1 | /* ======================================================================== *\
|
---|
2 | ! $Name: not supported by cvs2svn $:$Id: MRanForestCalc.cc,v 1.30 2007-08-24 12:58:49 tbretz Exp $
|
---|
3 | ! --------------------------------------------------------------------------
|
---|
4 | !
|
---|
5 | ! *
|
---|
6 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
7 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
8 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
9 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
10 | ! *
|
---|
11 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
12 | ! * documentation for any purpose is hereby granted without fee,
|
---|
13 | ! * provided that the above copyright notice appear in all copies and
|
---|
14 | ! * that both that copyright notice and this permission notice appear
|
---|
15 | ! * in supporting documentation. It is provided "as is" without express
|
---|
16 | ! * or implied warranty.
|
---|
17 | ! *
|
---|
18 | !
|
---|
19 | !
|
---|
20 | ! Author(s): Thomas Hengstebeck 2/2005 <mailto:hengsteb@physik.hu-berlin.de>
|
---|
21 | ! Author(s): Thomas Bretz 8/2005 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
22 | !
|
---|
23 | ! Copyright: MAGIC Software Development, 2000-2006
|
---|
24 | !
|
---|
25 | !
|
---|
26 | \* ======================================================================== */
|
---|
27 |
|
---|
28 | /////////////////////////////////////////////////////////////////////////////
|
---|
29 | //
|
---|
30 | // MRanForestCalc
|
---|
31 | //
|
---|
32 | //
|
---|
33 | ////////////////////////////////////////////////////////////////////////////
|
---|
34 | #include "MRanForestCalc.h"
|
---|
35 |
|
---|
36 | #include <TF1.h>
|
---|
37 | #include <TFile.h>
|
---|
38 | #include <TGraph.h>
|
---|
39 | #include <TVector.h>
|
---|
40 |
|
---|
41 | #include "MHMatrix.h"
|
---|
42 |
|
---|
43 | #include "MLog.h"
|
---|
44 | #include "MLogManip.h"
|
---|
45 |
|
---|
46 | #include "MData.h"
|
---|
47 | #include "MDataArray.h"
|
---|
48 |
|
---|
49 | #include "MRanForest.h"
|
---|
50 | #include "MParameters.h"
|
---|
51 |
|
---|
52 | #include "MParList.h"
|
---|
53 | #include "MTaskList.h"
|
---|
54 | #include "MEvtLoop.h"
|
---|
55 | #include "MRanForestGrow.h"
|
---|
56 | #include "MFillH.h"
|
---|
57 |
|
---|
58 | ClassImp(MRanForestCalc);
|
---|
59 |
|
---|
60 | using namespace std;
|
---|
61 |
|
---|
62 | const TString MRanForestCalc::gsDefName = "MRanForestCalc";
|
---|
63 | const TString MRanForestCalc::gsDefTitle = "RF for energy estimation";
|
---|
64 |
|
---|
65 | const TString MRanForestCalc::gsNameOutput = "RanForestOut";
|
---|
66 | const TString MRanForestCalc::gsNameEvalFunc = "EvalFunction";
|
---|
67 |
|
---|
68 | MRanForestCalc::MRanForestCalc(const char *name, const char *title)
|
---|
69 | : fData(0), fRFOut(0), fTestMatrix(0), fFunc("x"),
|
---|
70 | fNumTrees(-1), fNumTry(-1), fNdSize(-1), fNumObsoleteVariables(1),
|
---|
71 | fLastDataColumnHasWeights(kFALSE),
|
---|
72 | fNameOutput(gsNameOutput), fDebug(kFALSE), fEstimationMode(kMean)
|
---|
73 | {
|
---|
74 | fName = name ? name : gsDefName.Data();
|
---|
75 | fTitle = title ? title : gsDefTitle.Data();
|
---|
76 |
|
---|
77 | // FIXME:
|
---|
78 | fNumTrees = 100; //100
|
---|
79 | fNumTry = 0; //3 0 means: in MRanForest estimated best value will be calculated
|
---|
80 | fNdSize = 1; //1
|
---|
81 | }
|
---|
82 |
|
---|
83 | MRanForestCalc::~MRanForestCalc()
|
---|
84 | {
|
---|
85 | fEForests.Delete();
|
---|
86 | }
|
---|
87 |
|
---|
88 | // --------------------------------------------------------------------------
|
---|
89 | //
|
---|
90 | // Set a function which is applied to the output of the random forest
|
---|
91 | //
|
---|
92 | Bool_t MRanForestCalc::SetFunction(const char *func)
|
---|
93 | {
|
---|
94 | return !fFunc.SetRule(func);
|
---|
95 | }
|
---|
96 |
|
---|
97 | // --------------------------------------------------------------------------
|
---|
98 | //
|
---|
99 | // ver=0: One yes/no-classification forest is trained for each bin.
|
---|
100 | // the yes/no classification is done using the grid
|
---|
101 | // ver=1: One classification forest is trained. The last column contains a
|
---|
102 | // value which is turned into a classifier by rf itself using the grid
|
---|
103 | // ver=2: One classification forest is trained. The last column already contains
|
---|
104 | // the classifier
|
---|
105 | // ver=3: A regression forest is trained. The last column contains the
|
---|
106 | // classifier
|
---|
107 | //
|
---|
108 | Int_t MRanForestCalc::Train(const MHMatrix &matrixtrain, const TArrayD &grid, Int_t ver)
|
---|
109 | {
|
---|
110 | gLog.Separator("MRanForestCalc - Train");
|
---|
111 |
|
---|
112 | if (!matrixtrain.GetColumns())
|
---|
113 | {
|
---|
114 | *fLog << err << "ERROR - MHMatrix does not contain rules... abort." << endl;
|
---|
115 | return kFALSE;
|
---|
116 | }
|
---|
117 |
|
---|
118 | const Int_t ncols = matrixtrain.GetM().GetNcols();
|
---|
119 | const Int_t nrows = matrixtrain.GetM().GetNrows();
|
---|
120 | if (ncols<=0 || nrows <=0)
|
---|
121 | {
|
---|
122 | *fLog << err << "ERROR - No. of columns or no. of rows of matrixtrain equal 0 ... abort." << endl;
|
---|
123 | return kFALSE;
|
---|
124 | }
|
---|
125 |
|
---|
126 | // rules (= combination of image par) to be used for energy estimation
|
---|
127 | TFile fileRF(fFileName, "recreate");
|
---|
128 | if (!fileRF.IsOpen())
|
---|
129 | {
|
---|
130 | *fLog << err << "ERROR - File to store RFs could not be opened... abort." << endl;
|
---|
131 | return kFALSE;
|
---|
132 | }
|
---|
133 |
|
---|
134 | // The number of columns which have to be removed for the training
|
---|
135 | // The last data column may contain weight which also have to be removed
|
---|
136 | const Int_t nobs = fNumObsoleteVariables + (fLastDataColumnHasWeights?1:0); // Number of obsolete columns
|
---|
137 |
|
---|
138 | const MDataArray &dcol = *matrixtrain.GetColumns();
|
---|
139 |
|
---|
140 | // Make a copy of the rules for accessing the train-data
|
---|
141 | MDataArray usedrules;
|
---|
142 | for (Int_t i=0; i<ncols; i++)
|
---|
143 | if (i<ncols-nobs) // -3 is important!!!
|
---|
144 | usedrules.AddEntry(dcol[i].GetRule());
|
---|
145 | else
|
---|
146 | *fLog << inf << "Skipping " << dcol[i].GetRule() << " for training" << endl;
|
---|
147 |
|
---|
148 | // In the case of regression store the rule to be regessed in the
|
---|
149 | // last entry of your rules
|
---|
150 | MDataArray rules(usedrules);
|
---|
151 | rules.AddEntry(ver<3?"Classification.fVal":dcol[ncols-1].GetRule().Data());
|
---|
152 |
|
---|
153 | // prepare train-matrix finally used
|
---|
154 | TMatrix mat(matrixtrain.GetM());
|
---|
155 |
|
---|
156 | // Resize it such that the obsolete columns are removed
|
---|
157 | mat.ResizeTo(nrows, ncols-nobs+1);
|
---|
158 |
|
---|
159 | if (fDebug)
|
---|
160 | gLog.SetNullOutput(kTRUE);
|
---|
161 |
|
---|
162 | // In the case one independant RF is trained for each bin (e.g.
|
---|
163 | // energy-bin) train all of them
|
---|
164 | const Int_t nbins = ver>0 ? 1 : grid.GetSize()-1;
|
---|
165 | for (Int_t ie=0; ie<nbins; ie++)
|
---|
166 | {
|
---|
167 | // In the case weights should be used initialize the
|
---|
168 | // corresponding array
|
---|
169 | Double_t sum = 0;
|
---|
170 |
|
---|
171 | TArrayF weights(nrows);
|
---|
172 | if (fLastDataColumnHasWeights)
|
---|
173 | {
|
---|
174 | for (Int_t j=0; j<nrows; j++)
|
---|
175 | {
|
---|
176 | weights[j] = matrixtrain.GetM()(j, ncols-nobs);
|
---|
177 | sum += weights[j];
|
---|
178 | }
|
---|
179 | }
|
---|
180 |
|
---|
181 | *fLog << inf << "MRanForestCalc::Train: Sum of weights " << sum << endl;
|
---|
182 |
|
---|
183 | // Setup the matrix such that the last comlumn contains
|
---|
184 | // the classifier or the regeression target value
|
---|
185 | switch (ver)
|
---|
186 | {
|
---|
187 | case 0: // Replace last column by a classification which is 1 in
|
---|
188 | // the case the event belongs to this bin, 0 otherwise
|
---|
189 | {
|
---|
190 | Int_t irows=0;
|
---|
191 | for (Int_t j=0; j<nrows; j++)
|
---|
192 | {
|
---|
193 | const Double_t value = matrixtrain.GetM()(j,ncols-1);
|
---|
194 | const Bool_t inside = value>grid[ie] && value<=grid[ie+1];
|
---|
195 |
|
---|
196 | mat(j, ncols-nobs) = inside ? 1 : 0;
|
---|
197 |
|
---|
198 | if (inside)
|
---|
199 | irows++;
|
---|
200 | }
|
---|
201 | if (irows==0)
|
---|
202 | *fLog << warn << "WARNING - Skipping";
|
---|
203 | else
|
---|
204 | *fLog << inf << "Training RF for";
|
---|
205 |
|
---|
206 | *fLog << " bin " << ie << " (" << grid[ie] << ", " << grid[ie+1] << ") " << irows << "/" << nrows << endl;
|
---|
207 |
|
---|
208 | if (irows==0)
|
---|
209 | continue;
|
---|
210 | }
|
---|
211 | break;
|
---|
212 |
|
---|
213 | case 1: // Use last column as classifier or for regression
|
---|
214 | case 2:
|
---|
215 | case 3:
|
---|
216 | for (Int_t j=0; j<nrows; j++)
|
---|
217 | mat(j, ncols-nobs) = matrixtrain.GetM()(j,ncols-1);
|
---|
218 | break;
|
---|
219 | }
|
---|
220 |
|
---|
221 | MHMatrix matrix(mat, &rules, "MatrixTrain");
|
---|
222 |
|
---|
223 | MParList plist;
|
---|
224 | MTaskList tlist;
|
---|
225 | plist.AddToList(&tlist);
|
---|
226 | plist.AddToList(&matrix);
|
---|
227 |
|
---|
228 | MRanForest rf;
|
---|
229 | rf.SetNumTrees(fNumTrees);
|
---|
230 | rf.SetNumTry(fNumTry);
|
---|
231 | rf.SetNdSize(fNdSize);
|
---|
232 | rf.SetClassify(ver<3 ? kTRUE : kFALSE);
|
---|
233 | if (ver==1)
|
---|
234 | rf.SetGrid(grid);
|
---|
235 | if (fLastDataColumnHasWeights)
|
---|
236 | rf.SetWeights(weights);
|
---|
237 |
|
---|
238 | plist.AddToList(&rf);
|
---|
239 |
|
---|
240 | MRanForestGrow rfgrow;
|
---|
241 | tlist.AddToList(&rfgrow);
|
---|
242 |
|
---|
243 | MFillH fillh("MHRanForestGini");
|
---|
244 | tlist.AddToList(&fillh);
|
---|
245 |
|
---|
246 | MEvtLoop evtloop(fTitle);
|
---|
247 | evtloop.SetParList(&plist);
|
---|
248 | evtloop.SetDisplay(fDisplay);
|
---|
249 | evtloop.SetLogStream(fLog);
|
---|
250 |
|
---|
251 | if (!evtloop.Eventloop())
|
---|
252 | return kFALSE;
|
---|
253 |
|
---|
254 | if (fDebug)
|
---|
255 | gLog.SetNullOutput(kFALSE);
|
---|
256 |
|
---|
257 | if (ver==0)
|
---|
258 | {
|
---|
259 | // Calculate bin center
|
---|
260 | const Double_t E = (TMath::Log10(grid[ie])+TMath::Log10(grid[ie+1]))/2;
|
---|
261 |
|
---|
262 | // save whole forest
|
---|
263 | rf.SetUserVal(E);
|
---|
264 | rf.SetName(Form("%.10f", E));
|
---|
265 | }
|
---|
266 |
|
---|
267 | rf.Write();
|
---|
268 | }
|
---|
269 |
|
---|
270 | // save rules
|
---|
271 | usedrules.Write("rules");
|
---|
272 |
|
---|
273 | fFunc.Write(gsNameEvalFunc);
|
---|
274 |
|
---|
275 | return kTRUE;
|
---|
276 | }
|
---|
277 |
|
---|
278 | Int_t MRanForestCalc::ReadForests(MParList &plist)
|
---|
279 | {
|
---|
280 | TFile fileRF(fFileName, "read");
|
---|
281 | if (!fileRF.IsOpen())
|
---|
282 | {
|
---|
283 | *fLog << err << dbginf << "File containing RFs could not be opened... aborting." << endl;
|
---|
284 | return kFALSE;
|
---|
285 | }
|
---|
286 |
|
---|
287 | fEForests.Delete();
|
---|
288 |
|
---|
289 | TIter Next(fileRF.GetListOfKeys());
|
---|
290 | TObject *o=0;
|
---|
291 | while ((o=Next()))
|
---|
292 | {
|
---|
293 | MRanForest *forest=0;
|
---|
294 | fileRF.GetObject(o->GetName(), forest);
|
---|
295 | if (!forest)
|
---|
296 | continue;
|
---|
297 |
|
---|
298 | forest->SetUserVal(atof(o->GetName()));
|
---|
299 |
|
---|
300 | fEForests.Add(forest);
|
---|
301 | }
|
---|
302 |
|
---|
303 | // Maybe fEForests[0].fRules could be used instead?
|
---|
304 | if (fData->Read("rules")<=0)
|
---|
305 | {
|
---|
306 | *fLog << err << "ERROR - Reading 'rules' from file " << fFileName << endl;
|
---|
307 | return kFALSE;
|
---|
308 | }
|
---|
309 |
|
---|
310 | if (fileRF.GetListOfKeys()->FindObject(gsNameEvalFunc))
|
---|
311 | {
|
---|
312 | if (fFunc.Read(gsNameEvalFunc)<=0)
|
---|
313 | {
|
---|
314 | *fLog << err << "ERROR - Reading '" << gsNameEvalFunc << "' from file " << fFileName << endl;
|
---|
315 | return kFALSE;
|
---|
316 | }
|
---|
317 |
|
---|
318 | *fLog << inf << "Evaluation function found in file: " << fFunc.GetRule() << endl;
|
---|
319 | }
|
---|
320 |
|
---|
321 | return kTRUE;
|
---|
322 | }
|
---|
323 |
|
---|
324 | Int_t MRanForestCalc::PreProcess(MParList *plist)
|
---|
325 | {
|
---|
326 | fRFOut = (MParameterD*)plist->FindCreateObj("MParameterD", fNameOutput);
|
---|
327 | if (!fRFOut)
|
---|
328 | return kFALSE;
|
---|
329 |
|
---|
330 | fData = (MDataArray*)plist->FindCreateObj("MDataArray");
|
---|
331 | if (!fData)
|
---|
332 | return kFALSE;
|
---|
333 |
|
---|
334 | if (!ReadForests(*plist))
|
---|
335 | {
|
---|
336 | *fLog << err << "Reading RFs failed... aborting." << endl;
|
---|
337 | return kFALSE;
|
---|
338 | }
|
---|
339 |
|
---|
340 | *fLog << inf << "RF read from " << fFileName << endl;
|
---|
341 |
|
---|
342 | if (!fFunc.PreProcess(plist))
|
---|
343 | {
|
---|
344 | *fLog << err << "PreProcessing of evaluation function failed... aborting." << endl;
|
---|
345 | return kFALSE;
|
---|
346 | }
|
---|
347 |
|
---|
348 | if (fTestMatrix)
|
---|
349 | return kTRUE;
|
---|
350 |
|
---|
351 | fData->Print();
|
---|
352 |
|
---|
353 | if (!fData->PreProcess(plist))
|
---|
354 | {
|
---|
355 | *fLog << err << "PreProcessing of the MDataArray failed... aborting." << endl;
|
---|
356 | return kFALSE;
|
---|
357 | }
|
---|
358 |
|
---|
359 | return kTRUE;
|
---|
360 | }
|
---|
361 |
|
---|
362 | Double_t MRanForestCalc::Eval() const
|
---|
363 | {
|
---|
364 | TVector event;
|
---|
365 | if (fTestMatrix)
|
---|
366 | *fTestMatrix >> event;
|
---|
367 | else
|
---|
368 | *fData >> event;
|
---|
369 |
|
---|
370 | // --------------- Single Tree RF -------------------
|
---|
371 | if (fEForests.GetEntriesFast()==1)
|
---|
372 | {
|
---|
373 | MRanForest *rf = static_cast<MRanForest*>(fEForests.UncheckedAt(0));
|
---|
374 | return rf->CalcHadroness(event);
|
---|
375 | }
|
---|
376 |
|
---|
377 | // --------------- Multi Tree RF -------------------
|
---|
378 | static TF1 f1("f1", "gaus");
|
---|
379 |
|
---|
380 | Double_t sume = 0;
|
---|
381 | Double_t sumh = 0;
|
---|
382 | Double_t maxh = 0;
|
---|
383 | Double_t maxe = 0;
|
---|
384 |
|
---|
385 | Double_t max = -1e10;
|
---|
386 | Double_t min = 1e10;
|
---|
387 |
|
---|
388 | TIter Next(&fEForests);
|
---|
389 | MRanForest *rf = 0;
|
---|
390 |
|
---|
391 | TGraph g;
|
---|
392 | while ((rf=(MRanForest*)Next()))
|
---|
393 | {
|
---|
394 | const Double_t h = rf->CalcHadroness(event);
|
---|
395 | const Double_t e = rf->GetUserVal();
|
---|
396 |
|
---|
397 | g.SetPoint(g.GetN(), e, h);
|
---|
398 |
|
---|
399 | sume += e*h;
|
---|
400 | sumh += h;
|
---|
401 |
|
---|
402 | if (h>maxh)
|
---|
403 | {
|
---|
404 | maxh = h;
|
---|
405 | maxe = e;
|
---|
406 | }
|
---|
407 | if (e>max)
|
---|
408 | max = e;
|
---|
409 | if (e<min)
|
---|
410 | min = e;
|
---|
411 | }
|
---|
412 |
|
---|
413 | switch (fEstimationMode)
|
---|
414 | {
|
---|
415 | case kMean:
|
---|
416 | return sume/sumh;
|
---|
417 | case kMaximum:
|
---|
418 | return maxe;
|
---|
419 | case kFit:
|
---|
420 | f1.SetParameter(0, maxh);
|
---|
421 | f1.SetParameter(1, maxe);
|
---|
422 | f1.SetParameter(2, 0.125);
|
---|
423 | g.Fit(&f1, "Q0N");
|
---|
424 | return f1.GetParameter(1);
|
---|
425 | }
|
---|
426 |
|
---|
427 | return 0;
|
---|
428 | }
|
---|
429 |
|
---|
430 | Int_t MRanForestCalc::Process()
|
---|
431 | {
|
---|
432 | const Double_t val = Eval();
|
---|
433 |
|
---|
434 | fRFOut->SetVal(fFunc.Eval(val));
|
---|
435 | fRFOut->SetReadyToSave();
|
---|
436 |
|
---|
437 | return kTRUE;
|
---|
438 | }
|
---|
439 |
|
---|
440 | void MRanForestCalc::Print(Option_t *o) const
|
---|
441 | {
|
---|
442 | *fLog << all;
|
---|
443 | *fLog << GetDescriptor() << ":" << endl;
|
---|
444 | *fLog << " - Forest ";
|
---|
445 | switch (fEForests.GetEntries())
|
---|
446 | {
|
---|
447 | case 0: *fLog << "not yet initialized." << endl; break;
|
---|
448 | case 1: *fLog << "is a single tree forest." << endl; break;
|
---|
449 | default: *fLog << "is a multi tree forest." << endl; break;
|
---|
450 | }
|
---|
451 | /*
|
---|
452 | *fLog << " - Trees: " << fNumTrees << endl;
|
---|
453 | *fLog << " - Trys: " << fNumTry << endl;
|
---|
454 | *fLog << " - Node Size: " << fNdSize << endl;
|
---|
455 | *fLog << " - Node Size: " << fNdSize << endl;
|
---|
456 | */
|
---|
457 | *fLog << " - FileName: " << fFileName << endl;
|
---|
458 | *fLog << " - NameOutput: " << fNameOutput << endl;
|
---|
459 | }
|
---|
460 |
|
---|
461 | // --------------------------------------------------------------------------
|
---|
462 | //
|
---|
463 | //
|
---|
464 | Int_t MRanForestCalc::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
465 | {
|
---|
466 | Bool_t rc = kFALSE;
|
---|
467 | if (IsEnvDefined(env, prefix, "FileName", print))
|
---|
468 | {
|
---|
469 | rc = kTRUE;
|
---|
470 | SetFileName(GetEnvValue(env, prefix, "FileName", fFileName));
|
---|
471 | }
|
---|
472 | if (IsEnvDefined(env, prefix, "Debug", print))
|
---|
473 | {
|
---|
474 | rc = kTRUE;
|
---|
475 | SetDebug(GetEnvValue(env, prefix, "Debug", fDebug));
|
---|
476 | }
|
---|
477 | if (IsEnvDefined(env, prefix, "NameOutput", print))
|
---|
478 | {
|
---|
479 | rc = kTRUE;
|
---|
480 | SetNameOutput(GetEnvValue(env, prefix, "NameOutput", fNameOutput));
|
---|
481 | }
|
---|
482 | if (IsEnvDefined(env, prefix, "EstimationMode", print))
|
---|
483 | {
|
---|
484 | TString txt = GetEnvValue(env, prefix, "EstimationMode", "");
|
---|
485 | txt = txt.Strip(TString::kBoth);
|
---|
486 | txt.ToLower();
|
---|
487 | if (txt==(TString)"mean")
|
---|
488 | fEstimationMode = kMean;
|
---|
489 | if (txt==(TString)"maximum")
|
---|
490 | fEstimationMode = kMaximum;
|
---|
491 | if (txt==(TString)"fit")
|
---|
492 | fEstimationMode = kFit;
|
---|
493 | rc = kTRUE;
|
---|
494 | }
|
---|
495 | return rc;
|
---|
496 | }
|
---|