1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@alwa02.physik.uni-siegen.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MRanTree
|
---|
28 | //
|
---|
29 | // ParameterContainer for Tree structure
|
---|
30 | //
|
---|
31 | /////////////////////////////////////////////////////////////////////////////
|
---|
32 | #include "MRanTree.h"
|
---|
33 |
|
---|
34 | #include <iostream>
|
---|
35 |
|
---|
36 | #include <TVector.h>
|
---|
37 | #include <TMatrix.h>
|
---|
38 | #include <TRandom.h>
|
---|
39 |
|
---|
40 | #include "MDataArray.h"
|
---|
41 |
|
---|
42 | #include "MLog.h"
|
---|
43 | #include "MLogManip.h"
|
---|
44 |
|
---|
45 | ClassImp(MRanTree);
|
---|
46 |
|
---|
47 | using namespace std;
|
---|
48 |
|
---|
49 | // --------------------------------------------------------------------------
|
---|
50 | //
|
---|
51 | // Default constructor.
|
---|
52 | //
|
---|
53 | MRanTree::MRanTree(const char *name, const char *title):fNdSize(0), fNumTry(3), fData(NULL)
|
---|
54 | {
|
---|
55 |
|
---|
56 | fName = name ? name : "MRanTree";
|
---|
57 | fTitle = title ? title : "Storage container for structure of a single tree";
|
---|
58 | }
|
---|
59 |
|
---|
60 | void MRanTree::SetNdSize(Int_t n)
|
---|
61 | {
|
---|
62 | // threshold nodesize of terminal nodes, i.e. the training data is splitted
|
---|
63 | // until there is only pure date in the subsets(=terminal nodes) or the
|
---|
64 | // subset size is LE n
|
---|
65 |
|
---|
66 | fNdSize=TMath::Max(1,n);//at least 1 event per node
|
---|
67 | }
|
---|
68 |
|
---|
69 | void MRanTree::SetNumTry(Int_t n)
|
---|
70 | {
|
---|
71 | // number of trials in random split selection:
|
---|
72 | // choose at least 1 variable to split in
|
---|
73 |
|
---|
74 | fNumTry=TMath::Max(1,n);
|
---|
75 | }
|
---|
76 |
|
---|
77 | void MRanTree::GrowTree(const TMatrix &mhad, const TMatrix &mgam,
|
---|
78 | const TArrayI &hadtrue, TArrayI &datasort,
|
---|
79 | const TArrayI &datarang, TArrayF &tclasspop, TArrayI &jinbag,
|
---|
80 | const TArrayF &winbag)
|
---|
81 | {
|
---|
82 | // arrays have to be initialized with generous size, so number of total nodes (nrnodes)
|
---|
83 | // is estimated for worst case
|
---|
84 | const Int_t numdim =mhad.GetNcols();
|
---|
85 | const Int_t numdata=winbag.GetSize();
|
---|
86 | const Int_t nrnodes=2*numdata+1;
|
---|
87 |
|
---|
88 | // number of events in bootstrap sample
|
---|
89 | Int_t ninbag=0;
|
---|
90 | for (Int_t n=0;n<numdata;n++)
|
---|
91 | if(jinbag[n]==1) ninbag++;
|
---|
92 |
|
---|
93 | TArrayI bestsplit(nrnodes);
|
---|
94 | TArrayI bestsplitnext(nrnodes);
|
---|
95 |
|
---|
96 | fBestVar.Set(nrnodes);
|
---|
97 | fTreeMap1.Set(nrnodes);
|
---|
98 | fTreeMap2.Set(nrnodes);
|
---|
99 | fBestSplit.Set(nrnodes);
|
---|
100 |
|
---|
101 | fTreeMap1.Reset();
|
---|
102 | fTreeMap2.Reset();
|
---|
103 | fBestSplit.Reset();
|
---|
104 |
|
---|
105 | fGiniDec.Set(numdim);
|
---|
106 | fGiniDec.Reset();
|
---|
107 |
|
---|
108 | // tree growing
|
---|
109 | BuildTree(datasort,datarang,hadtrue,bestsplit,
|
---|
110 | bestsplitnext,tclasspop,winbag,ninbag);
|
---|
111 |
|
---|
112 | // post processing, determine cut (or split) values fBestSplit
|
---|
113 | Int_t nhad=mhad.GetNrows();
|
---|
114 |
|
---|
115 | for(Int_t k=0; k<nrnodes; k++)
|
---|
116 | {
|
---|
117 | if (GetNodeStatus(k)==-1)
|
---|
118 | continue;
|
---|
119 |
|
---|
120 | const Int_t &bsp =bestsplit[k];
|
---|
121 | const Int_t &bspn=bestsplitnext[k];
|
---|
122 | const Int_t &msp =fBestVar[k];
|
---|
123 |
|
---|
124 | fBestSplit[k] = bsp<nhad ? mhad(bsp, msp):mgam(bsp-nhad, msp);
|
---|
125 | fBestSplit[k] += bspn<nhad ? mhad(bspn,msp):mgam(bspn-nhad,msp);
|
---|
126 | fBestSplit[k] /= 2;
|
---|
127 | }
|
---|
128 |
|
---|
129 | // resizing arrays to save memory
|
---|
130 | fBestVar.Set(fNumNodes);
|
---|
131 | fTreeMap1.Set(fNumNodes);
|
---|
132 | fTreeMap2.Set(fNumNodes);
|
---|
133 | fBestSplit.Set(fNumNodes);
|
---|
134 | }
|
---|
135 |
|
---|
136 | Int_t MRanTree::FindBestSplit(const TArrayI &datasort,const TArrayI &datarang,
|
---|
137 | const TArrayI &hadtrue,Int_t ndstart,Int_t ndend,TArrayF &tclasspop,
|
---|
138 | Int_t &msplit,Float_t &decsplit,Int_t &nbest,
|
---|
139 | const TArrayF &winbag)
|
---|
140 | {
|
---|
141 | const Int_t nrnodes = fBestSplit.GetSize();
|
---|
142 | const Int_t numdata = (nrnodes-1)/2;
|
---|
143 | const Int_t mdim = fGiniDec.GetSize();
|
---|
144 |
|
---|
145 | // weighted class populations after split
|
---|
146 | TArrayF wc(2);
|
---|
147 | TArrayF wr(2); // right node
|
---|
148 |
|
---|
149 | // For the best split, msplit is the index of the variable (e.g Hillas par., zenith angle ,...)
|
---|
150 | // split on. decsplit is the decreae in impurity measured by Gini-index.
|
---|
151 | // nsplit is the case number of value of msplit split on,
|
---|
152 | // and nsplitnext is the case number of the next larger value of msplit.
|
---|
153 |
|
---|
154 | Int_t nbestvar=0;
|
---|
155 |
|
---|
156 | // compute initial values of numerator and denominator of Gini-index,
|
---|
157 | // Gini index= pno/dno
|
---|
158 | Double_t pno=0;
|
---|
159 | Double_t pdo=0;
|
---|
160 | for (Int_t j=0; j<2; j++)
|
---|
161 | {
|
---|
162 | pno+=tclasspop[j]*tclasspop[j];
|
---|
163 | pdo+=tclasspop[j];
|
---|
164 | }
|
---|
165 |
|
---|
166 | const Double_t crit0=pno/pdo;
|
---|
167 | Int_t jstat=0;
|
---|
168 |
|
---|
169 | // start main loop through variables to find best split,
|
---|
170 | // (Gini-index as criterium crit)
|
---|
171 |
|
---|
172 | Double_t critmax=-FLT_MAX;
|
---|
173 |
|
---|
174 | // random split selection, number of trials = fNumTry
|
---|
175 | for (Int_t mt=0; mt<fNumTry; mt++)
|
---|
176 | {
|
---|
177 | const Int_t mvar=Int_t(gRandom->Rndm()*mdim);
|
---|
178 | const Int_t mn = mvar*numdata;
|
---|
179 |
|
---|
180 | // Gini index = rrn/rrd+rln/rld
|
---|
181 | Double_t rrn=pno;
|
---|
182 | Double_t rrd=pdo;
|
---|
183 | Double_t rln=0;
|
---|
184 | Double_t rld=0;
|
---|
185 |
|
---|
186 | TArrayF wl(2); // left node
|
---|
187 | wr = tclasspop;
|
---|
188 |
|
---|
189 | Double_t critvar=-1.0e20;
|
---|
190 |
|
---|
191 | for(Int_t nsp=ndstart;nsp<=ndend-1;nsp++)
|
---|
192 | {
|
---|
193 | const Int_t &nc=datasort[mn+nsp];
|
---|
194 | const Int_t &k=hadtrue[nc];
|
---|
195 |
|
---|
196 | const Float_t &u=winbag[nc];
|
---|
197 |
|
---|
198 | rln+=u*(2*wl[k]+u);
|
---|
199 | rrn+=u*(-2*wr[k]+u);
|
---|
200 | rld+=u;
|
---|
201 | rrd-=u;
|
---|
202 |
|
---|
203 | wl[k]+=u;
|
---|
204 | wr[k]-=u;
|
---|
205 |
|
---|
206 | if (datarang[mn+nc]>=datarang[mn+datasort[mn+nsp+1]])
|
---|
207 | continue;
|
---|
208 | if (TMath::Min(rrd,rld)<=1.0e-5)
|
---|
209 | continue;
|
---|
210 |
|
---|
211 | const Double_t crit=(rln/rld)+(rrn/rrd);
|
---|
212 | if (crit<=critvar)
|
---|
213 | continue;
|
---|
214 |
|
---|
215 | nbestvar=nsp;
|
---|
216 | critvar=crit;
|
---|
217 | }
|
---|
218 |
|
---|
219 | if (critvar<=critmax)
|
---|
220 | continue;
|
---|
221 |
|
---|
222 | msplit=mvar;
|
---|
223 | nbest=nbestvar;
|
---|
224 | critmax=critvar;
|
---|
225 | }
|
---|
226 |
|
---|
227 | decsplit=critmax-crit0;
|
---|
228 |
|
---|
229 | return critmax<-1.0e10 ? 1 : jstat;
|
---|
230 | }
|
---|
231 |
|
---|
232 | void MRanTree::MoveData(TArrayI &datasort,Int_t ndstart,
|
---|
233 | Int_t ndend,TArrayI &idmove,TArrayI &ncase,Int_t msplit,
|
---|
234 | Int_t nbest,Int_t &ndendl)
|
---|
235 | {
|
---|
236 | // This is the heart of the BuildTree construction. Based on the best split
|
---|
237 | // the data in the part of datasort corresponding to the current node is moved to the
|
---|
238 | // left if it belongs to the left child and right if it belongs to the right child-node.
|
---|
239 | const Int_t numdata = ncase.GetSize();
|
---|
240 | const Int_t mdim = fGiniDec.GetSize();
|
---|
241 |
|
---|
242 | TArrayI tdatasort(numdata);
|
---|
243 |
|
---|
244 | // compute idmove = indicator of case nos. going left
|
---|
245 |
|
---|
246 | for (Int_t nsp=ndstart;nsp<=ndend;nsp++)
|
---|
247 | {
|
---|
248 | const Int_t &nc=datasort[msplit*numdata+nsp];
|
---|
249 | idmove[nc]= nsp<=nbest?1:0;
|
---|
250 | }
|
---|
251 | ndendl=nbest;
|
---|
252 |
|
---|
253 | // shift case. nos. right and left for numerical variables.
|
---|
254 |
|
---|
255 | for(Int_t msh=0;msh<mdim;msh++)
|
---|
256 | {
|
---|
257 | Int_t k=ndstart-1;
|
---|
258 | for (Int_t n=ndstart;n<=ndend;n++)
|
---|
259 | {
|
---|
260 | const Int_t &ih=datasort[msh*numdata+n];
|
---|
261 | if (idmove[ih]==1)
|
---|
262 | tdatasort[++k]=datasort[msh*numdata+n];
|
---|
263 | }
|
---|
264 |
|
---|
265 | for (Int_t n=ndstart;n<=ndend;n++)
|
---|
266 | {
|
---|
267 | const Int_t &ih=datasort[msh*numdata+n];
|
---|
268 | if (idmove[ih]==0)
|
---|
269 | tdatasort[++k]=datasort[msh*numdata+n];
|
---|
270 | }
|
---|
271 |
|
---|
272 | for(Int_t m=ndstart;m<=ndend;m++)
|
---|
273 | datasort[msh*numdata+m]=tdatasort[m];
|
---|
274 | }
|
---|
275 |
|
---|
276 | // compute case nos. for right and left nodes.
|
---|
277 |
|
---|
278 | for(Int_t n=ndstart;n<=ndend;n++)
|
---|
279 | ncase[n]=datasort[msplit*numdata+n];
|
---|
280 | }
|
---|
281 |
|
---|
282 | void MRanTree::BuildTree(TArrayI &datasort,const TArrayI &datarang,
|
---|
283 | const TArrayI &hadtrue, TArrayI &bestsplit,
|
---|
284 | TArrayI &bestsplitnext, TArrayF &tclasspop,
|
---|
285 | const TArrayF &winbag, Int_t ninbag)
|
---|
286 | {
|
---|
287 | // Buildtree consists of repeated calls to two void functions, FindBestSplit and MoveData.
|
---|
288 | // Findbestsplit does just that--it finds the best split of the current node.
|
---|
289 | // MoveData moves the data in the split node right and left so that the data
|
---|
290 | // corresponding to each child node is contiguous.
|
---|
291 | //
|
---|
292 | // buildtree bookkeeping:
|
---|
293 | // ncur is the total number of nodes to date. nodestatus(k)=1 if the kth node has been split.
|
---|
294 | // nodestatus(k)=2 if the node exists but has not yet been split, and =-1 if the node is
|
---|
295 | // terminal. A node is terminal if its size is below a threshold value, or if it is all
|
---|
296 | // one class, or if all the data-values are equal. If the current node k is split, then its
|
---|
297 | // children are numbered ncur+1 (left), and ncur+2(right), ncur increases to ncur+2 and
|
---|
298 | // the next node to be split is numbered k+1. When no more nodes can be split, buildtree
|
---|
299 | // returns.
|
---|
300 | const Int_t mdim = fGiniDec.GetSize();
|
---|
301 | const Int_t nrnodes = fBestSplit.GetSize();
|
---|
302 | const Int_t numdata = (nrnodes-1)/2;
|
---|
303 |
|
---|
304 | TArrayI nodepop(nrnodes);
|
---|
305 | TArrayI nodestart(nrnodes);
|
---|
306 | TArrayI parent(nrnodes);
|
---|
307 |
|
---|
308 | TArrayI ncase(numdata);
|
---|
309 | TArrayI idmove(numdata);
|
---|
310 | TArrayI iv(mdim);
|
---|
311 |
|
---|
312 | TArrayF classpop(nrnodes*2);
|
---|
313 | TArrayI nodestatus(nrnodes);
|
---|
314 |
|
---|
315 | for (Int_t j=0;j<2;j++)
|
---|
316 | classpop[j*nrnodes+0]=tclasspop[j];
|
---|
317 |
|
---|
318 | Int_t ncur=0;
|
---|
319 | nodepop[0]=ninbag;
|
---|
320 | nodestatus[0]=2;
|
---|
321 |
|
---|
322 | // start main loop
|
---|
323 | for (Int_t kbuild=0; kbuild<nrnodes; kbuild++)
|
---|
324 | {
|
---|
325 | if (kbuild>ncur) break;
|
---|
326 | if (nodestatus[kbuild]!=2) continue;
|
---|
327 |
|
---|
328 | // initialize for next call to FindBestSplit
|
---|
329 |
|
---|
330 | const Int_t ndstart=nodestart[kbuild];
|
---|
331 | const Int_t ndend=ndstart+nodepop[kbuild]-1;
|
---|
332 | for (Int_t j=0;j<2;j++)
|
---|
333 | tclasspop[j]=classpop[j*nrnodes+kbuild];
|
---|
334 |
|
---|
335 | Int_t msplit, nbest;
|
---|
336 | Float_t decsplit=0;
|
---|
337 | const Int_t jstat=FindBestSplit(datasort,datarang,hadtrue,
|
---|
338 | ndstart,ndend,tclasspop,msplit,
|
---|
339 | decsplit,nbest,winbag);
|
---|
340 |
|
---|
341 | if (jstat==1)
|
---|
342 | {
|
---|
343 | nodestatus[kbuild]=-1;
|
---|
344 | continue;
|
---|
345 | }
|
---|
346 |
|
---|
347 | fBestVar[kbuild]=msplit;
|
---|
348 | fGiniDec[msplit]+=decsplit;
|
---|
349 |
|
---|
350 | bestsplit[kbuild]=datasort[msplit*numdata+nbest];
|
---|
351 | bestsplitnext[kbuild]=datasort[msplit*numdata+nbest+1];
|
---|
352 |
|
---|
353 | Int_t ndendl;
|
---|
354 | MoveData(datasort,ndstart,ndend,idmove,ncase,
|
---|
355 | msplit,nbest,ndendl);
|
---|
356 |
|
---|
357 | // leftnode no.= ncur+1, rightnode no. = ncur+2.
|
---|
358 |
|
---|
359 | nodepop[ncur+1]=ndendl-ndstart+1;
|
---|
360 | nodepop[ncur+2]=ndend-ndendl;
|
---|
361 | nodestart[ncur+1]=ndstart;
|
---|
362 | nodestart[ncur+2]=ndendl+1;
|
---|
363 |
|
---|
364 | // find class populations in both nodes
|
---|
365 |
|
---|
366 | for (Int_t n=ndstart;n<=ndendl;n++)
|
---|
367 | {
|
---|
368 | const Int_t &nc=ncase[n];
|
---|
369 | const Int_t &j=hadtrue[nc];
|
---|
370 | classpop[j*nrnodes+ncur+1]+=winbag[nc];
|
---|
371 | }
|
---|
372 |
|
---|
373 | for (Int_t n=ndendl+1;n<=ndend;n++)
|
---|
374 | {
|
---|
375 | const Int_t &nc=ncase[n];
|
---|
376 | const Int_t &j=hadtrue[nc];
|
---|
377 | classpop[j*nrnodes+ncur+2]+=winbag[nc];
|
---|
378 | }
|
---|
379 |
|
---|
380 | // check on nodestatus
|
---|
381 |
|
---|
382 | nodestatus[ncur+1]=2;
|
---|
383 | nodestatus[ncur+2]=2;
|
---|
384 | if (nodepop[ncur+1]<=fNdSize) nodestatus[ncur+1]=-1;
|
---|
385 | if (nodepop[ncur+2]<=fNdSize) nodestatus[ncur+2]=-1;
|
---|
386 |
|
---|
387 | Double_t popt1=0;
|
---|
388 | Double_t popt2=0;
|
---|
389 | for (Int_t j=0;j<2;j++)
|
---|
390 | {
|
---|
391 | popt1+=classpop[j*nrnodes+ncur+1];
|
---|
392 | popt2+=classpop[j*nrnodes+ncur+2];
|
---|
393 | }
|
---|
394 |
|
---|
395 | for (Int_t j=0;j<2;j++)
|
---|
396 | {
|
---|
397 | if (classpop[j*nrnodes+ncur+1]==popt1) nodestatus[ncur+1]=-1;
|
---|
398 | if (classpop[j*nrnodes+ncur+2]==popt2) nodestatus[ncur+2]=-1;
|
---|
399 | }
|
---|
400 |
|
---|
401 | fTreeMap1[kbuild]=ncur+1;
|
---|
402 | fTreeMap2[kbuild]=ncur+2;
|
---|
403 | parent[ncur+1]=kbuild;
|
---|
404 | parent[ncur+2]=kbuild;
|
---|
405 | nodestatus[kbuild]=1;
|
---|
406 | ncur+=2;
|
---|
407 | if (ncur>=nrnodes) break;
|
---|
408 | }
|
---|
409 |
|
---|
410 | // determine number of nodes
|
---|
411 | fNumNodes=nrnodes;
|
---|
412 | for (Int_t k=nrnodes-1;k>=0;k--)
|
---|
413 | {
|
---|
414 | if (nodestatus[k]==0) fNumNodes-=1;
|
---|
415 | if (nodestatus[k]==2) nodestatus[k]=-1;
|
---|
416 | }
|
---|
417 |
|
---|
418 | fNumEndNodes=0;
|
---|
419 | for (Int_t kn=0;kn<fNumNodes;kn++)
|
---|
420 | if(nodestatus[kn]==-1)
|
---|
421 | {
|
---|
422 | fNumEndNodes++;
|
---|
423 | Double_t pp=0;
|
---|
424 | for (Int_t j=0;j<2;j++)
|
---|
425 | {
|
---|
426 | if(classpop[j*nrnodes+kn]>pp)
|
---|
427 | {
|
---|
428 | // class + status of node kn coded into fBestVar[kn]
|
---|
429 | fBestVar[kn]=j-2;
|
---|
430 | pp=classpop[j*nrnodes+kn];
|
---|
431 | }
|
---|
432 | }
|
---|
433 | fBestSplit[kn] =classpop[1*nrnodes+kn];
|
---|
434 | fBestSplit[kn]/=(classpop[0*nrnodes+kn]+classpop[1*nrnodes+kn]);
|
---|
435 | }
|
---|
436 | }
|
---|
437 |
|
---|
438 | void MRanTree::SetRules(MDataArray *rules)
|
---|
439 | {
|
---|
440 | fData=rules;
|
---|
441 | }
|
---|
442 |
|
---|
443 | Double_t MRanTree::TreeHad(const TVector &event)
|
---|
444 | {
|
---|
445 | Int_t kt=0;
|
---|
446 | // to optimize on storage space node status and node class
|
---|
447 | // are coded into fBestVar:
|
---|
448 | // status of node kt = TMath::Sign(1,fBestVar[kt])
|
---|
449 | // class of node kt = fBestVar[kt]+2 (class defined by larger
|
---|
450 | // node population, actually not used)
|
---|
451 | // hadronness assigned to node kt = fBestSplit[kt]
|
---|
452 |
|
---|
453 | for (Int_t k=0;k<fNumNodes;k++)
|
---|
454 | {
|
---|
455 | if (fBestVar[kt]<0)
|
---|
456 | break;
|
---|
457 |
|
---|
458 | const Int_t m=fBestVar[kt];
|
---|
459 | kt = event(m)<=fBestSplit[kt] ? fTreeMap1[kt] : fTreeMap2[kt];
|
---|
460 | }
|
---|
461 |
|
---|
462 | return fBestSplit[kt];
|
---|
463 | }
|
---|
464 |
|
---|
465 | Double_t MRanTree::TreeHad(const TMatrixRow &event)
|
---|
466 | {
|
---|
467 | Int_t kt=0;
|
---|
468 | // to optimize on storage space node status and node class
|
---|
469 | // are coded into fBestVar:
|
---|
470 | // status of node kt = TMath::Sign(1,fBestVar[kt])
|
---|
471 | // class of node kt = fBestVar[kt]+2 (class defined by larger
|
---|
472 | // node population, actually not used)
|
---|
473 | // hadronness assigned to node kt = fBestSplit[kt]
|
---|
474 |
|
---|
475 | for (Int_t k=0;k<fNumNodes;k++)
|
---|
476 | {
|
---|
477 | if (fBestVar[kt]<0)
|
---|
478 | break;
|
---|
479 |
|
---|
480 | const Int_t m=fBestVar[kt];
|
---|
481 | kt = event(m)<=fBestSplit[kt] ? fTreeMap1[kt] : fTreeMap2[kt];
|
---|
482 | }
|
---|
483 |
|
---|
484 | return fBestSplit[kt];
|
---|
485 | }
|
---|
486 |
|
---|
487 | Double_t MRanTree::TreeHad(const TMatrix &m, Int_t ievt)
|
---|
488 | {
|
---|
489 | #if ROOT_VERSION_CODE < ROOT_VERSION(4,00,8)
|
---|
490 | return TreeHad(TMatrixRow(m, ievt));
|
---|
491 | #else
|
---|
492 | return TreeHad(TMatrixFRow_const(m, ievt));
|
---|
493 | #endif
|
---|
494 | }
|
---|
495 |
|
---|
496 | Double_t MRanTree::TreeHad()
|
---|
497 | {
|
---|
498 | TVector event;
|
---|
499 | *fData >> event;
|
---|
500 |
|
---|
501 | return TreeHad(event);
|
---|
502 | }
|
---|
503 |
|
---|
504 | Bool_t MRanTree::AsciiWrite(ostream &out) const
|
---|
505 | {
|
---|
506 | TString str;
|
---|
507 | Int_t k;
|
---|
508 |
|
---|
509 | out.width(5);out<<fNumNodes<<endl;
|
---|
510 |
|
---|
511 | for (k=0;k<fNumNodes;k++)
|
---|
512 | {
|
---|
513 | str=Form("%f",GetBestSplit(k));
|
---|
514 |
|
---|
515 | out.width(5); out << k;
|
---|
516 | out.width(5); out << GetNodeStatus(k);
|
---|
517 | out.width(5); out << GetTreeMap1(k);
|
---|
518 | out.width(5); out << GetTreeMap2(k);
|
---|
519 | out.width(5); out << GetBestVar(k);
|
---|
520 | out.width(15); out << str<<endl;
|
---|
521 | out.width(5); out << GetNodeClass(k);
|
---|
522 | }
|
---|
523 | out<<endl;
|
---|
524 |
|
---|
525 | return k==fNumNodes;
|
---|
526 | }
|
---|