/* ======================================================================== *\ ! $Name: not supported by cvs2svn $:$Id: MRanForestCalc.cc,v 1.30 2007-08-24 12:58:49 tbretz Exp $ ! -------------------------------------------------------------------------- ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Hengstebeck 2/2005 ! Author(s): Thomas Bretz 8/2005 ! ! Copyright: MAGIC Software Development, 2000-2006 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MRanForestCalc // // //////////////////////////////////////////////////////////////////////////// #include "MRanForestCalc.h" #include #include #include #include #include "MHMatrix.h" #include "MLog.h" #include "MLogManip.h" #include "MData.h" #include "MDataArray.h" #include "MRanForest.h" #include "MParameters.h" #include "MParList.h" #include "MTaskList.h" #include "MEvtLoop.h" #include "MRanForestGrow.h" #include "MFillH.h" ClassImp(MRanForestCalc); using namespace std; const TString MRanForestCalc::gsDefName = "MRanForestCalc"; const TString MRanForestCalc::gsDefTitle = "RF for energy estimation"; const TString MRanForestCalc::gsNameOutput = "RanForestOut"; const TString MRanForestCalc::gsNameEvalFunc = "EvalFunction"; MRanForestCalc::MRanForestCalc(const char *name, const char *title) : fData(0), fRFOut(0), fTestMatrix(0), fFunc("x"), fNumTrees(-1), fNumTry(-1), fNdSize(-1), fNumObsoleteVariables(1), fLastDataColumnHasWeights(kFALSE), fNameOutput(gsNameOutput), fDebug(kFALSE), fEstimationMode(kMean) { fName = name ? name : gsDefName.Data(); fTitle = title ? title : gsDefTitle.Data(); // FIXME: fNumTrees = 100; //100 fNumTry = 0; //3 0 means: in MRanForest estimated best value will be calculated fNdSize = 1; //1 } MRanForestCalc::~MRanForestCalc() { fEForests.Delete(); } // -------------------------------------------------------------------------- // // Set a function which is applied to the output of the random forest // Bool_t MRanForestCalc::SetFunction(const char *func) { return !fFunc.SetRule(func); } // -------------------------------------------------------------------------- // // ver=0: One yes/no-classification forest is trained for each bin. // the yes/no classification is done using the grid // ver=1: One classification forest is trained. The last column contains a // value which is turned into a classifier by rf itself using the grid // ver=2: One classification forest is trained. The last column already contains // the classifier // ver=3: A regression forest is trained. The last column contains the // classifier // Int_t MRanForestCalc::Train(const MHMatrix &matrixtrain, const TArrayD &grid, Int_t ver) { gLog.Separator("MRanForestCalc - Train"); if (!matrixtrain.GetColumns()) { *fLog << err << "ERROR - MHMatrix does not contain rules... abort." << endl; return kFALSE; } const Int_t ncols = matrixtrain.GetM().GetNcols(); const Int_t nrows = matrixtrain.GetM().GetNrows(); if (ncols<=0 || nrows <=0) { *fLog << err << "ERROR - No. of columns or no. of rows of matrixtrain equal 0 ... abort." << endl; return kFALSE; } // rules (= combination of image par) to be used for energy estimation TFile fileRF(fFileName, "recreate"); if (!fileRF.IsOpen()) { *fLog << err << "ERROR - File to store RFs could not be opened... abort." << endl; return kFALSE; } // The number of columns which have to be removed for the training // The last data column may contain weight which also have to be removed const Int_t nobs = fNumObsoleteVariables + (fLastDataColumnHasWeights?1:0); // Number of obsolete columns const MDataArray &dcol = *matrixtrain.GetColumns(); // Make a copy of the rules for accessing the train-data MDataArray usedrules; for (Int_t i=0; i0 ? 1 : grid.GetSize()-1; for (Int_t ie=0; iegrid[ie] && value<=grid[ie+1]; mat(j, ncols-nobs) = inside ? 1 : 0; if (inside) irows++; } if (irows==0) *fLog << warn << "WARNING - Skipping"; else *fLog << inf << "Training RF for"; *fLog << " bin " << ie << " (" << grid[ie] << ", " << grid[ie+1] << ") " << irows << "/" << nrows << endl; if (irows==0) continue; } break; case 1: // Use last column as classifier or for regression case 2: case 3: for (Int_t j=0; jGetName(), forest); if (!forest) continue; forest->SetUserVal(atof(o->GetName())); fEForests.Add(forest); } // Maybe fEForests[0].fRules could be used instead? if (fData->Read("rules")<=0) { *fLog << err << "ERROR - Reading 'rules' from file " << fFileName << endl; return kFALSE; } if (fileRF.GetListOfKeys()->FindObject(gsNameEvalFunc)) { if (fFunc.Read(gsNameEvalFunc)<=0) { *fLog << err << "ERROR - Reading '" << gsNameEvalFunc << "' from file " << fFileName << endl; return kFALSE; } *fLog << inf << "Evaluation function found in file: " << fFunc.GetRule() << endl; } return kTRUE; } Int_t MRanForestCalc::PreProcess(MParList *plist) { fRFOut = (MParameterD*)plist->FindCreateObj("MParameterD", fNameOutput); if (!fRFOut) return kFALSE; fData = (MDataArray*)plist->FindCreateObj("MDataArray"); if (!fData) return kFALSE; if (!ReadForests(*plist)) { *fLog << err << "Reading RFs failed... aborting." << endl; return kFALSE; } *fLog << inf << "RF read from " << fFileName << endl; if (!fFunc.PreProcess(plist)) { *fLog << err << "PreProcessing of evaluation function failed... aborting." << endl; return kFALSE; } if (fTestMatrix) return kTRUE; fData->Print(); if (!fData->PreProcess(plist)) { *fLog << err << "PreProcessing of the MDataArray failed... aborting." << endl; return kFALSE; } return kTRUE; } Double_t MRanForestCalc::Eval() const { TVector event; if (fTestMatrix) *fTestMatrix >> event; else *fData >> event; // --------------- Single Tree RF ------------------- if (fEForests.GetEntriesFast()==1) { MRanForest *rf = static_cast(fEForests.UncheckedAt(0)); return rf->CalcHadroness(event); } // --------------- Multi Tree RF ------------------- static TF1 f1("f1", "gaus"); Double_t sume = 0; Double_t sumh = 0; Double_t maxh = 0; Double_t maxe = 0; Double_t max = -1e10; Double_t min = 1e10; TIter Next(&fEForests); MRanForest *rf = 0; TGraph g; while ((rf=(MRanForest*)Next())) { const Double_t h = rf->CalcHadroness(event); const Double_t e = rf->GetUserVal(); g.SetPoint(g.GetN(), e, h); sume += e*h; sumh += h; if (h>maxh) { maxh = h; maxe = e; } if (e>max) max = e; if (eSetVal(fFunc.Eval(val)); fRFOut->SetReadyToSave(); return kTRUE; } void MRanForestCalc::Print(Option_t *o) const { *fLog << all; *fLog << GetDescriptor() << ":" << endl; *fLog << " - Forest "; switch (fEForests.GetEntries()) { case 0: *fLog << "not yet initialized." << endl; break; case 1: *fLog << "is a single tree forest." << endl; break; default: *fLog << "is a multi tree forest." << endl; break; } /* *fLog << " - Trees: " << fNumTrees << endl; *fLog << " - Trys: " << fNumTry << endl; *fLog << " - Node Size: " << fNdSize << endl; *fLog << " - Node Size: " << fNdSize << endl; */ *fLog << " - FileName: " << fFileName << endl; *fLog << " - NameOutput: " << fNameOutput << endl; } // -------------------------------------------------------------------------- // // Int_t MRanForestCalc::ReadEnv(const TEnv &env, TString prefix, Bool_t print) { Bool_t rc = kFALSE; if (IsEnvDefined(env, prefix, "FileName", print)) { rc = kTRUE; SetFileName(GetEnvValue(env, prefix, "FileName", fFileName)); } if (IsEnvDefined(env, prefix, "Debug", print)) { rc = kTRUE; SetDebug(GetEnvValue(env, prefix, "Debug", fDebug)); } if (IsEnvDefined(env, prefix, "NameOutput", print)) { rc = kTRUE; SetNameOutput(GetEnvValue(env, prefix, "NameOutput", fNameOutput)); } if (IsEnvDefined(env, prefix, "EstimationMode", print)) { TString txt = GetEnvValue(env, prefix, "EstimationMode", ""); txt = txt.Strip(TString::kBoth); txt.ToLower(); if (txt==(TString)"mean") fEstimationMode = kMean; if (txt==(TString)"maximum") fEstimationMode = kMaximum; if (txt==(TString)"fit") fEstimationMode = kFit; rc = kTRUE; } return rc; }