| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! $Name: not supported by cvs2svn $:$Id: MRanForest.cc,v 1.27 2007-07-24 13:35:39 tbretz Exp $ | 
|---|
| 3 | ! -------------------------------------------------------------------------- | 
|---|
| 4 | ! | 
|---|
| 5 | ! * | 
|---|
| 6 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 7 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 8 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 9 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 10 | ! * | 
|---|
| 11 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 12 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 13 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 14 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 15 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 16 | ! * or implied warranty. | 
|---|
| 17 | ! * | 
|---|
| 18 | ! | 
|---|
| 19 | ! | 
|---|
| 20 | !   Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@physik.hu-berlin.de> | 
|---|
| 21 | !   Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzburg.de> | 
|---|
| 22 | ! | 
|---|
| 23 | !   Copyright: MAGIC Software Development, 2000-2006 | 
|---|
| 24 | ! | 
|---|
| 25 | ! | 
|---|
| 26 | \* ======================================================================== */ | 
|---|
| 27 |  | 
|---|
| 28 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 29 | // | 
|---|
| 30 | // MRanForest | 
|---|
| 31 | // | 
|---|
| 32 | // ParameterContainer for Forest structure | 
|---|
| 33 | // | 
|---|
| 34 | // A random forest can be grown by calling GrowForest. | 
|---|
| 35 | // In advance SetupGrow must be called in order to initialize arrays and | 
|---|
| 36 | // do some preprocessing. | 
|---|
| 37 | // GrowForest() provides the training data for a single tree (bootstrap | 
|---|
| 38 | // aggregate procedure) | 
|---|
| 39 | // | 
|---|
| 40 | // Essentially two random elements serve to provide a "random" forest, | 
|---|
| 41 | // namely bootstrap aggregating (which is done in GrowForest()) and random | 
|---|
| 42 | // split selection (which is subject to MRanTree::GrowTree()) | 
|---|
| 43 | // | 
|---|
| 44 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 45 | #include "MRanForest.h" | 
|---|
| 46 |  | 
|---|
| 47 | #include <TRandom.h> | 
|---|
| 48 |  | 
|---|
| 49 | #include "MHMatrix.h" | 
|---|
| 50 | #include "MRanTree.h" | 
|---|
| 51 | #include "MData.h" | 
|---|
| 52 | #include "MDataArray.h" | 
|---|
| 53 | #include "MParList.h" | 
|---|
| 54 |  | 
|---|
| 55 | #include "MArrayI.h" | 
|---|
| 56 | #include "MArrayF.h" | 
|---|
| 57 |  | 
|---|
| 58 | #include "MLog.h" | 
|---|
| 59 | #include "MLogManip.h" | 
|---|
| 60 |  | 
|---|
| 61 | ClassImp(MRanForest); | 
|---|
| 62 |  | 
|---|
| 63 | using namespace std; | 
|---|
| 64 |  | 
|---|
| 65 | // -------------------------------------------------------------------------- | 
|---|
| 66 | // | 
|---|
| 67 | // Default constructor. | 
|---|
| 68 | // | 
|---|
| 69 | MRanForest::MRanForest(const char *name, const char *title) | 
|---|
| 70 | : fClassify(kTRUE), fNumTrees(100), fNumTry(0), fNdSize(1), | 
|---|
| 71 | fRanTree(NULL), fRules(NULL), fMatrix(NULL), fUserVal(-1) | 
|---|
| 72 | { | 
|---|
| 73 | fName  = name  ? name  : "MRanForest"; | 
|---|
| 74 | fTitle = title ? title : "Storage container for Random Forest"; | 
|---|
| 75 |  | 
|---|
| 76 | fForest=new TObjArray(); | 
|---|
| 77 | fForest->SetOwner(kTRUE); | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | MRanForest::MRanForest(const MRanForest &rf) | 
|---|
| 81 | { | 
|---|
| 82 | // Copy constructor | 
|---|
| 83 | fName  = rf.fName; | 
|---|
| 84 | fTitle = rf.fTitle; | 
|---|
| 85 |  | 
|---|
| 86 | fClassify = rf.fClassify; | 
|---|
| 87 | fNumTrees = rf.fNumTrees; | 
|---|
| 88 | fNumTry   = rf.fNumTry; | 
|---|
| 89 | fNdSize   = rf.fNdSize; | 
|---|
| 90 | fTreeNo   = rf.fTreeNo; | 
|---|
| 91 | fRanTree  = NULL; | 
|---|
| 92 |  | 
|---|
| 93 | fRules=new MDataArray(); | 
|---|
| 94 | fRules->Reset(); | 
|---|
| 95 |  | 
|---|
| 96 | MDataArray *newrules=rf.fRules; | 
|---|
| 97 |  | 
|---|
| 98 | for(Int_t i=0;i<newrules->GetNumEntries();i++) | 
|---|
| 99 | { | 
|---|
| 100 | MData &data=(*newrules)[i]; | 
|---|
| 101 | fRules->AddEntry(data.GetRule()); | 
|---|
| 102 | } | 
|---|
| 103 |  | 
|---|
| 104 | // trees | 
|---|
| 105 | fForest=new TObjArray(); | 
|---|
| 106 | fForest->SetOwner(kTRUE); | 
|---|
| 107 |  | 
|---|
| 108 | TObjArray *newforest=rf.fForest; | 
|---|
| 109 | for(Int_t i=0;i<newforest->GetEntries();i++) | 
|---|
| 110 | { | 
|---|
| 111 | MRanTree *rantree=(MRanTree*)newforest->At(i); | 
|---|
| 112 |  | 
|---|
| 113 | MRanTree *newtree=new MRanTree(*rantree); | 
|---|
| 114 | fForest->Add(newtree); | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | fHadTrue  = rf.fHadTrue; | 
|---|
| 118 | fHadEst   = rf.fHadEst; | 
|---|
| 119 | fDataSort = rf.fDataSort; | 
|---|
| 120 | fDataRang = rf.fDataRang; | 
|---|
| 121 | fClassPop = rf.fClassPop; | 
|---|
| 122 | fWeight   = rf.fWeight; | 
|---|
| 123 | fTreeHad  = rf.fTreeHad; | 
|---|
| 124 |  | 
|---|
| 125 | fNTimesOutBag = rf.fNTimesOutBag; | 
|---|
| 126 | } | 
|---|
| 127 |  | 
|---|
| 128 | // -------------------------------------------------------------------------- | 
|---|
| 129 | // Destructor. | 
|---|
| 130 | MRanForest::~MRanForest() | 
|---|
| 131 | { | 
|---|
| 132 | delete fForest; | 
|---|
| 133 | if (fMatrix) | 
|---|
| 134 | delete fMatrix; | 
|---|
| 135 | if (fRules) | 
|---|
| 136 | delete fRules; | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 | void MRanForest::Print(Option_t *o) const | 
|---|
| 140 | { | 
|---|
| 141 | *fLog << inf << GetDescriptor() << ": " << endl; | 
|---|
| 142 | MRanTree *t = GetTree(0); | 
|---|
| 143 | if (t) | 
|---|
| 144 | { | 
|---|
| 145 | *fLog << "Setting up RF for training on target:" << endl; | 
|---|
| 146 | *fLog << " " << t->GetTitle() << endl; | 
|---|
| 147 | } | 
|---|
| 148 | if (fRules) | 
|---|
| 149 | { | 
|---|
| 150 | *fLog << "Following rules are used as input to RF:" << endl; | 
|---|
| 151 | for (Int_t i=0;i<fRules->GetNumEntries();i++) | 
|---|
| 152 | *fLog << " " << i << ") " << (*fRules)[i].GetRule() << endl; | 
|---|
| 153 | } | 
|---|
| 154 | *fLog << "Random forest parameters:" << endl; | 
|---|
| 155 | if (t) | 
|---|
| 156 | { | 
|---|
| 157 | *fLog << " - " << (t->IsClassify()?"classification":"regression") << " tree" << endl; | 
|---|
| 158 | *fLog << " - Number of trys: " << t->GetNumTry() << endl; | 
|---|
| 159 | *fLog << " - Node size: " << t->GetNdSize() << endl; | 
|---|
| 160 | } | 
|---|
| 161 | *fLog << " - Number of trees: " << fNumTrees << endl; | 
|---|
| 162 | *fLog << " - User value: " << fUserVal << endl; | 
|---|
| 163 | *fLog << endl; | 
|---|
| 164 | } | 
|---|
| 165 |  | 
|---|
| 166 | void MRanForest::SetNumTrees(Int_t n) | 
|---|
| 167 | { | 
|---|
| 168 | //at least 1 tree | 
|---|
| 169 | fNumTrees=TMath::Max(n,1); | 
|---|
| 170 | } | 
|---|
| 171 |  | 
|---|
| 172 | void MRanForest::SetNumTry(Int_t n) | 
|---|
| 173 | { | 
|---|
| 174 | fNumTry=TMath::Max(n,0); | 
|---|
| 175 | } | 
|---|
| 176 |  | 
|---|
| 177 | void MRanForest::SetNdSize(Int_t n) | 
|---|
| 178 | { | 
|---|
| 179 | fNdSize=TMath::Max(n,1); | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | void MRanForest::SetWeights(const TArrayF &weights) | 
|---|
| 183 | { | 
|---|
| 184 | fWeight=weights; | 
|---|
| 185 | } | 
|---|
| 186 |  | 
|---|
| 187 | void MRanForest::SetGrid(const TArrayD &grid) | 
|---|
| 188 | { | 
|---|
| 189 | const int n=grid.GetSize(); | 
|---|
| 190 |  | 
|---|
| 191 | for(int i=0;i<n-1;i++) | 
|---|
| 192 | if(grid[i]>=grid[i+1]) | 
|---|
| 193 | { | 
|---|
| 194 | *fLog<<warn<<"Grid points must be in increasing order! Ignoring grid."<<endl; | 
|---|
| 195 | return; | 
|---|
| 196 | } | 
|---|
| 197 |  | 
|---|
| 198 | fGrid=grid; | 
|---|
| 199 |  | 
|---|
| 200 | //*fLog<<inf<<"Following "<<n<<" grid points are used:"<<endl; | 
|---|
| 201 | //for(int i=0;i<n;i++) | 
|---|
| 202 | //    *fLog<<inf<<" "<<i<<") "<<fGrid[i]<<endl; | 
|---|
| 203 | } | 
|---|
| 204 |  | 
|---|
| 205 | MRanTree *MRanForest::GetTree(Int_t i) const | 
|---|
| 206 | { | 
|---|
| 207 | return static_cast<MRanTree*>(fForest->UncheckedAt(i)); | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | Int_t MRanForest::GetNumDim() const | 
|---|
| 211 | { | 
|---|
| 212 | return fMatrix ? fMatrix->GetNcols() : 0; | 
|---|
| 213 | } | 
|---|
| 214 |  | 
|---|
| 215 | Int_t MRanForest::GetNumData() const | 
|---|
| 216 | { | 
|---|
| 217 | return fMatrix ? fMatrix->GetNrows() : 0; | 
|---|
| 218 | } | 
|---|
| 219 |  | 
|---|
| 220 | Int_t MRanForest::GetNclass() const | 
|---|
| 221 | { | 
|---|
| 222 | int maxidx = TMath::LocMax(fClass.GetSize(),fClass.GetArray()); | 
|---|
| 223 |  | 
|---|
| 224 | return int(fClass[maxidx])+1; | 
|---|
| 225 | } | 
|---|
| 226 |  | 
|---|
| 227 | void MRanForest::PrepareClasses() | 
|---|
| 228 | { | 
|---|
| 229 | const int numdata=fHadTrue.GetSize(); | 
|---|
| 230 |  | 
|---|
| 231 | if(fGrid.GetSize()>0) | 
|---|
| 232 | { | 
|---|
| 233 | // classes given by grid | 
|---|
| 234 | const int ngrid=fGrid.GetSize(); | 
|---|
| 235 |  | 
|---|
| 236 | for(int j=0;j<numdata;j++) | 
|---|
| 237 | { | 
|---|
| 238 | // Array is supposed  to be sorted prior to this call. | 
|---|
| 239 | // If match is found, function returns position of element. | 
|---|
| 240 | // If no match found, function gives nearest element smaller | 
|---|
| 241 | // than value. | 
|---|
| 242 | int k=TMath::BinarySearch(ngrid, fGrid.GetArray(), fHadTrue[j]); | 
|---|
| 243 |  | 
|---|
| 244 | fClass[j]   = k; | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | int minidx = TMath::LocMin(fClass.GetSize(),fClass.GetArray()); | 
|---|
| 248 | int min = fClass[minidx]; | 
|---|
| 249 | if(min!=0) for(int j=0;j<numdata;j++)fClass[j]-=min; | 
|---|
| 250 |  | 
|---|
| 251 | }else{ | 
|---|
| 252 | // classes directly given | 
|---|
| 253 | for (Int_t j=0;j<numdata;j++) | 
|---|
| 254 | fClass[j] = TMath::Nint(fHadTrue[j]); | 
|---|
| 255 | } | 
|---|
| 256 | } | 
|---|
| 257 |  | 
|---|
| 258 | Double_t MRanForest::CalcHadroness() | 
|---|
| 259 | { | 
|---|
| 260 | TVector event; | 
|---|
| 261 | *fRules >> event; | 
|---|
| 262 |  | 
|---|
| 263 | return CalcHadroness(event); | 
|---|
| 264 | } | 
|---|
| 265 |  | 
|---|
| 266 | Double_t MRanForest::CalcHadroness(const TVector &event) | 
|---|
| 267 | { | 
|---|
| 268 | fTreeHad.Set(fNumTrees); | 
|---|
| 269 |  | 
|---|
| 270 | Double_t hadroness=0; | 
|---|
| 271 | Int_t    ntree    =0; | 
|---|
| 272 |  | 
|---|
| 273 | TIter Next(fForest); | 
|---|
| 274 |  | 
|---|
| 275 | MRanTree *tree; | 
|---|
| 276 | while ((tree=(MRanTree*)Next())) | 
|---|
| 277 | hadroness += (fTreeHad[ntree++]=tree->TreeHad(event)); | 
|---|
| 278 |  | 
|---|
| 279 | return hadroness/ntree; | 
|---|
| 280 | } | 
|---|
| 281 |  | 
|---|
| 282 | Bool_t MRanForest::AddTree(MRanTree *rantree=NULL) | 
|---|
| 283 | { | 
|---|
| 284 | fRanTree = rantree ? rantree : fRanTree; | 
|---|
| 285 |  | 
|---|
| 286 | if (!fRanTree) return kFALSE; | 
|---|
| 287 |  | 
|---|
| 288 | MRanTree *newtree=new MRanTree(*fRanTree); | 
|---|
| 289 | fForest->Add(newtree); | 
|---|
| 290 |  | 
|---|
| 291 | return kTRUE; | 
|---|
| 292 | } | 
|---|
| 293 |  | 
|---|
| 294 | Bool_t MRanForest::SetupGrow(MHMatrix *mat,MParList *plist) | 
|---|
| 295 | { | 
|---|
| 296 | //------------------------------------------------------------------- | 
|---|
| 297 | // access matrix, copy last column (target) preliminarily | 
|---|
| 298 | // into fHadTrue | 
|---|
| 299 | if (fMatrix) | 
|---|
| 300 | delete fMatrix; | 
|---|
| 301 | fMatrix = new TMatrix(mat->GetM()); | 
|---|
| 302 |  | 
|---|
| 303 | int dim     = fMatrix->GetNcols()-1; | 
|---|
| 304 | int numdata = fMatrix->GetNrows(); | 
|---|
| 305 |  | 
|---|
| 306 | fHadTrue.Set(numdata); | 
|---|
| 307 | fHadTrue.Reset(); | 
|---|
| 308 |  | 
|---|
| 309 | for (Int_t j=0;j<numdata;j++) | 
|---|
| 310 | fHadTrue[j] = (*fMatrix)(j,dim); | 
|---|
| 311 |  | 
|---|
| 312 | // remove last col | 
|---|
| 313 | fMatrix->ResizeTo(numdata,dim); | 
|---|
| 314 |  | 
|---|
| 315 | //------------------------------------------------------------------- | 
|---|
| 316 | // setup labels for classification/regression | 
|---|
| 317 | fClass.Set(numdata); | 
|---|
| 318 | fClass.Reset(); | 
|---|
| 319 |  | 
|---|
| 320 | if (fClassify) | 
|---|
| 321 | PrepareClasses(); | 
|---|
| 322 |  | 
|---|
| 323 | //------------------------------------------------------------------- | 
|---|
| 324 | // allocating and initializing arrays | 
|---|
| 325 | fHadEst.Set(numdata); | 
|---|
| 326 | fHadEst.Reset(); | 
|---|
| 327 |  | 
|---|
| 328 | fNTimesOutBag.Set(numdata); | 
|---|
| 329 | fNTimesOutBag.Reset(); | 
|---|
| 330 |  | 
|---|
| 331 | fDataSort.Set(dim*numdata); | 
|---|
| 332 | fDataSort.Reset(); | 
|---|
| 333 |  | 
|---|
| 334 | fDataRang.Set(dim*numdata); | 
|---|
| 335 | fDataRang.Reset(); | 
|---|
| 336 |  | 
|---|
| 337 | Bool_t useweights = fWeight.GetSize()==numdata; | 
|---|
| 338 | if (!useweights) | 
|---|
| 339 | { | 
|---|
| 340 | fWeight.Set(numdata); | 
|---|
| 341 | fWeight.Reset(1.); | 
|---|
| 342 | *fLog << inf <<"Setting weights to 1 (no weighting)"<< endl; | 
|---|
| 343 | } | 
|---|
| 344 |  | 
|---|
| 345 | //------------------------------------------------------------------- | 
|---|
| 346 | // setup rules to be used for classification/regression | 
|---|
| 347 | const MDataArray *allrules=(MDataArray*)mat->GetColumns(); | 
|---|
| 348 | if (allrules==NULL) | 
|---|
| 349 | { | 
|---|
| 350 | *fLog << err <<"Rules of matrix == null, exiting"<< endl; | 
|---|
| 351 | return kFALSE; | 
|---|
| 352 | } | 
|---|
| 353 |  | 
|---|
| 354 | if (allrules->GetNumEntries()!=dim+1) | 
|---|
| 355 | { | 
|---|
| 356 | *fLog << err <<"Rules of matrix " << allrules->GetNumEntries() << " mismatch dimension+1 " << dim+1 << "...exiting."<< endl; | 
|---|
| 357 | return kFALSE; | 
|---|
| 358 | } | 
|---|
| 359 |  | 
|---|
| 360 | if (fRules) | 
|---|
| 361 | delete fRules; | 
|---|
| 362 |  | 
|---|
| 363 | fRules = new MDataArray(); | 
|---|
| 364 | fRules->Reset(); | 
|---|
| 365 |  | 
|---|
| 366 | const TString target_rule = (*allrules)[dim].GetRule(); | 
|---|
| 367 | for (Int_t i=0;i<dim;i++) | 
|---|
| 368 | fRules->AddEntry((*allrules)[i].GetRule()); | 
|---|
| 369 |  | 
|---|
| 370 | *fLog << inf << endl; | 
|---|
| 371 | *fLog << "Setting up RF for training on target:" << endl; | 
|---|
| 372 | *fLog << " " << target_rule.Data() << endl; | 
|---|
| 373 | *fLog << "Following rules are used as input to RF:" << endl; | 
|---|
| 374 | for (Int_t i=0;i<dim;i++) | 
|---|
| 375 | *fLog << " " << i << ") " << (*fRules)[i].GetRule() << endl; | 
|---|
| 376 | *fLog << endl; | 
|---|
| 377 |  | 
|---|
| 378 | //------------------------------------------------------------------- | 
|---|
| 379 | // prepare (sort) data for fast optimization algorithm | 
|---|
| 380 | if (!CreateDataSort()) | 
|---|
| 381 | return kFALSE; | 
|---|
| 382 |  | 
|---|
| 383 | //------------------------------------------------------------------- | 
|---|
| 384 | // access and init tree container | 
|---|
| 385 | fRanTree = (MRanTree*)plist->FindCreateObj("MRanTree"); | 
|---|
| 386 | if(!fRanTree) | 
|---|
| 387 | { | 
|---|
| 388 | *fLog << err << dbginf << "MRanForest, fRanTree not initialized... aborting." << endl; | 
|---|
| 389 | return kFALSE; | 
|---|
| 390 | } | 
|---|
| 391 | //fRanTree->SetName(target_rule); // Is not stored anyhow | 
|---|
| 392 |  | 
|---|
| 393 | const Int_t tryest = TMath::Nint(TMath::Sqrt(dim)); | 
|---|
| 394 |  | 
|---|
| 395 | *fLog << inf << endl; | 
|---|
| 396 | *fLog << "Following input for the tree growing are used:"<<endl; | 
|---|
| 397 | *fLog << " Forest type     : "<<(fClassify?"classification":"regression")<<endl; | 
|---|
| 398 | *fLog << " Number of Trees : "<<fNumTrees<<endl; | 
|---|
| 399 | *fLog << " Number of Trials: "<<(fNumTry==0?tryest:fNumTry)<<(fNumTry==0?" (auto)":"")<<endl; | 
|---|
| 400 | *fLog << " Final Node size : "<<fNdSize<<endl; | 
|---|
| 401 | *fLog << " Using Grid      : "<<(fGrid.GetSize()>0?"Yes":"No")<<endl; | 
|---|
| 402 | *fLog << " Using Weights   : "<<(useweights?"Yes":"No")<<endl; | 
|---|
| 403 | *fLog << " Number of Events: "<<numdata<<endl; | 
|---|
| 404 | *fLog << " Number of Params: "<<dim<<endl; | 
|---|
| 405 |  | 
|---|
| 406 | if(fNumTry==0) | 
|---|
| 407 | { | 
|---|
| 408 | fNumTry=tryest; | 
|---|
| 409 | *fLog << inf << endl; | 
|---|
| 410 | *fLog << "Set no. of trials to the recommended value of round("; | 
|---|
| 411 | *fLog << TMath::Sqrt(dim) << ") = " << fNumTry << endl; | 
|---|
| 412 | } | 
|---|
| 413 |  | 
|---|
| 414 | fRanTree->SetNumTry(fNumTry); | 
|---|
| 415 | fRanTree->SetClassify(fClassify); | 
|---|
| 416 | fRanTree->SetNdSize(fNdSize); | 
|---|
| 417 |  | 
|---|
| 418 | fTreeNo=0; | 
|---|
| 419 |  | 
|---|
| 420 | return kTRUE; | 
|---|
| 421 | } | 
|---|
| 422 |  | 
|---|
| 423 | Bool_t MRanForest::GrowForest() | 
|---|
| 424 | { | 
|---|
| 425 | if(!gRandom) | 
|---|
| 426 | { | 
|---|
| 427 | *fLog << err << dbginf << "gRandom not initialized... aborting." << endl; | 
|---|
| 428 | return kFALSE; | 
|---|
| 429 | } | 
|---|
| 430 |  | 
|---|
| 431 | fTreeNo++; | 
|---|
| 432 |  | 
|---|
| 433 | //------------------------------------------------------------------- | 
|---|
| 434 | // initialize running output | 
|---|
| 435 |  | 
|---|
| 436 | float minfloat=TMath::MinElement(fHadTrue.GetSize(),fHadTrue.GetArray()); | 
|---|
| 437 | Bool_t calcResolution=(minfloat>FLT_MIN); | 
|---|
| 438 |  | 
|---|
| 439 | if (fTreeNo==1) | 
|---|
| 440 | { | 
|---|
| 441 | *fLog << inf << endl << underline; | 
|---|
| 442 |  | 
|---|
| 443 | if(calcResolution) | 
|---|
| 444 | *fLog << "TreeNum BagSize NumNodes TestSize  Bias/%   var/%   res/% (from oob-data)" << endl; | 
|---|
| 445 | else | 
|---|
| 446 | *fLog << "TreeNum BagSize NumNodes TestSize  Bias/au  var/au  rms/au (from oob-data)" << endl; | 
|---|
| 447 | //        12345678901234567890123456789012345678901234567890 | 
|---|
| 448 | } | 
|---|
| 449 |  | 
|---|
| 450 | const Int_t numdata = GetNumData(); | 
|---|
| 451 | const Int_t nclass  = GetNclass(); | 
|---|
| 452 |  | 
|---|
| 453 | //------------------------------------------------------------------- | 
|---|
| 454 | // bootstrap aggregating (bagging) -> sampling with replacement: | 
|---|
| 455 |  | 
|---|
| 456 | MArrayF classpopw(nclass); | 
|---|
| 457 | MArrayI jinbag(numdata); // Initialization includes filling with 0 | 
|---|
| 458 | MArrayF winbag(numdata); // Initialization includes filling with 0 | 
|---|
| 459 |  | 
|---|
| 460 | float square=0; | 
|---|
| 461 | float mean=0; | 
|---|
| 462 |  | 
|---|
| 463 | for (Int_t n=0; n<numdata; n++) | 
|---|
| 464 | { | 
|---|
| 465 | // The integer k is randomly (uniformly) chosen from the set | 
|---|
| 466 | // {0,1,...,numdata-1}, which is the set of the index numbers of | 
|---|
| 467 | // all events in the training sample | 
|---|
| 468 |  | 
|---|
| 469 | const Int_t k = gRandom->Integer(numdata); | 
|---|
| 470 |  | 
|---|
| 471 | if(fClassify) | 
|---|
| 472 | classpopw[fClass[k]]+=fWeight[k]; | 
|---|
| 473 | else | 
|---|
| 474 | classpopw[0]+=fWeight[k]; | 
|---|
| 475 |  | 
|---|
| 476 | mean  +=fHadTrue[k]*fWeight[k]; | 
|---|
| 477 | square+=fHadTrue[k]*fHadTrue[k]*fWeight[k]; | 
|---|
| 478 |  | 
|---|
| 479 | winbag[k]+=fWeight[k]; // Increase weight if chosen more than once | 
|---|
| 480 | jinbag[k]=1; | 
|---|
| 481 | } | 
|---|
| 482 |  | 
|---|
| 483 | //------------------------------------------------------------------- | 
|---|
| 484 | // modifying sorted-data array for in-bag data: | 
|---|
| 485 |  | 
|---|
| 486 | // In bagging procedure ca. 2/3 of all elements in the original | 
|---|
| 487 | // training sample are used to build the in-bag data | 
|---|
| 488 | const MArrayF hadtrue(fHadTrue.GetSize(), fHadTrue.GetArray()); | 
|---|
| 489 | const MArrayI fclass(fClass.GetSize(), fClass.GetArray()); | 
|---|
| 490 | const MArrayI datarang(fDataRang.GetSize(), fDataRang.GetArray()); | 
|---|
| 491 |  | 
|---|
| 492 | MArrayI datsortinbag(fDataSort.GetSize(), fDataSort.GetArray()); | 
|---|
| 493 |  | 
|---|
| 494 | ModifyDataSort(datsortinbag, jinbag); | 
|---|
| 495 |  | 
|---|
| 496 | fRanTree->GrowTree(fMatrix,hadtrue,fclass,datsortinbag,datarang,classpopw,mean,square, | 
|---|
| 497 | jinbag,winbag,nclass); | 
|---|
| 498 |  | 
|---|
| 499 | const Double_t ferr = EstimateError(jinbag, calcResolution); | 
|---|
| 500 |  | 
|---|
| 501 | fRanTree->SetError(ferr); | 
|---|
| 502 |  | 
|---|
| 503 | // adding tree to forest | 
|---|
| 504 | AddTree(); | 
|---|
| 505 |  | 
|---|
| 506 | return fTreeNo<fNumTrees; | 
|---|
| 507 | } | 
|---|
| 508 |  | 
|---|
| 509 | //------------------------------------------------------------------- | 
|---|
| 510 | // error-estimates from out-of-bag data (oob data): | 
|---|
| 511 | // | 
|---|
| 512 | // For a single tree the events not(!) contained in the bootstrap | 
|---|
| 513 | // sample of this tree can be used to obtain estimates for the | 
|---|
| 514 | // classification error of this tree. | 
|---|
| 515 | // If you take a certain event, it is contained in the oob-data of | 
|---|
| 516 | // 1/3 of the trees (see comment to ModifyData). This means that the | 
|---|
| 517 | // classification error determined from oob-data is underestimated, | 
|---|
| 518 | // but can still be taken as upper limit. | 
|---|
| 519 | // | 
|---|
| 520 | Double_t MRanForest::EstimateError(const MArrayI &jinbag, Bool_t calcResolution) | 
|---|
| 521 | { | 
|---|
| 522 | const Int_t numdata = GetNumData(); | 
|---|
| 523 |  | 
|---|
| 524 | Int_t ninbag = 0; | 
|---|
| 525 | for (Int_t ievt=0;ievt<numdata;ievt++) | 
|---|
| 526 | { | 
|---|
| 527 | if (jinbag[ievt]>0) | 
|---|
| 528 | { | 
|---|
| 529 | ninbag++; | 
|---|
| 530 | continue; | 
|---|
| 531 | } | 
|---|
| 532 |  | 
|---|
| 533 | fHadEst[ievt] +=fRanTree->TreeHad((*fMatrix), ievt); | 
|---|
| 534 | fNTimesOutBag[ievt]++; | 
|---|
| 535 | } | 
|---|
| 536 |  | 
|---|
| 537 | Int_t n=0; | 
|---|
| 538 |  | 
|---|
| 539 | Double_t sum=0; | 
|---|
| 540 | Double_t sq =0; | 
|---|
| 541 | for (Int_t i=0; i<numdata; i++) | 
|---|
| 542 | { | 
|---|
| 543 | if (fNTimesOutBag[i]==0) | 
|---|
| 544 | continue; | 
|---|
| 545 |  | 
|---|
| 546 | const Float_t hadest = fHadEst[i]/fNTimesOutBag[i]; | 
|---|
| 547 |  | 
|---|
| 548 | const Float_t val = calcResolution ? | 
|---|
| 549 | hadest/fHadTrue[i] - 1 : hadest - fHadTrue[i]; | 
|---|
| 550 |  | 
|---|
| 551 | sum += val; | 
|---|
| 552 | sq  += val*val; | 
|---|
| 553 | n++; | 
|---|
| 554 | } | 
|---|
| 555 |  | 
|---|
| 556 | if (calcResolution) | 
|---|
| 557 | { | 
|---|
| 558 | sum *= 100; | 
|---|
| 559 | sq  *= 10000; | 
|---|
| 560 | } | 
|---|
| 561 |  | 
|---|
| 562 | sum /= n; | 
|---|
| 563 | sq  /= n; | 
|---|
| 564 |  | 
|---|
| 565 | const Double_t var  = TMath::Sqrt(sq-sum*sum); | 
|---|
| 566 | const Double_t ferr = TMath::Sqrt(sq); | 
|---|
| 567 |  | 
|---|
| 568 | //------------------------------------------------------------------- | 
|---|
| 569 | // give running output | 
|---|
| 570 | *fLog << setw(4) << fTreeNo; | 
|---|
| 571 | *fLog << Form(" %8.1f", 100.*ninbag/numdata); | 
|---|
| 572 | *fLog << setw(9) << fRanTree->GetNumEndNodes(); | 
|---|
| 573 | *fLog << Form("  %9.1f", 100.*n/numdata); | 
|---|
| 574 | *fLog << Form(" %7.2f", sum); | 
|---|
| 575 | *fLog << Form(" %7.2f", var); | 
|---|
| 576 | *fLog << Form(" %7.2f", ferr); | 
|---|
| 577 | *fLog << endl; | 
|---|
| 578 |  | 
|---|
| 579 | return ferr; | 
|---|
| 580 | } | 
|---|
| 581 |  | 
|---|
| 582 | Bool_t MRanForest::CreateDataSort() | 
|---|
| 583 | { | 
|---|
| 584 | // fDataSort(m,n) is the event number in which fMatrix(m,n) occurs. | 
|---|
| 585 | // fDataRang(m,n) is the rang of fMatrix(m,n), i.e. if rang = r: | 
|---|
| 586 | //   fMatrix(m,n) is the r-th highest value of all fMatrix(m,.). | 
|---|
| 587 | // | 
|---|
| 588 | // There may be more then 1 event with rang r (due to bagging). | 
|---|
| 589 |  | 
|---|
| 590 | const Int_t numdata = GetNumData(); | 
|---|
| 591 | const Int_t dim = GetNumDim(); | 
|---|
| 592 |  | 
|---|
| 593 | TArrayF v(numdata); | 
|---|
| 594 | TArrayI isort(numdata); | 
|---|
| 595 |  | 
|---|
| 596 |  | 
|---|
| 597 | for (Int_t mvar=0;mvar<dim;mvar++) | 
|---|
| 598 | { | 
|---|
| 599 |  | 
|---|
| 600 | for(Int_t n=0;n<numdata;n++) | 
|---|
| 601 | { | 
|---|
| 602 | v[n]=(*fMatrix)(n,mvar); | 
|---|
| 603 | //isort[n]=n; | 
|---|
| 604 |  | 
|---|
| 605 | if (!TMath::Finite(v[n])) | 
|---|
| 606 | { | 
|---|
| 607 | *fLog << err <<"Event no. "<<n<<", matrix column no. "<<mvar; | 
|---|
| 608 | *fLog << err <<" has a non finite value (eg. NaN)."<<endl; | 
|---|
| 609 | return kFALSE; | 
|---|
| 610 | } | 
|---|
| 611 | } | 
|---|
| 612 |  | 
|---|
| 613 | TMath::Sort(numdata,v.GetArray(),isort.GetArray(),kFALSE); | 
|---|
| 614 |  | 
|---|
| 615 | // this sorts the v[n] in ascending order. isort[n] is the | 
|---|
| 616 | // event number of that v[n], which is the n-th from the | 
|---|
| 617 | // lowest (assume the original event numbers are 0,1,...). | 
|---|
| 618 |  | 
|---|
| 619 | // control sorting | 
|---|
| 620 | /* | 
|---|
| 621 | for(int n=0;n<numdata-1;n++) | 
|---|
| 622 | if(v[isort[n]]>v[isort[n+1]]) | 
|---|
| 623 | { | 
|---|
| 624 | *fLog << err <<"Event no. "<<n<<", matrix column no. "<<mvar; | 
|---|
| 625 | *fLog << err <<" not at correct sorting position."<<endl; | 
|---|
| 626 | return kFALSE; | 
|---|
| 627 | } | 
|---|
| 628 | */ | 
|---|
| 629 |  | 
|---|
| 630 | // DataRang is similar to the isort index starting from 0 it is | 
|---|
| 631 | // increased by one for each event which is greater, but stays | 
|---|
| 632 | // the same for the same value. (So to say it counts how many | 
|---|
| 633 | // different values we have) | 
|---|
| 634 | for(Int_t n=0;n<numdata-1;n++) | 
|---|
| 635 | { | 
|---|
| 636 | const Int_t n1=isort[n]; | 
|---|
| 637 | const Int_t n2=isort[n+1]; | 
|---|
| 638 |  | 
|---|
| 639 | // FIXME: Copying isort[n] to fDataSort[mvar*numdata] | 
|---|
| 640 | // can be accelerated! | 
|---|
| 641 | fDataSort[mvar*numdata+n]=n1; | 
|---|
| 642 | if(n==0) fDataRang[mvar*numdata+n1]=0; | 
|---|
| 643 | if(v[n1]<v[n2]) | 
|---|
| 644 | { | 
|---|
| 645 | fDataRang[mvar*numdata+n2]=fDataRang[mvar*numdata+n1]+1; | 
|---|
| 646 | }else{ | 
|---|
| 647 | fDataRang[mvar*numdata+n2]=fDataRang[mvar*numdata+n1]; | 
|---|
| 648 | } | 
|---|
| 649 | } | 
|---|
| 650 | fDataSort[(mvar+1)*numdata-1]=isort[numdata-1]; | 
|---|
| 651 | } | 
|---|
| 652 | return kTRUE; | 
|---|
| 653 | } | 
|---|
| 654 |  | 
|---|
| 655 | // Reoves all indices which are not in the bag from the datsortinbag | 
|---|
| 656 | void MRanForest::ModifyDataSort(MArrayI &datsortinbag, const MArrayI &jinbag) | 
|---|
| 657 | { | 
|---|
| 658 | const Int_t numdim=GetNumDim(); | 
|---|
| 659 | const Int_t numdata=GetNumData(); | 
|---|
| 660 |  | 
|---|
| 661 | Int_t ninbag=0; | 
|---|
| 662 | for (Int_t n=0;n<numdata;n++) | 
|---|
| 663 | if(jinbag[n]==1) ninbag++; | 
|---|
| 664 |  | 
|---|
| 665 | for(Int_t m=0;m<numdim;m++) | 
|---|
| 666 | { | 
|---|
| 667 | Int_t *subsort = &datsortinbag[m*numdata]; | 
|---|
| 668 |  | 
|---|
| 669 | Int_t k=0; | 
|---|
| 670 | for(Int_t n=0;n<ninbag;n++) | 
|---|
| 671 | { | 
|---|
| 672 | if(jinbag[subsort[k]]==1) | 
|---|
| 673 | { | 
|---|
| 674 | subsort[n] = subsort[k]; | 
|---|
| 675 | k++; | 
|---|
| 676 | }else{ | 
|---|
| 677 | for(Int_t j=k+1;j<numdata;j++) | 
|---|
| 678 | { | 
|---|
| 679 | if(jinbag[subsort[j]]==1) | 
|---|
| 680 | { | 
|---|
| 681 | subsort[n] = subsort[j]; | 
|---|
| 682 | k = j+1; | 
|---|
| 683 | break; | 
|---|
| 684 | } | 
|---|
| 685 | } | 
|---|
| 686 | } | 
|---|
| 687 | } | 
|---|
| 688 | } | 
|---|
| 689 | } | 
|---|
| 690 |  | 
|---|
| 691 | Bool_t MRanForest::AsciiWrite(ostream &out) const | 
|---|
| 692 | { | 
|---|
| 693 | Int_t n=0; | 
|---|
| 694 | MRanTree *tree; | 
|---|
| 695 | TIter forest(fForest); | 
|---|
| 696 |  | 
|---|
| 697 | while ((tree=(MRanTree*)forest.Next())) | 
|---|
| 698 | { | 
|---|
| 699 | tree->AsciiWrite(out); | 
|---|
| 700 | n++; | 
|---|
| 701 | } | 
|---|
| 702 |  | 
|---|
| 703 | return n==fNumTrees; | 
|---|
| 704 | } | 
|---|