| 1 | #ifndef MARS_MRanForestCalc | 
|---|
| 2 | #define MARS_MRanForestCalc | 
|---|
| 3 |  | 
|---|
| 4 | #ifndef MARS_MTask | 
|---|
| 5 | #include "MTask.h" | 
|---|
| 6 | #endif | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef ROOT_TObjArray | 
|---|
| 9 | #include <TObjArray.h> | 
|---|
| 10 | #endif | 
|---|
| 11 |  | 
|---|
| 12 | #ifndef ROOT_TArrayD | 
|---|
| 13 | #include <TArrayD.h> | 
|---|
| 14 | #endif | 
|---|
| 15 |  | 
|---|
| 16 | #ifndef ROOT_MDataPhrase | 
|---|
| 17 | #include "MDataPhrase.h" | 
|---|
| 18 | #endif | 
|---|
| 19 |  | 
|---|
| 20 | class MDataArray; | 
|---|
| 21 | class MParameterD; | 
|---|
| 22 | class MHMatrix; | 
|---|
| 23 |  | 
|---|
| 24 | class MRanForestCalc : public MTask | 
|---|
| 25 | { | 
|---|
| 26 | public: | 
|---|
| 27 | enum EstimationMode_t | 
|---|
| 28 | { | 
|---|
| 29 | kMean, | 
|---|
| 30 | kMaximum, | 
|---|
| 31 | kFit | 
|---|
| 32 | }; | 
|---|
| 33 |  | 
|---|
| 34 | private: | 
|---|
| 35 | static const TString gsDefName;      //! Default Name | 
|---|
| 36 | static const TString gsDefTitle;     //! Default Title | 
|---|
| 37 | static const TString gsNameOutput;   //! Default Output name | 
|---|
| 38 | static const TString gsNameEvalFunc; //! Evaluation function name | 
|---|
| 39 |  | 
|---|
| 40 | MDataArray  *fData;                 //! Used to store the MDataChains to get the event values | 
|---|
| 41 | MParameterD *fRFOut;                //! Used to store result | 
|---|
| 42 | MHMatrix    *fTestMatrix;           //! Test Matrix used in Process (together with MMatrixLoop) | 
|---|
| 43 | MDataPhrase  fFunc;                 //! Function to apply to the result | 
|---|
| 44 |  | 
|---|
| 45 | TObjArray    fEForests;             //! List of forests read or to be written | 
|---|
| 46 |  | 
|---|
| 47 | Int_t        fNumTrees;             //! Training parameters | 
|---|
| 48 | Int_t        fNumTry;               //! Training parameters | 
|---|
| 49 | Int_t        fNdSize;               //! Training parameters | 
|---|
| 50 |  | 
|---|
| 51 | Int_t        fNumObsoleteVariables; //! Training parameters | 
|---|
| 52 | Bool_t       fLastDataColumnHasWeights; //! Training parameters | 
|---|
| 53 |  | 
|---|
| 54 | TString      fFileName;             // File name to forest | 
|---|
| 55 | TString      fNameOutput;           // Name of output container | 
|---|
| 56 |  | 
|---|
| 57 | Bool_t       fDebug;                // Debugging of eventloop while training on/off | 
|---|
| 58 |  | 
|---|
| 59 | EstimationMode_t fEstimationMode;   // Mode of estimation in case of multi random forest regression | 
|---|
| 60 |  | 
|---|
| 61 | private: | 
|---|
| 62 | // MTask | 
|---|
| 63 | Int_t PreProcess(MParList *plist); | 
|---|
| 64 | Int_t Process(); | 
|---|
| 65 |  | 
|---|
| 66 | // MRanForestCalc | 
|---|
| 67 | Int_t ReadForests(MParList &plist); | 
|---|
| 68 | Double_t Eval() const; | 
|---|
| 69 |  | 
|---|
| 70 | // MParContainer | 
|---|
| 71 | Int_t ReadEnv(const TEnv &env, TString prefix, Bool_t print); | 
|---|
| 72 |  | 
|---|
| 73 | // Train Interface | 
|---|
| 74 | Int_t Train(const MHMatrix &n, const TArrayD &grid, Int_t ver); | 
|---|
| 75 |  | 
|---|
| 76 | public: | 
|---|
| 77 | MRanForestCalc(const char *name=NULL, const char *title=NULL); | 
|---|
| 78 | ~MRanForestCalc(); | 
|---|
| 79 |  | 
|---|
| 80 | // TObject | 
|---|
| 81 | void Print(Option_t *o="") const; //*MENU* | 
|---|
| 82 |  | 
|---|
| 83 | // Setter for estimation | 
|---|
| 84 | void SetFileName(TString filename)            { fFileName = filename; } | 
|---|
| 85 | void SetEstimationMode(EstimationMode_t op)   { fEstimationMode = op; } | 
|---|
| 86 | void SetNameOutput(TString name=gsNameOutput) { fNameOutput = name; } | 
|---|
| 87 |  | 
|---|
| 88 | // Setter for training | 
|---|
| 89 | void SetNumTrees(UShort_t n=100) { fNumTrees = n; } | 
|---|
| 90 | void SetNdSize(UShort_t n=5)     { fNdSize   = n; } | 
|---|
| 91 | void SetNumTry(UShort_t n=0)     { fNumTry   = n; } | 
|---|
| 92 | void SetDebug(Bool_t b=kTRUE)    { fDebug    = b; } | 
|---|
| 93 |  | 
|---|
| 94 | Bool_t SetFunction(const char *name="x"); | 
|---|
| 95 |  | 
|---|
| 96 | void SetNumObsoleteVariables(Int_t n=1)          { fNumObsoleteVariables = n; } | 
|---|
| 97 | void SetLastDataColumnHasWeights(Bool_t b=kTRUE) { fLastDataColumnHasWeights = b; } | 
|---|
| 98 |  | 
|---|
| 99 | // Train Interface | 
|---|
| 100 | Int_t TrainMultiRF(const MHMatrix &n, const TArrayD &grid) | 
|---|
| 101 | { | 
|---|
| 102 | // One yes/no-classification forest is trained for each bin | 
|---|
| 103 | return Train(n, grid, 0); | 
|---|
| 104 | } | 
|---|
| 105 | Int_t TrainSingleRF(const MHMatrix &n, const TArrayD &grid=TArrayD()) | 
|---|
| 106 | { | 
|---|
| 107 | // w/o Grid: Last Column contains classifier | 
|---|
| 108 | // w/  Grid: Last Column will be converted by grid into classifier | 
|---|
| 109 | return Train(n, grid, grid.GetSize()==0 ? 2 : 1); | 
|---|
| 110 | } | 
|---|
| 111 | Int_t TrainRegression(const MHMatrix &n) | 
|---|
| 112 | { | 
|---|
| 113 | // Use last column for regression | 
|---|
| 114 | return Train(n, TArrayD(), 3); | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | // Test Interface | 
|---|
| 118 | void  SetTestMatrix(MHMatrix *m=0) { fTestMatrix=m; } | 
|---|
| 119 | void  InitMapping(MHMatrix *m=0)   { fTestMatrix=m; } | 
|---|
| 120 |  | 
|---|
| 121 | ClassDef(MRanForestCalc, 1) // Task to calculate RF output and for RF training | 
|---|
| 122 | }; | 
|---|
| 123 |  | 
|---|
| 124 | #endif | 
|---|