_t mvar=0;mvar<dim;mvar++)
|
---|
355 | {
|
---|
356 | for(Int_t n=0;n<numhad;n++)
|
---|
357 | {
|
---|
358 | v[n]=hadrons(n,mvar);
|
---|
359 | isort[n]=n;
|
---|
360 | }
|
---|
361 |
|
---|
362 | for(Int_t n=0;n<numgam;n++)
|
---|
363 | {
|
---|
364 | v[n+numhad]=gammas(n,mvar);
|
---|
365 | isort[n+numhad]=n;
|
---|
366 | }
|
---|
367 |
|
---|
368 | TMath::Sort(numdata,v.GetArray(),isort.GetArray(),kFALSE);
|
---|
369 |
|
---|
370 | // this sorts the v[n] in ascending order. isort[n] is the event number
|
---|
371 | // of that v[n], which is the n-th from the lowest (assume the original
|
---|
372 | // event numbers are 0,1,...).
|
---|
373 |
|
---|
374 | for(Int_t n=0;n<numdata-1;n++)
|
---|
375 | {
|
---|
376 | const Int_t n1=isort[n];
|
---|
377 | const Int_t n2=isort[n+1];
|
---|
378 |
|
---|
379 | fDataSort[mvar*numdata+n]=n1;
|
---|
380 | if(n==0) fDataRang[mvar*numdata+n1]=0;
|
---|
381 | if(v[n1]<v[n2])
|
---|
382 | {
|
---|
383 | fDataRang[mvar*numdata+n2]=fDataRang[mvar*numdata+n1]+1;
|
---|
384 | }else{
|
---|
385 | fDataRang[mvar*numdata+n2]=fDataRang[mvar*numdata+n1];
|
---|
386 | }
|
---|
387 | }
|
---|
388 | fDataSort[(mvar+1)*numdata-1]=isort[numdata-1];
|
---|
389 | }
|
---|
390 | }
|
---|
391 |
|
---|
392 | void MRanForest::ModifyDataSort(TArrayI &datsortinbag, Int_t ninbag, const TArrayI &jinbag)
|
---|
393 | {
|
---|
394 | const Int_t numdim=GetNumDim();
|
---|
395 | const Int_t numdata=GetNumData();
|
---|
396 |
|
---|
397 | ninbag=0;
|
---|
398 | for (Int_t n=0;n<numdata;n++)
|
---|
399 | if(jinbag[n]==1) ninbag++;
|
---|
400 |
|
---|
401 | for(Int_t m=0;m<numdim;m++)
|
---|
402 | {
|
---|
403 | Int_t k=0;
|
---|
404 | Int_t nt=0;
|
---|
405 | for(Int_t n=0;n<numdata;n++)
|
---|
406 | {
|
---|
407 | if(jinbag[datsortinbag[m*numdata+k]]==1)
|
---|
408 | {
|
---|
409 | datsortinbag[m*numdata+nt]=datsortinbag[m*numdata+k];
|
---|
410 | k++;
|
---|
411 | }else{
|
---|
412 | for(Int_t j=1;j<numdata-k;j++)
|
---|
413 | {
|
---|
414 | if(jinbag[datsortinbag[m*numdata+k+j]]==1)
|
---|
415 | {
|
---|
416 | datsortinbag[m*numdata+nt]=datsortinbag[m*numdata+k+j];
|
---|
417 | k+=j+1;
|
---|
418 | break;
|
---|
419 | }
|
---|
420 | }
|
---|
421 | }
|
---|
422 | nt++;
|
---|
423 | if(nt>=ninbag) break;
|
---|
424 | }
|
---|
425 | }
|
---|
426 | }
|
---|
427 |
|
---|
428 | Bool_t MRanForest::AsciiWrite(ostream &out) const
|
---|
429 | {
|
---|
430 | Int_t n=0;
|
---|
431 | MRanTree *tree;
|
---|
432 | TIter forest(fForest);
|
---|
433 |
|
---|
434 | while ((tree=(MRanTree*)forest.Next()))
|
---|
435 | {
|
---|
436 | tree->AsciiWrite(out);
|
---|
437 | n++;
|
---|
438 | }
|
---|
439 |
|
---|
440 | return n==fNumTrees;
|
---|
441 | }
|
---|