source: trunk/MagicSoft/Mars/mranforest/MRanForestCalc.cc@ 7687

Last change on this file since 7687 was 7687, checked in by tbretz, 19 years ago
*** empty log message ***
File size: 12.7 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Hengstebeck 2/2005 <mailto:hengsteb@physik.hu-berlin.de>
19! Author(s): Thomas Bretz 8/2005 <mailto:tbretz@astro.uni-wuerzburg.de>
20!
21! Copyright: MAGIC Software Development, 2000-2005
22!
23!
24\* ======================================================================== */
25
26/////////////////////////////////////////////////////////////////////////////
27//
28// MRanForestCalc
29//
30//
31////////////////////////////////////////////////////////////////////////////
32#include "MRanForestCalc.h"
33
34#include <TVector.h>
35
36#include "MHMatrix.h"
37
38#include "MLog.h"
39#include "MLogManip.h"
40
41#include "MData.h"
42#include "MDataArray.h"
43
44#include "MRanForest.h"
45#include "MParameters.h"
46
47#include "MParList.h"
48#include "MTaskList.h"
49#include "MEvtLoop.h"
50#include "MRanForestGrow.h"
51#include "MFillH.h"
52
53ClassImp(MRanForestCalc);
54
55using namespace std;
56
57const TString MRanForestCalc::gsDefName = "MRanForestCalc";
58const TString MRanForestCalc::gsDefTitle = "RF for energy estimation";
59
60const TString MRanForestCalc::gsNameOutput = "RanForestOut";
61
62MRanForestCalc::MRanForestCalc(const char *name, const char *title)
63 : fData(0), fRFOut(0), fTestMatrix(0),
64 fNumTrees(-1), fNumTry(-1), fNdSize(-1), fNumObsoleteVariables(1),
65 fLastDataColumnHasWeights(kFALSE),
66 fNameOutput(gsNameOutput), fDebug(kFALSE), fEstimationMode(kMean)
67{
68 fName = name ? name : gsDefName.Data();
69 fTitle = title ? title : gsDefTitle.Data();
70
71 // FIXME:
72 fNumTrees = 100; //100
73 fNumTry = 0; //3 0 means: in MRanForest estimated best value will be calculated
74 fNdSize = 1; //1
75}
76
77MRanForestCalc::~MRanForestCalc()
78{
79 fEForests.Delete();
80}
81
82// --------------------------------------------------------------------------
83//
84// ver=0: One yes/no-classification forest is trained for each bin.
85// the yes/no classification is done using the grid
86// ver=1: One classification forest is trained. The last column contains a
87// value which is turned into a classifier by rf itself using the grid
88// ver=2: One classification forest is trained. The last column already contains
89// the classifier
90// ver=3: A regression forest is trained. The last column contains the
91// classifier
92//
93Int_t MRanForestCalc::Train(const MHMatrix &matrixtrain, const TArrayD &grid, Int_t ver)
94{
95 gLog.Separator("MRanForestCalc - Train");
96
97 if (!matrixtrain.GetColumns())
98 {
99 *fLog << err << "ERROR - MHMatrix does not contain rules... abort." << endl;
100 return kFALSE;
101 }
102
103 const Int_t ncols = matrixtrain.GetM().GetNcols();
104 const Int_t nrows = matrixtrain.GetM().GetNrows();
105 if (ncols<=0 || nrows <=0)
106 {
107 *fLog << err << "ERROR - No. of columns or no. of rows of matrixtrain equal 0 ... abort." << endl;
108 return kFALSE;
109 }
110
111 // rules (= combination of image par) to be used for energy estimation
112 TFile fileRF(fFileName, "recreate");
113 if (!fileRF.IsOpen())
114 {
115 *fLog << err << "ERROR - File to store RFs could not be opened... abort." << endl;
116 return kFALSE;
117 }
118
119 // The number of columns which have to be removed for the training
120 // The last data column may contain weight which also have to be removed
121 const Int_t nobs = fNumObsoleteVariables + (fLastDataColumnHasWeights?1:0); // Number of obsolete columns
122
123 const MDataArray &dcol = *matrixtrain.GetColumns();
124
125 // Make a copy of the rules for accessing the train-data
126 MDataArray usedrules;
127 for (Int_t i=0; i<ncols; i++)
128 if (i<ncols-nobs) // -3 is important!!!
129 usedrules.AddEntry(dcol[i].GetRule());
130 else
131 *fLog << inf << "Skipping " << dcol[i].GetRule() << " for training" << endl;
132
133 // In the case of regression store the rule to be regessed in the
134 // last entry of your rules
135 MDataArray rules(usedrules);
136 rules.AddEntry(ver<3?"Classification":dcol[ncols-1].GetRule());
137
138 // prepare train-matrix finally used
139 TMatrix mat(matrixtrain.GetM());
140
141 // Resize it such that the obsolete columns are removed
142 mat.ResizeTo(nrows, ncols-nobs+1);
143
144 if (fDebug)
145 gLog.SetNullOutput(kTRUE);
146
147 // In the case one independant RF is trained for each bin (e.g.
148 // energy-bin) train all of them
149 const Int_t nbins = ver>0 ? 1 : grid.GetSize()-1;
150 for (Int_t ie=0; ie<nbins; ie++)
151 {
152 // In the case weights should be used initialize the
153 // corresponding array
154 TArrayF weights(nrows);
155 if (fLastDataColumnHasWeights)
156 for (Int_t j=0; j<nrows; j++)
157 {
158 weights[j] = matrixtrain.GetM()(j, ncols-nobs);
159 if (j%100==0)
160 cout << weights[j] << " ";
161 }
162
163 // Setup the matrix such that the last comlumn contains
164 // the classifier or the regeression target value
165 switch (ver)
166 {
167 case 0: // Replace last column by a classification which is 1 in
168 // the case the event belongs to this bin, 0 otherwise
169 {
170 Int_t irows=0;
171 for (Int_t j=0; j<nrows; j++)
172 {
173 const Double_t value = matrixtrain.GetM()(j,ncols-1);
174 const Bool_t inside = value>grid[ie] && value<=grid[ie+1];
175
176 mat(j, ncols-nobs) = inside ? 1 : 0;
177
178 if (inside)
179 irows++;
180 }
181 if (irows==0)
182 *fLog << warn << "WARNING - Skipping";
183 else
184 *fLog << inf << "Training RF for";
185
186 *fLog << " bin " << ie << " (" << grid[ie] << ", " << grid[ie+1] << ") " << irows << "/" << nrows << endl;
187
188 if (irows==0)
189 continue;
190 }
191 break;
192
193 case 1: // Use last column as classifier or for regression
194 case 2:
195 case 3:
196 for (Int_t j=0; j<nrows; j++)
197 mat(j, ncols-nobs) = matrixtrain.GetM()(j,ncols-1);
198 break;
199 }
200
201 MHMatrix matrix(mat, &rules, "MatrixTrain");
202
203 MParList plist;
204 MTaskList tlist;
205 plist.AddToList(&tlist);
206 plist.AddToList(&matrix);
207
208 MRanForest rf;
209 rf.SetNumTrees(fNumTrees);
210 rf.SetNumTry(fNumTry);
211 rf.SetNdSize(fNdSize);
212 rf.SetClassify(ver<3 ? kTRUE : kFALSE);
213 if (ver==1)
214 rf.SetGrid(grid);
215 if (fLastDataColumnHasWeights)
216 rf.SetWeights(weights);
217
218 plist.AddToList(&rf);
219
220 MRanForestGrow rfgrow;
221 tlist.AddToList(&rfgrow);
222
223 MFillH fillh("MHRanForestGini");
224 tlist.AddToList(&fillh);
225
226 MEvtLoop evtloop;
227 evtloop.SetParList(&plist);
228 evtloop.SetDisplay(fDisplay);
229 evtloop.SetLogStream(fLog);
230
231 if (!evtloop.Eventloop())
232 return kFALSE;
233
234 if (fDebug)
235 gLog.SetNullOutput(kFALSE);
236
237 if (ver==0)
238 {
239 // Calculate bin center
240 const Double_t E = (TMath::Log10(grid[ie])+TMath::Log10(grid[ie+1]))/2;
241
242 // save whole forest
243 rf.SetUserVal(E);
244 rf.SetName(Form("%.10f", E));
245 }
246
247 rf.Write();
248 }
249
250 // save rules
251 usedrules.Write("rules");
252
253 return kTRUE;
254}
255
256Int_t MRanForestCalc::ReadForests(MParList &plist)
257{
258 TFile fileRF(fFileName, "read");
259 if (!fileRF.IsOpen())
260 {
261 *fLog << err << dbginf << "File containing RFs could not be opened... aborting." << endl;
262 return kFALSE;
263 }
264
265 fEForests.Delete();
266
267 TIter Next(fileRF.GetListOfKeys());
268 TObject *o=0;
269 while ((o=Next()))
270 {
271 MRanForest *forest=0;
272 fileRF.GetObject(o->GetName(), forest);
273 if (!forest)
274 continue;
275
276 forest->SetUserVal(atof(o->GetName()));
277
278 fEForests.Add(forest);
279 }
280
281 // Maybe fEForests[0].fRules yould be used instead?
282
283 if (fData->Read("rules")<=0)
284 {
285 *fLog << err << "ERROR - Reading 'rules' from file " << fFileName << endl;
286 return kFALSE;
287 }
288
289 return kTRUE;
290}
291
292Int_t MRanForestCalc::PreProcess(MParList *plist)
293{
294 fRFOut = (MParameterD*)plist->FindCreateObj("MParameterD", fNameOutput);
295 if (!fRFOut)
296 return kFALSE;
297
298 fData = (MDataArray*)plist->FindCreateObj("MDataArray");
299 if (!fData)
300 return kFALSE;
301
302 if (!ReadForests(*plist))
303 {
304 *fLog << err << "Reading RFs failed... aborting." << endl;
305 return kFALSE;
306 }
307
308 *fLog << inf << "RF read from " << fFileName << endl;
309
310 if (fTestMatrix)
311 return kTRUE;
312
313 fData->Print();
314
315 if (!fData->PreProcess(plist))
316 {
317 *fLog << err << "PreProcessing of the MDataArray failed... aborting." << endl;
318 return kFALSE;
319 }
320
321 return kTRUE;
322}
323
324#include <TGraph.h>
325#include <TF1.h>
326Int_t MRanForestCalc::Process()
327{
328 TVector event;
329 if (fTestMatrix)
330 *fTestMatrix >> event;
331 else
332 *fData >> event;
333
334 // --------------- Single Tree RF -------------------
335 if (fEForests.GetEntriesFast()==1)
336 {
337 MRanForest *rf = static_cast<MRanForest*>(fEForests.UncheckedAt(0));
338 fRFOut->SetVal(rf->CalcHadroness(event));
339 fRFOut->SetReadyToSave();
340
341 return kTRUE;
342 }
343
344 // --------------- Multi Tree RF -------------------
345 static TF1 f1("f1", "gaus");
346
347 Double_t sume = 0;
348 Double_t sumh = 0;
349 Double_t maxh = 0;
350 Double_t maxe = 0;
351
352 Double_t max = -1e10;
353 Double_t min = 1e10;
354
355 TIter Next(&fEForests);
356 MRanForest *rf = 0;
357
358 TGraph g;
359 while ((rf=(MRanForest*)Next()))
360 {
361 const Double_t h = rf->CalcHadroness(event);
362 const Double_t e = rf->GetUserVal();
363
364 g.SetPoint(g.GetN(), e, h);
365
366 sume += e*h;
367 sumh += h;
368
369 if (h>maxh)
370 {
371 maxh = h;
372 maxe = e;
373 }
374 if (e>max)
375 max = e;
376 if (e<min)
377 min = e;
378 }
379
380 switch (fEstimationMode)
381 {
382 case kMean:
383 fRFOut->SetVal(pow(10, sume/sumh));
384 break;
385 case kMaximum:
386 fRFOut->SetVal(pow(10, maxe));
387 break;
388 case kFit:
389 f1.SetParameter(0, maxh);
390 f1.SetParameter(1, maxe);
391 f1.SetParameter(2, 0.125);
392 g.Fit(&f1, "Q0N");
393 fRFOut->SetVal(pow(10, f1.GetParameter(1)));
394 break;
395 }
396
397 fRFOut->SetReadyToSave();
398
399 return kTRUE;
400}
401
402void MRanForestCalc::Print(Option_t *o) const
403{
404 *fLog << all;
405 *fLog << GetDescriptor() << ":" << endl;
406 *fLog << " - Forest ";
407 switch (fEForests.GetEntries())
408 {
409 case 0: *fLog << "not yet initialized." << endl; break;
410 case 1: *fLog << "is a single tree forest." << endl; break;
411 default: *fLog << "is a multi tree forest." << endl; break;
412 }
413 /*
414 *fLog << " - Trees: " << fNumTrees << endl;
415 *fLog << " - Trys: " << fNumTry << endl;
416 *fLog << " - Node Size: " << fNdSize << endl;
417 *fLog << " - Node Size: " << fNdSize << endl;
418 */
419 *fLog << " - FileName: " << fFileName << endl;
420 *fLog << " - NameOutput: " << fNameOutput << endl;
421}
422
423// --------------------------------------------------------------------------
424//
425//
426Int_t MRanForestCalc::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
427{
428 Bool_t rc = kFALSE;
429 if (IsEnvDefined(env, prefix, "FileName", print))
430 {
431 rc = kTRUE;
432 SetFileName(GetEnvValue(env, prefix, "FileName", fFileName));
433 }
434 if (IsEnvDefined(env, prefix, "Debug", print))
435 {
436 rc = kTRUE;
437 SetDebug(GetEnvValue(env, prefix, "Debug", fDebug));
438 }
439 if (IsEnvDefined(env, prefix, "NameOutput", print))
440 {
441 rc = kTRUE;
442 SetNameOutput(GetEnvValue(env, prefix, "NameOutput", fNameOutput));
443 }
444 if (IsEnvDefined(env, prefix, "EstimationMode", print))
445 {
446 TString txt = GetEnvValue(env, prefix, "EstimationMode", "");
447 txt = txt.Strip(TString::kBoth);
448 txt.ToLower();
449 if (txt==(TString)"mean")
450 fEstimationMode = kMean;
451 if (txt==(TString)"maximum")
452 fEstimationMode = kMaximum;
453 if (txt==(TString)"fit")
454 fEstimationMode = kFit;
455 rc = kTRUE;
456 }
457 return rc;
458}
Note: See TracBrowser for help on using the repository browser.