1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@physik.hu-berlin.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2005
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MRanForest
|
---|
28 | //
|
---|
29 | // ParameterContainer for Forest structure
|
---|
30 | //
|
---|
31 | // A random forest can be grown by calling GrowForest.
|
---|
32 | // In advance SetupGrow must be called in order to initialize arrays and
|
---|
33 | // do some preprocessing.
|
---|
34 | // GrowForest() provides the training data for a single tree (bootstrap
|
---|
35 | // aggregate procedure)
|
---|
36 | //
|
---|
37 | // Essentially two random elements serve to provide a "random" forest,
|
---|
38 | // namely bootstrap aggregating (which is done in GrowForest()) and random
|
---|
39 | // split selection (which is subject to MRanTree::GrowTree())
|
---|
40 | //
|
---|
41 | /////////////////////////////////////////////////////////////////////////////
|
---|
42 | #include "MRanForest.h"
|
---|
43 |
|
---|
44 | #include <TVector.h>
|
---|
45 | #include <TRandom.h>
|
---|
46 |
|
---|
47 | #include "MHMatrix.h"
|
---|
48 | #include "MRanTree.h"
|
---|
49 | #include "MData.h"
|
---|
50 | #include "MDataArray.h"
|
---|
51 | #include "MParList.h"
|
---|
52 |
|
---|
53 | #include "MLog.h"
|
---|
54 | #include "MLogManip.h"
|
---|
55 |
|
---|
56 | ClassImp(MRanForest);
|
---|
57 |
|
---|
58 | using namespace std;
|
---|
59 |
|
---|
60 | // --------------------------------------------------------------------------
|
---|
61 | //
|
---|
62 | // Default constructor.
|
---|
63 | //
|
---|
64 | MRanForest::MRanForest(const char *name, const char *title)
|
---|
65 | : fClassify(kTRUE), fNumTrees(100), fNumTry(0), fNdSize(1),
|
---|
66 | fRanTree(NULL), fRules(NULL), fMatrix(NULL), fUserVal(-1)
|
---|
67 | {
|
---|
68 | fName = name ? name : "MRanForest";
|
---|
69 | fTitle = title ? title : "Storage container for Random Forest";
|
---|
70 |
|
---|
71 | fForest=new TObjArray();
|
---|
72 | fForest->SetOwner(kTRUE);
|
---|
73 | }
|
---|
74 |
|
---|
75 | MRanForest::MRanForest(const MRanForest &rf)
|
---|
76 | {
|
---|
77 | // Copy constructor
|
---|
78 | fName = rf.fName;
|
---|
79 | fTitle = rf.fTitle;
|
---|
80 |
|
---|
81 | fClassify = rf.fClassify;
|
---|
82 | fNumTrees = rf.fNumTrees;
|
---|
83 | fNumTry = rf.fNumTry;
|
---|
84 | fNdSize = rf.fNdSize;
|
---|
85 | fTreeNo = rf.fTreeNo;
|
---|
86 | fRanTree = NULL;
|
---|
87 |
|
---|
88 | fRules=new MDataArray();
|
---|
89 | fRules->Reset();
|
---|
90 |
|
---|
91 | MDataArray *newrules=rf.fRules;
|
---|
92 |
|
---|
93 | for(Int_t i=0;i<newrules->GetNumEntries();i++)
|
---|
94 | {
|
---|
95 | MData &data=(*newrules)[i];
|
---|
96 | fRules->AddEntry(data.GetRule());
|
---|
97 | }
|
---|
98 |
|
---|
99 | // trees
|
---|
100 | fForest=new TObjArray();
|
---|
101 | fForest->SetOwner(kTRUE);
|
---|
102 |
|
---|
103 | TObjArray *newforest=rf.fForest;
|
---|
104 | for(Int_t i=0;i<newforest->GetEntries();i++)
|
---|
105 | {
|
---|
106 | MRanTree *rantree=(MRanTree*)newforest->At(i);
|
---|
107 |
|
---|
108 | MRanTree *newtree=new MRanTree(*rantree);
|
---|
109 | fForest->Add(newtree);
|
---|
110 | }
|
---|
111 |
|
---|
112 | fHadTrue = rf.fHadTrue;
|
---|
113 | fHadEst = rf.fHadEst;
|
---|
114 | fDataSort = rf.fDataSort;
|
---|
115 | fDataRang = rf.fDataRang;
|
---|
116 | fClassPop = rf.fClassPop;
|
---|
117 | fWeight = rf.fWeight;
|
---|
118 | fTreeHad = rf.fTreeHad;
|
---|
119 |
|
---|
120 | fNTimesOutBag = rf.fNTimesOutBag;
|
---|
121 |
|
---|
122 | }
|
---|
123 |
|
---|
124 | // --------------------------------------------------------------------------
|
---|
125 | // Destructor.
|
---|
126 | MRanForest::~MRanForest()
|
---|
127 | {
|
---|
128 | delete fForest;
|
---|
129 | if (fMatrix)
|
---|
130 | delete fMatrix;
|
---|
131 | if (fRules)
|
---|
132 | delete fRules;
|
---|
133 | }
|
---|
134 |
|
---|
135 | void MRanForest::Print(Option_t *o) const
|
---|
136 | {
|
---|
137 | *fLog << inf << GetDescriptor() << ": " << endl;
|
---|
138 | MRanTree *t = GetTree(0);
|
---|
139 | if (t)
|
---|
140 | {
|
---|
141 | *fLog << "Setting up RF for training on target:" << endl;
|
---|
142 | *fLog << " " << t->GetTitle() << endl;
|
---|
143 | }
|
---|
144 | if (fRules)
|
---|
145 | {
|
---|
146 | *fLog << "Following rules are used as input to RF:" << endl;
|
---|
147 | for (Int_t i=0;i<fRules->GetNumEntries();i++)
|
---|
148 | *fLog << " " << i << ") " << (*fRules)[i].GetRule() << endl;
|
---|
149 | }
|
---|
150 | *fLog << "Random forest parameters:" << endl;
|
---|
151 | if (t)
|
---|
152 | {
|
---|
153 | *fLog << " - " << (t->IsClassify()?"classification":"regression") << " tree" << endl;
|
---|
154 | *fLog << " - Number of trys: " << t->GetNumTry() << endl;
|
---|
155 | *fLog << " - Node size: " << t->GetNdSize() << endl;
|
---|
156 | }
|
---|
157 | *fLog << " - Number of trees: " << fNumTrees << endl;
|
---|
158 | *fLog << " - User value: " << fUserVal << endl;
|
---|
159 | *fLog << endl;
|
---|
160 | }
|
---|
161 |
|
---|
162 | void MRanForest::SetNumTrees(Int_t n)
|
---|
163 | {
|
---|
164 | //at least 1 tree
|
---|
165 | fNumTrees=TMath::Max(n,1);
|
---|
166 | }
|
---|
167 |
|
---|
168 | void MRanForest::SetNumTry(Int_t n)
|
---|
169 | {
|
---|
170 | fNumTry=TMath::Max(n,0);
|
---|
171 | }
|
---|
172 |
|
---|
173 | void MRanForest::SetNdSize(Int_t n)
|
---|
174 | {
|
---|
175 | fNdSize=TMath::Max(n,1);
|
---|
176 | }
|
---|
177 |
|
---|
178 | void MRanForest::SetWeights(const TArrayF &weights)
|
---|
179 | {
|
---|
180 | fWeight=weights;
|
---|
181 | }
|
---|
182 |
|
---|
183 | void MRanForest::SetGrid(const TArrayD &grid)
|
---|
184 | {
|
---|
185 | const int n=grid.GetSize();
|
---|
186 |
|
---|
187 | for(int i=0;i<n-1;i++)
|
---|
188 | if(grid[i]>=grid[i+1])
|
---|
189 | {
|
---|
190 | *fLog<<warn<<"Grid points must be in increasing order! Ignoring grid."<<endl;
|
---|
191 | return;
|
---|
192 | }
|
---|
193 |
|
---|
194 | fGrid=grid;
|
---|
195 |
|
---|
196 | //*fLog<<inf<<"Following "<<n<<" grid points are used:"<<endl;
|
---|
197 | //for(int i=0;i<n;i++)
|
---|
198 | // *fLog<<inf<<" "<<i<<") "<<fGrid[i]<<endl;
|
---|
199 | }
|
---|
200 |
|
---|
201 | MRanTree *MRanForest::GetTree(Int_t i) const
|
---|
202 | {
|
---|
203 | return static_cast<MRanTree*>(fForest->UncheckedAt(i));
|
---|
204 | }
|
---|
205 |
|
---|
206 | Int_t MRanForest::GetNumDim() const
|
---|
207 | {
|
---|
208 | return fMatrix ? fMatrix->GetNcols() : 0;
|
---|
209 | }
|
---|
210 |
|
---|
211 | Int_t MRanForest::GetNumData() const
|
---|
212 | {
|
---|
213 | return fMatrix ? fMatrix->GetNrows() : 0;
|
---|
214 | }
|
---|
215 |
|
---|
216 | Int_t MRanForest::GetNclass() const
|
---|
217 | {
|
---|
218 | int maxidx = TMath::LocMax(fClass.GetSize(),fClass.GetArray());
|
---|
219 |
|
---|
220 | return int(fClass[maxidx])+1;
|
---|
221 | }
|
---|
222 |
|
---|
223 | void MRanForest::PrepareClasses()
|
---|
224 | {
|
---|
225 | const int numdata=fHadTrue.GetSize();
|
---|
226 |
|
---|
227 | if(fGrid.GetSize()>0)
|
---|
228 | {
|
---|
229 | // classes given by grid
|
---|
230 | const int ngrid=fGrid.GetSize();
|
---|
231 |
|
---|
232 | for(int j=0;j<numdata;j++)
|
---|
233 | {
|
---|
234 | // Array is supposed to be sorted prior to this call.
|
---|
235 | // If match is found, function returns position of element.
|
---|
236 | // If no match found, function gives nearest element smaller
|
---|
237 | // than value.
|
---|
238 | int k=TMath::BinarySearch(ngrid, fGrid.GetArray(), fHadTrue[j]);
|
---|
239 |
|
---|
240 | fClass[j] = k;
|
---|
241 | }
|
---|
242 |
|
---|
243 | int minidx = TMath::LocMin(fClass.GetSize(),fClass.GetArray());
|
---|
244 | int min = fClass[minidx];
|
---|
245 | if(min!=0) for(int j=0;j<numdata;j++)fClass[j]-=min;
|
---|
246 |
|
---|
247 | }else{
|
---|
248 | // classes directly given
|
---|
249 | for (Int_t j=0;j<numdata;j++)
|
---|
250 | fClass[j] = TMath::Nint(fHadTrue[j]);
|
---|
251 | }
|
---|
252 | }
|
---|
253 |
|
---|
254 | Double_t MRanForest::CalcHadroness()
|
---|
255 | {
|
---|
256 | TVector event;
|
---|
257 | *fRules >> event;
|
---|
258 |
|
---|
259 | return CalcHadroness(event);
|
---|
260 | }
|
---|
261 |
|
---|
262 | Double_t MRanForest::CalcHadroness(const TVector &event)
|
---|
263 | {
|
---|
264 | fTreeHad.Set(fNumTrees);
|
---|
265 |
|
---|
266 | Double_t hadroness=0;
|
---|
267 | Int_t ntree =0;
|
---|
268 |
|
---|
269 | TIter Next(fForest);
|
---|
270 |
|
---|
271 | MRanTree *tree;
|
---|
272 | while ((tree=(MRanTree*)Next()))
|
---|
273 | hadroness += (fTreeHad[ntree++]=tree->TreeHad(event));
|
---|
274 |
|
---|
275 | return hadroness/ntree;
|
---|
276 | }
|
---|
277 |
|
---|
278 | Bool_t MRanForest::AddTree(MRanTree *rantree=NULL)
|
---|
279 | {
|
---|
280 | fRanTree = rantree ? rantree : fRanTree;
|
---|
281 |
|
---|
282 | if (!fRanTree) return kFALSE;
|
---|
283 |
|
---|
284 | MRanTree *newtree=new MRanTree(*fRanTree);
|
---|
285 | fForest->Add(newtree);
|
---|
286 |
|
---|
287 | return kTRUE;
|
---|
288 | }
|
---|
289 |
|
---|
290 | Bool_t MRanForest::SetupGrow(MHMatrix *mat,MParList *plist)
|
---|
291 | {
|
---|
292 | //-------------------------------------------------------------------
|
---|
293 | // access matrix, copy last column (target) preliminarily
|
---|
294 | // into fHadTrue
|
---|
295 | if (fMatrix)
|
---|
296 | delete fMatrix;
|
---|
297 | fMatrix = new TMatrix(mat->GetM());
|
---|
298 |
|
---|
299 | int dim = fMatrix->GetNcols()-1;
|
---|
300 | int numdata = fMatrix->GetNrows();
|
---|
301 |
|
---|
302 | fHadTrue.Set(numdata);
|
---|
303 | fHadTrue.Reset(0);
|
---|
304 |
|
---|
305 | for (Int_t j=0;j<numdata;j++)
|
---|
306 | fHadTrue[j] = (*fMatrix)(j,dim);
|
---|
307 |
|
---|
308 | // remove last col
|
---|
309 | fMatrix->ResizeTo(numdata,dim);
|
---|
310 |
|
---|
311 | //-------------------------------------------------------------------
|
---|
312 | // setup labels for classification/regression
|
---|
313 | fClass.Set(numdata);
|
---|
314 | fClass.Reset(0);
|
---|
315 |
|
---|
316 | if (fClassify)
|
---|
317 | PrepareClasses();
|
---|
318 |
|
---|
319 | //-------------------------------------------------------------------
|
---|
320 | // allocating and initializing arrays
|
---|
321 | fHadEst.Set(numdata);
|
---|
322 | fHadEst.Reset(0);
|
---|
323 |
|
---|
324 | fNTimesOutBag.Set(numdata);
|
---|
325 | fNTimesOutBag.Reset(0);
|
---|
326 |
|
---|
327 | fDataSort.Set(dim*numdata);
|
---|
328 | fDataSort.Reset(0);
|
---|
329 |
|
---|
330 | fDataRang.Set(dim*numdata);
|
---|
331 | fDataRang.Reset(0);
|
---|
332 |
|
---|
333 | Bool_t useweights = fWeight.GetSize()==numdata;
|
---|
334 | if (!useweights)
|
---|
335 | {
|
---|
336 | fWeight.Set(numdata);
|
---|
337 | fWeight.Reset(1.);
|
---|
338 | *fLog << inf <<"Setting weights to 1 (no weighting)"<< endl;
|
---|
339 | }
|
---|
340 |
|
---|
341 | //-------------------------------------------------------------------
|
---|
342 | // setup rules to be used for classification/regression
|
---|
343 | const MDataArray *allrules=(MDataArray*)mat->GetColumns();
|
---|
344 | if (allrules==NULL)
|
---|
345 | {
|
---|
346 | *fLog << err <<"Rules of matrix == null, exiting"<< endl;
|
---|
347 | return kFALSE;
|
---|
348 | }
|
---|
349 |
|
---|
350 | if (allrules->GetNumEntries()!=dim+1)
|
---|
351 | {
|
---|
352 | *fLog << err <<"Rules of matrix " << allrules->GetNumEntries() << " mismatch dimension+1 " << dim+1 << "...exiting."<< endl;
|
---|
353 | return kFALSE;
|
---|
354 | }
|
---|
355 |
|
---|
356 | if (fRules)
|
---|
357 | delete fRules;
|
---|
358 |
|
---|
359 | fRules = new MDataArray();
|
---|
360 | fRules->Reset();
|
---|
361 |
|
---|
362 | const TString target_rule = (*allrules)[dim].GetRule();
|
---|
363 | for (Int_t i=0;i<dim;i++)
|
---|
364 | fRules->AddEntry((*allrules)[i].GetRule());
|
---|
365 |
|
---|
366 | *fLog << inf << endl;
|
---|
367 | *fLog << "Setting up RF for training on target:" << endl;
|
---|
368 | *fLog << " " << target_rule.Data() << endl;
|
---|
369 | *fLog << "Following rules are used as input to RF:" << endl;
|
---|
370 | for (Int_t i=0;i<dim;i++)
|
---|
371 | *fLog << " " << i << ") " << (*fRules)[i].GetRule() << endl;
|
---|
372 | *fLog << endl;
|
---|
373 |
|
---|
374 | //-------------------------------------------------------------------
|
---|
375 | // prepare (sort) data for fast optimization algorithm
|
---|
376 | if (!CreateDataSort())
|
---|
377 | return kFALSE;
|
---|
378 |
|
---|
379 | //-------------------------------------------------------------------
|
---|
380 | // access and init tree container
|
---|
381 | fRanTree = (MRanTree*)plist->FindCreateObj("MRanTree");
|
---|
382 | if(!fRanTree)
|
---|
383 | {
|
---|
384 | *fLog << err << dbginf << "MRanForest, fRanTree not initialized... aborting." << endl;
|
---|
385 | return kFALSE;
|
---|
386 | }
|
---|
387 | //fRanTree->SetName(target_rule); // Is not stored anyhow
|
---|
388 |
|
---|
389 | const Int_t tryest = TMath::Nint(TMath::Sqrt(dim));
|
---|
390 |
|
---|
391 | *fLog << inf << endl;
|
---|
392 | *fLog << "Following input for the tree growing are used:"<<endl;
|
---|
393 | *fLog << " Forest type : "<<(fClassify?"classification":"regression")<<endl;
|
---|
394 | *fLog << " Number of Trees : "<<fNumTrees<<endl;
|
---|
395 | *fLog << " Number of Trials: "<<(fNumTry==0?tryest:fNumTry)<<(fNumTry==0?" (auto)":"")<<endl;
|
---|
396 | *fLog << " Final Node size : "<<fNdSize<<endl;
|
---|
397 | *fLog << " Using Grid : "<<(fGrid.GetSize()>0?"Yes":"No")<<endl;
|
---|
398 | *fLog << " Using Weights : "<<(useweights?"Yes":"No")<<endl;
|
---|
399 | *fLog << " Number of Events: "<<numdata<<endl;
|
---|
400 | *fLog << " Number of Params: "<<dim<<endl;
|
---|
401 |
|
---|
402 | if(fNumTry==0)
|
---|
403 | {
|
---|
404 | fNumTry=tryest;
|
---|
405 | *fLog << inf << endl;
|
---|
406 | *fLog << "Set no. of trials to the recommended value of round(";
|
---|
407 | *fLog << TMath::Sqrt(dim) << ") = " << fNumTry << endl;
|
---|
408 | }
|
---|
409 |
|
---|
410 | fRanTree->SetNumTry(fNumTry);
|
---|
411 | fRanTree->SetClassify(fClassify);
|
---|
412 | fRanTree->SetNdSize(fNdSize);
|
---|
413 |
|
---|
414 | fTreeNo=0;
|
---|
415 |
|
---|
416 | return kTRUE;
|
---|
417 | }
|
---|
418 |
|
---|
419 | Bool_t MRanForest::GrowForest()
|
---|
420 | {
|
---|
421 | if(!gRandom)
|
---|
422 | {
|
---|
423 | *fLog << err << dbginf << "gRandom not initialized... aborting." << endl;
|
---|
424 | return kFALSE;
|
---|
425 | }
|
---|
426 |
|
---|
427 | fTreeNo++;
|
---|
428 |
|
---|
429 | //-------------------------------------------------------------------
|
---|
430 | // initialize running output
|
---|
431 |
|
---|
432 | float minfloat=fHadTrue[TMath::LocMin(fHadTrue.GetSize(),fHadTrue.GetArray())];
|
---|
433 | Bool_t calcResolution=(minfloat>0.001);
|
---|
434 |
|
---|
435 | if (fTreeNo==1)
|
---|
436 | {
|
---|
437 | *fLog << inf << endl << underline;
|
---|
438 |
|
---|
439 | if(calcResolution)
|
---|
440 | *fLog << "no. of tree no. of nodes resolution in % (from oob-data -> overest. of error)" << endl;
|
---|
441 | else
|
---|
442 | *fLog << "no. of tree no. of nodes rms in % (from oob-data -> overest. of error)" << endl;
|
---|
443 | // 12345678901234567890123456789012345678901234567890
|
---|
444 | }
|
---|
445 |
|
---|
446 | const Int_t numdata = GetNumData();
|
---|
447 | const Int_t nclass = GetNclass();
|
---|
448 |
|
---|
449 | //-------------------------------------------------------------------
|
---|
450 | // bootstrap aggregating (bagging) -> sampling with replacement:
|
---|
451 |
|
---|
452 | TArrayF classpopw(nclass);
|
---|
453 | TArrayI jinbag(numdata); // Initialization includes filling with 0
|
---|
454 | TArrayF winbag(numdata); // Initialization includes filling with 0
|
---|
455 |
|
---|
456 | float square=0;
|
---|
457 | float mean=0;
|
---|
458 |
|
---|
459 | for (Int_t n=0; n<numdata; n++)
|
---|
460 | {
|
---|
461 | // The integer k is randomly (uniformly) chosen from the set
|
---|
462 | // {0,1,...,numdata-1}, which is the set of the index numbers of
|
---|
463 | // all events in the training sample
|
---|
464 |
|
---|
465 | const Int_t k = Int_t(gRandom->Rndm()*numdata);
|
---|
466 |
|
---|
467 | if(fClassify)
|
---|
468 | classpopw[fClass[k]]+=fWeight[k];
|
---|
469 | else
|
---|
470 | classpopw[0]+=fWeight[k];
|
---|
471 |
|
---|
472 | mean +=fHadTrue[k]*fWeight[k];
|
---|
473 | square+=fHadTrue[k]*fHadTrue[k]*fWeight[k];
|
---|
474 |
|
---|
475 | winbag[k]+=fWeight[k];
|
---|
476 | jinbag[k]=1;
|
---|
477 |
|
---|
478 | }
|
---|
479 |
|
---|
480 | //-------------------------------------------------------------------
|
---|
481 | // modifying sorted-data array for in-bag data:
|
---|
482 |
|
---|
483 | // In bagging procedure ca. 2/3 of all elements in the original
|
---|
484 | // training sample are used to build the in-bag data
|
---|
485 | TArrayI datsortinbag=fDataSort;
|
---|
486 | Int_t ninbag=0;
|
---|
487 |
|
---|
488 | ModifyDataSort(datsortinbag, ninbag, jinbag);
|
---|
489 |
|
---|
490 | fRanTree->GrowTree(fMatrix,fHadTrue,fClass,datsortinbag,fDataRang,classpopw,mean,square,
|
---|
491 | jinbag,winbag,nclass);
|
---|
492 |
|
---|
493 | //-------------------------------------------------------------------
|
---|
494 | // error-estimates from out-of-bag data (oob data):
|
---|
495 | //
|
---|
496 | // For a single tree the events not(!) contained in the bootstrap sample of
|
---|
497 | // this tree can be used to obtain estimates for the classification error of
|
---|
498 | // this tree.
|
---|
499 | // If you take a certain event, it is contained in the oob-data of 1/3 of
|
---|
500 | // the trees (see comment to ModifyData). This means that the classification error
|
---|
501 | // determined from oob-data is underestimated, but can still be taken as upper limit.
|
---|
502 |
|
---|
503 | for (Int_t ievt=0;ievt<numdata;ievt++)
|
---|
504 | {
|
---|
505 | if (jinbag[ievt]>0)
|
---|
506 | continue;
|
---|
507 |
|
---|
508 | fHadEst[ievt] +=fRanTree->TreeHad((*fMatrix), ievt);
|
---|
509 | fNTimesOutBag[ievt]++;
|
---|
510 |
|
---|
511 | }
|
---|
512 |
|
---|
513 | Int_t n=0;
|
---|
514 | Float_t ferr=0;
|
---|
515 |
|
---|
516 | for (Int_t ievt=0;ievt<numdata;ievt++)
|
---|
517 | {
|
---|
518 | if(fNTimesOutBag[ievt]!=0)
|
---|
519 | {
|
---|
520 | float val = fHadEst[ievt]/float(fNTimesOutBag[ievt])-fHadTrue[ievt];
|
---|
521 | if(calcResolution) val/=fHadTrue[ievt];
|
---|
522 |
|
---|
523 | ferr += val*val;
|
---|
524 | n++;
|
---|
525 | }
|
---|
526 | }
|
---|
527 | ferr = TMath::Sqrt(ferr/n);
|
---|
528 |
|
---|
529 | //-------------------------------------------------------------------
|
---|
530 | // give running output
|
---|
531 | *fLog << setw(5) << fTreeNo;
|
---|
532 | *fLog << setw(18) << fRanTree->GetNumEndNodes();
|
---|
533 | *fLog << Form("%18.2f", ferr*100.);
|
---|
534 | *fLog << endl;
|
---|
535 |
|
---|
536 | fRanTree->SetError(ferr);
|
---|
537 |
|
---|
538 | // adding tree to forest
|
---|
539 | AddTree();
|
---|
540 |
|
---|
541 | return fTreeNo<fNumTrees;
|
---|
542 | }
|
---|
543 |
|
---|
544 | Bool_t MRanForest::CreateDataSort()
|
---|
545 | {
|
---|
546 | // fDataSort(m,n) is the event number in which fMatrix(m,n) occurs.
|
---|
547 | // fDataRang(m,n) is the rang of fMatrix(m,n), i.e. if rang = r:
|
---|
548 | // fMatrix(m,n) is the r-th highest value of all fMatrix(m,.).
|
---|
549 | //
|
---|
550 | // There may be more then 1 event with rang r (due to bagging).
|
---|
551 |
|
---|
552 | const Int_t numdata = GetNumData();
|
---|
553 | const Int_t dim = GetNumDim();
|
---|
554 |
|
---|
555 | TArrayF v(numdata);
|
---|
556 | TArrayI isort(numdata);
|
---|
557 |
|
---|
558 |
|
---|
559 | for (Int_t mvar=0;mvar<dim;mvar++)
|
---|
560 | {
|
---|
561 |
|
---|
562 | for(Int_t n=0;n<numdata;n++)
|
---|
563 | {
|
---|
564 | v[n]=(*fMatrix)(n,mvar);
|
---|
565 | isort[n]=n;
|
---|
566 |
|
---|
567 | if(TMath::IsNaN(v[n]))
|
---|
568 | {
|
---|
569 | *fLog << err <<"Event no. "<<n<<", matrix column no. "<<mvar;
|
---|
570 | *fLog << err <<" has the value NaN."<<endl;
|
---|
571 | return kFALSE;
|
---|
572 | }
|
---|
573 | }
|
---|
574 |
|
---|
575 | TMath::Sort(numdata,v.GetArray(),isort.GetArray(),kFALSE);
|
---|
576 |
|
---|
577 | // this sorts the v[n] in ascending order. isort[n] is the event number
|
---|
578 | // of that v[n], which is the n-th from the lowest (assume the original
|
---|
579 | // event numbers are 0,1,...).
|
---|
580 |
|
---|
581 | // control sorting
|
---|
582 | for(int n=1;n<numdata;n++)
|
---|
583 | if(v[isort[n-1]]>v[isort[n]])
|
---|
584 | {
|
---|
585 | *fLog << err <<"Event no. "<<n<<", matrix column no. "<<mvar;
|
---|
586 | *fLog << err <<" not at correct sorting position."<<endl;
|
---|
587 | return kFALSE;
|
---|
588 | }
|
---|
589 |
|
---|
590 | for(Int_t n=0;n<numdata-1;n++)
|
---|
591 | {
|
---|
592 | const Int_t n1=isort[n];
|
---|
593 | const Int_t n2=isort[n+1];
|
---|
594 |
|
---|
595 | fDataSort[mvar*numdata+n]=n1;
|
---|
596 | if(n==0) fDataRang[mvar*numdata+n1]=0;
|
---|
597 | if(v[n1]<v[n2])
|
---|
598 | {
|
---|
599 | fDataRang[mvar*numdata+n2]=fDataRang[mvar*numdata+n1]+1;
|
---|
600 | }else{
|
---|
601 | fDataRang[mvar*numdata+n2]=fDataRang[mvar*numdata+n1];
|
---|
602 | }
|
---|
603 | }
|
---|
604 | fDataSort[(mvar+1)*numdata-1]=isort[numdata-1];
|
---|
605 | }
|
---|
606 | return kTRUE;
|
---|
607 | }
|
---|
608 |
|
---|
609 | void MRanForest::ModifyDataSort(TArrayI &datsortinbag, Int_t ninbag, const TArrayI &jinbag)
|
---|
610 | {
|
---|
611 | const Int_t numdim=GetNumDim();
|
---|
612 | const Int_t numdata=GetNumData();
|
---|
613 |
|
---|
614 | ninbag=0;
|
---|
615 | for (Int_t n=0;n<numdata;n++)
|
---|
616 | if(jinbag[n]==1) ninbag++;
|
---|
617 |
|
---|
618 | for(Int_t m=0;m<numdim;m++)
|
---|
619 | {
|
---|
620 | Int_t k=0;
|
---|
621 | Int_t nt=0;
|
---|
622 | for(Int_t n=0;n<numdata;n++)
|
---|
623 | {
|
---|
624 | if(jinbag[datsortinbag[m*numdata+k]]==1)
|
---|
625 | {
|
---|
626 | datsortinbag[m*numdata+nt]=datsortinbag[m*numdata+k];
|
---|
627 | k++;
|
---|
628 | }else{
|
---|
629 | for(Int_t j=1;j<numdata-k;j++)
|
---|
630 | {
|
---|
631 | if(jinbag[datsortinbag[m*numdata+k+j]]==1)
|
---|
632 | {
|
---|
633 | datsortinbag[m*numdata+nt]=datsortinbag[m*numdata+k+j];
|
---|
634 | k+=j+1;
|
---|
635 | break;
|
---|
636 | }
|
---|
637 | }
|
---|
638 | }
|
---|
639 | nt++;
|
---|
640 | if(nt>=ninbag) break;
|
---|
641 | }
|
---|
642 | }
|
---|
643 | }
|
---|
644 |
|
---|
645 | Bool_t MRanForest::AsciiWrite(ostream &out) const
|
---|
646 | {
|
---|
647 | Int_t n=0;
|
---|
648 | MRanTree *tree;
|
---|
649 | TIter forest(fForest);
|
---|
650 |
|
---|
651 | while ((tree=(MRanTree*)forest.Next()))
|
---|
652 | {
|
---|
653 | tree->AsciiWrite(out);
|
---|
654 | n++;
|
---|
655 | }
|
---|
656 |
|
---|
657 | return n==fNumTrees;
|
---|
658 | }
|
---|