1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@alwa02.physik.uni-siegen.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // MRanTree //
|
---|
28 | // //
|
---|
29 | // ParameterContainer for Tree structure //
|
---|
30 | // //
|
---|
31 | // //
|
---|
32 | /////////////////////////////////////////////////////////////////////////////
|
---|
33 | #include "MRanTree.h"
|
---|
34 |
|
---|
35 | #include <iostream>
|
---|
36 |
|
---|
37 | #include <TVector.h>
|
---|
38 | #include <TMatrix.h>
|
---|
39 | #include <TRandom.h>
|
---|
40 |
|
---|
41 | #include "MDataArray.h"
|
---|
42 |
|
---|
43 | #include "MLog.h"
|
---|
44 | #include "MLogManip.h"
|
---|
45 |
|
---|
46 | ClassImp(MRanTree);
|
---|
47 |
|
---|
48 | using namespace std;
|
---|
49 |
|
---|
50 | // --------------------------------------------------------------------------
|
---|
51 | //
|
---|
52 | // Default constructor.
|
---|
53 | //
|
---|
54 | MRanTree::MRanTree(const char *name, const char *title):fNdSize(0), fNumTry(3), fData(NULL)
|
---|
55 | {
|
---|
56 |
|
---|
57 | fName = name ? name : "MRanTree";
|
---|
58 | fTitle = title ? title : "Storage container for structure of a single tree";
|
---|
59 | }
|
---|
60 |
|
---|
61 | void MRanTree::SetNdSize(Int_t n)
|
---|
62 | {
|
---|
63 | // threshold nodesize of terminal nodes, i.e. the training data is splitted
|
---|
64 | // until there is only pure date in the subsets(=terminal nodes) or the
|
---|
65 | // subset size is LE n
|
---|
66 |
|
---|
67 | fNdSize=TMath::Max(1,n);//at least 1 event per node
|
---|
68 | }
|
---|
69 |
|
---|
70 | void MRanTree::SetNumTry(Int_t n)
|
---|
71 | {
|
---|
72 | // number of trials in random split selection:
|
---|
73 | // choose at least 1 variable to split in
|
---|
74 |
|
---|
75 | fNumTry=TMath::Max(1,n);
|
---|
76 | }
|
---|
77 |
|
---|
78 | void MRanTree::GrowTree(const TMatrix &mhad, const TMatrix &mgam,
|
---|
79 | const TArrayI &hadtrue, TArrayI &datasort,
|
---|
80 | const TArrayI &datarang, TArrayF &tclasspop, TArrayI &jinbag,
|
---|
81 | const TArrayF &winbag)
|
---|
82 | {
|
---|
83 | // arrays have to be initialized with generous size, so number of total nodes (nrnodes)
|
---|
84 | // is estimated for worst case
|
---|
85 | const Int_t numdim =mhad.GetNcols();
|
---|
86 | const Int_t numdata=winbag.GetSize();
|
---|
87 | const Int_t nrnodes=2*numdata+1;
|
---|
88 |
|
---|
89 | // number of events in bootstrap sample
|
---|
90 | Int_t ninbag=0;
|
---|
91 | for (Int_t n=0;n<numdata;n++)
|
---|
92 | if(jinbag[n]==1) ninbag++;
|
---|
93 |
|
---|
94 | TArrayI bestsplit(nrnodes);
|
---|
95 | TArrayI bestsplitnext(nrnodes);
|
---|
96 |
|
---|
97 | fBestVar.Set(nrnodes);
|
---|
98 | fTreeMap1.Set(nrnodes);
|
---|
99 | fTreeMap2.Set(nrnodes);
|
---|
100 | fBestSplit.Set(nrnodes);
|
---|
101 |
|
---|
102 | fTreeMap1.Reset();
|
---|
103 | fTreeMap2.Reset();
|
---|
104 | fBestSplit.Reset();
|
---|
105 |
|
---|
106 | fGiniDec.Set(numdim);
|
---|
107 | fGiniDec.Reset();
|
---|
108 |
|
---|
109 | // tree growing
|
---|
110 | BuildTree(datasort,datarang,hadtrue,bestsplit,
|
---|
111 | bestsplitnext,tclasspop,winbag,ninbag);
|
---|
112 |
|
---|
113 | // post processing, determine cut (or split) values fBestSplit
|
---|
114 | Int_t nhad=mhad.GetNrows();
|
---|
115 |
|
---|
116 | for(Int_t k=0; k<nrnodes; k++)
|
---|
117 | {
|
---|
118 | if (GetNodeStatus(k)==-1)
|
---|
119 | continue;
|
---|
120 |
|
---|
121 | const Int_t &bsp =bestsplit[k];
|
---|
122 | const Int_t &bspn=bestsplitnext[k];
|
---|
123 | const Int_t &msp =fBestVar[k];
|
---|
124 |
|
---|
125 | fBestSplit[k] = bsp<nhad ? mhad(bsp, msp):mgam(bsp-nhad, msp);
|
---|
126 | fBestSplit[k] += bspn<nhad ? mhad(bspn,msp):mgam(bspn-nhad,msp);
|
---|
127 | fBestSplit[k] /= 2;
|
---|
128 | }
|
---|
129 |
|
---|
130 | // resizing arrays to save memory
|
---|
131 | fBestVar.Set(fNumNodes);
|
---|
132 | fTreeMap1.Set(fNumNodes);
|
---|
133 | fTreeMap2.Set(fNumNodes);
|
---|
134 | fBestSplit.Set(fNumNodes);
|
---|
135 | }
|
---|
136 |
|
---|
137 | Int_t MRanTree::FindBestSplit(const TArrayI &datasort,const TArrayI &datarang,
|
---|
138 | const TArrayI &hadtrue,Int_t ndstart,Int_t ndend,TArrayF &tclasspop,
|
---|
139 | Int_t &msplit,Float_t &decsplit,Int_t &nbest,
|
---|
140 | const TArrayF &winbag)
|
---|
141 | {
|
---|
142 | const Int_t nrnodes = fBestSplit.GetSize();
|
---|
143 | const Int_t numdata = (nrnodes-1)/2;
|
---|
144 | const Int_t mdim = fGiniDec.GetSize();
|
---|
145 |
|
---|
146 | // weighted class populations after split
|
---|
147 | TArrayF wc(2);
|
---|
148 | TArrayF wr(2); // right node
|
---|
149 |
|
---|
150 | // For the best split, msplit is the index of the variable (e.g Hillas par., zenith angle ,...)
|
---|
151 | // split on. decsplit is the decreae in impurity measured by Gini-index.
|
---|
152 | // nsplit is the case number of value of msplit split on,
|
---|
153 | // and nsplitnext is the case number of the next larger value of msplit.
|
---|
154 |
|
---|
155 | Int_t nbestvar=0;
|
---|
156 |
|
---|
157 | // compute initial values of numerator and denominator of Gini-index,
|
---|
158 | // Gini index= pno/dno
|
---|
159 | Double_t pno=0;
|
---|
160 | Double_t pdo=0;
|
---|
161 | for (Int_t j=0;j<2;j++)
|
---|
162 | {
|
---|
163 | pno+=tclasspop[j]*tclasspop[j];
|
---|
164 | pdo+=tclasspop[j];
|
---|
165 | }
|
---|
166 |
|
---|
167 | const Double_t crit0=pno/pdo;
|
---|
168 | Int_t jstat=0;
|
---|
169 |
|
---|
170 | // start main loop through variables to find best split,
|
---|
171 | // (Gini-index as criterium crit)
|
---|
172 |
|
---|
173 | Double_t critmax=-1.0e20; // FIXME: Replace by a constant from limits.h
|
---|
174 |
|
---|
175 | // random split selection, number of trials = fNumTry
|
---|
176 | for(Int_t mt=0;mt<fNumTry;mt++)
|
---|
177 | {
|
---|
178 | const Int_t mvar=Int_t(gRandom->Rndm()*mdim);
|
---|
179 | const Int_t mn = mvar*numdata;
|
---|
180 |
|
---|
181 | // Gini index = rrn/rrd+rln/rld
|
---|
182 | Double_t rrn=pno;
|
---|
183 | Double_t rrd=pdo;
|
---|
184 | Double_t rln=0;
|
---|
185 | Double_t rld=0;
|
---|
186 |
|
---|
187 | TArrayF wl(2); // left node
|
---|
188 | wr = tclasspop;
|
---|
189 |
|
---|
190 | Double_t critvar=-1.0e20;
|
---|
191 |
|
---|
192 | for(Int_t nsp=ndstart;nsp<=ndend-1;nsp++)
|
---|
193 | {
|
---|
194 | const Int_t &nc=datasort[mn+nsp];
|
---|
195 | const Int_t &k=hadtrue[nc];
|
---|
196 |
|
---|
197 | const Float_t &u=winbag[nc];
|
---|
198 |
|
---|
199 | rln+=u*(2*wl[k]+u);
|
---|
200 | rrn+=u*(-2*wr[k]+u);
|
---|
201 | rld+=u;
|
---|
202 | rrd-=u;
|
---|
203 |
|
---|
204 | wl[k]+=u;
|
---|
205 | wr[k]-=u;
|
---|
206 |
|
---|
207 | if (datarang[mn+nc]>=datarang[mn+datasort[mn+nsp+1]])
|
---|
208 | continue;
|
---|
209 | if (TMath::Min(rrd,rld)<=1.0e-5)
|
---|
210 | continue;
|
---|
211 |
|
---|
212 | const Double_t crit=(rln/rld)+(rrn/rrd);
|
---|
213 | if (crit<=critvar)
|
---|
214 | continue;
|
---|
215 |
|
---|
216 | nbestvar=nsp;
|
---|
217 | critvar=crit;
|
---|
218 | }
|
---|
219 |
|
---|
220 | if (critvar<=critmax)
|
---|
221 | continue;
|
---|
222 |
|
---|
223 | msplit=mvar;
|
---|
224 | nbest=nbestvar;
|
---|
225 | critmax=critvar;
|
---|
226 | }
|
---|
227 |
|
---|
228 | decsplit=critmax-crit0;
|
---|
229 |
|
---|
230 | return critmax<-1.0e10 ? 1 : jstat;
|
---|
231 | }
|
---|
232 |
|
---|
233 | void MRanTree::MoveData(TArrayI &datasort,Int_t ndstart,
|
---|
234 | Int_t ndend,TArrayI &idmove,TArrayI &ncase,Int_t msplit,
|
---|
235 | Int_t nbest,Int_t &ndendl)
|
---|
236 | {
|
---|
237 | // This is the heart of the BuildTree construction. Based on the best split
|
---|
238 | // the data in the part of datasort corresponding to the current node is moved to the
|
---|
239 | // left if it belongs to the left child and right if it belongs to the right child-node.
|
---|
240 | const Int_t numdata = ncase.GetSize();
|
---|
241 | const Int_t mdim = fGiniDec.GetSize();
|
---|
242 |
|
---|
243 | TArrayI tdatasort(numdata);
|
---|
244 |
|
---|
245 | // compute idmove = indicator of case nos. going left
|
---|
246 |
|
---|
247 | for (Int_t nsp=ndstart;nsp<=ndend;nsp++)
|
---|
248 | {
|
---|
249 | const Int_t &nc=datasort[msplit*numdata+nsp];
|
---|
250 | idmove[nc]= nsp<=nbest?1:0;
|
---|
251 | }
|
---|
252 | ndendl=nbest;
|
---|
253 |
|
---|
254 | // shift case. nos. right and left for numerical variables.
|
---|
255 |
|
---|
256 | for(Int_t msh=0;msh<mdim;msh++)
|
---|
257 | {
|
---|
258 | Int_t k=ndstart-1;
|
---|
259 | for (Int_t n=ndstart;n<=ndend;n++)
|
---|
260 | {
|
---|
261 | const Int_t &ih=datasort[msh*numdata+n];
|
---|
262 | if (idmove[ih]==1)
|
---|
263 | tdatasort[++k]=datasort[msh*numdata+n];
|
---|
264 | }
|
---|
265 |
|
---|
266 | for (Int_t n=ndstart;n<=ndend;n++)
|
---|
267 | {
|
---|
268 | const Int_t &ih=datasort[msh*numdata+n];
|
---|
269 | if (idmove[ih]==0)
|
---|
270 | tdatasort[++k]=datasort[msh*numdata+n];
|
---|
271 | }
|
---|
272 |
|
---|
273 | for(Int_t m=ndstart;m<=ndend;m++)
|
---|
274 | datasort[msh*numdata+m]=tdatasort[m];
|
---|
275 | }
|
---|
276 |
|
---|
277 | // compute case nos. for right and left nodes.
|
---|
278 |
|
---|
279 | for(Int_t n=ndstart;n<=ndend;n++)
|
---|
280 | ncase[n]=datasort[msplit*numdata+n];
|
---|
281 | }
|
---|
282 |
|
---|
283 | void MRanTree::BuildTree(TArrayI &datasort,const TArrayI &datarang,
|
---|
284 | const TArrayI &hadtrue, TArrayI &bestsplit,
|
---|
285 | TArrayI &bestsplitnext, TArrayF &tclasspop,
|
---|
286 | const TArrayF &winbag, Int_t ninbag)
|
---|
287 | {
|
---|
288 | // Buildtree consists of repeated calls to two void functions, FindBestSplit and MoveData.
|
---|
289 | // Findbestsplit does just that--it finds the best split of the current node.
|
---|
290 | // MoveData moves the data in the split node right and left so that the data
|
---|
291 | // corresponding to each child node is contiguous.
|
---|
292 | //
|
---|
293 | // buildtree bookkeeping:
|
---|
294 | // ncur is the total number of nodes to date. nodestatus(k)=1 if the kth node has been split.
|
---|
295 | // nodestatus(k)=2 if the node exists but has not yet been split, and =-1 if the node is
|
---|
296 | // terminal. A node is terminal if its size is below a threshold value, or if it is all
|
---|
297 | // one class, or if all the data-values are equal. If the current node k is split, then its
|
---|
298 | // children are numbered ncur+1 (left), and ncur+2(right), ncur increases to ncur+2 and
|
---|
299 | // the next node to be split is numbered k+1. When no more nodes can be split, buildtree
|
---|
300 | // returns.
|
---|
301 | const Int_t mdim = fGiniDec.GetSize();
|
---|
302 | const Int_t nrnodes = fBestSplit.GetSize();
|
---|
303 | const Int_t numdata = (nrnodes-1)/2;
|
---|
304 |
|
---|
305 | TArrayI nodepop(nrnodes);
|
---|
306 | TArrayI nodestart(nrnodes);
|
---|
307 | TArrayI parent(nrnodes);
|
---|
308 |
|
---|
309 | TArrayI ncase(numdata);
|
---|
310 | TArrayI idmove(numdata);
|
---|
311 | TArrayI iv(mdim);
|
---|
312 |
|
---|
313 | TArrayF classpop(nrnodes*2);
|
---|
314 | TArrayI nodestatus(nrnodes);
|
---|
315 |
|
---|
316 | for (Int_t j=0;j<2;j++)
|
---|
317 | classpop[j*nrnodes+0]=tclasspop[j];
|
---|
318 |
|
---|
319 | Int_t ncur=0;
|
---|
320 | nodepop[0]=ninbag;
|
---|
321 | nodestatus[0]=2;
|
---|
322 |
|
---|
323 | // start main loop
|
---|
324 | for (Int_t kbuild=0; kbuild<nrnodes; kbuild++)
|
---|
325 | {
|
---|
326 | if (kbuild>ncur) break;
|
---|
327 | if (nodestatus[kbuild]!=2) continue;
|
---|
328 |
|
---|
329 | // initialize for next call to FindBestSplit
|
---|
330 |
|
---|
331 | const Int_t ndstart=nodestart[kbuild];
|
---|
332 | const Int_t ndend=ndstart+nodepop[kbuild]-1;
|
---|
333 | for (Int_t j=0;j<2;j++)
|
---|
334 | tclasspop[j]=classpop[j*nrnodes+kbuild];
|
---|
335 |
|
---|
336 | Int_t msplit, nbest;
|
---|
337 | Float_t decsplit=0;
|
---|
338 | const Int_t jstat=FindBestSplit(datasort,datarang,hadtrue,
|
---|
339 | ndstart,ndend,tclasspop,msplit,
|
---|
340 | decsplit,nbest,winbag);
|
---|
341 |
|
---|
342 | if (jstat==1)
|
---|
343 | {
|
---|
344 | nodestatus[kbuild]=-1;
|
---|
345 | continue;
|
---|
346 | }
|
---|
347 |
|
---|
348 | fBestVar[kbuild]=msplit;
|
---|
349 | fGiniDec[msplit]+=decsplit;
|
---|
350 |
|
---|
351 | bestsplit[kbuild]=datasort[msplit*numdata+nbest];
|
---|
352 | bestsplitnext[kbuild]=datasort[msplit*numdata+nbest+1];
|
---|
353 |
|
---|
354 | Int_t ndendl;
|
---|
355 | MoveData(datasort,ndstart,ndend,idmove,ncase,
|
---|
356 | msplit,nbest,ndendl);
|
---|
357 |
|
---|
358 | // leftnode no.= ncur+1, rightnode no. = ncur+2.
|
---|
359 |
|
---|
360 | nodepop[ncur+1]=ndendl-ndstart+1;
|
---|
361 | nodepop[ncur+2]=ndend-ndendl;
|
---|
362 | nodestart[ncur+1]=ndstart;
|
---|
363 | nodestart[ncur+2]=ndendl+1;
|
---|
364 |
|
---|
365 | // find class populations in both nodes
|
---|
366 |
|
---|
367 | for (Int_t n=ndstart;n<=ndendl;n++)
|
---|
368 | {
|
---|
369 | const Int_t &nc=ncase[n];
|
---|
370 | const Int_t &j=hadtrue[nc];
|
---|
371 | classpop[j*nrnodes+ncur+1]+=winbag[nc];
|
---|
372 | }
|
---|
373 |
|
---|
374 | for (Int_t n=ndendl+1;n<=ndend;n++)
|
---|
375 | {
|
---|
376 | const Int_t &nc=ncase[n];
|
---|
377 | const Int_t &j=hadtrue[nc];
|
---|
378 | classpop[j*nrnodes+ncur+2]+=winbag[nc];
|
---|
379 | }
|
---|
380 |
|
---|
381 | // check on nodestatus
|
---|
382 |
|
---|
383 | nodestatus[ncur+1]=2;
|
---|
384 | nodestatus[ncur+2]=2;
|
---|
385 | if (nodepop[ncur+1]<=fNdSize) nodestatus[ncur+1]=-1;
|
---|
386 | if (nodepop[ncur+2]<=fNdSize) nodestatus[ncur+2]=-1;
|
---|
387 |
|
---|
388 | Double_t popt1=0;
|
---|
389 | Double_t popt2=0;
|
---|
390 | for (Int_t j=0;j<2;j++)
|
---|
391 | {
|
---|
392 | popt1+=classpop[j*nrnodes+ncur+1];
|
---|
393 | popt2+=classpop[j*nrnodes+ncur+2];
|
---|
394 | }
|
---|
395 |
|
---|
396 | for (Int_t j=0;j<2;j++)
|
---|
397 | {
|
---|
398 | if (classpop[j*nrnodes+ncur+1]==popt1) nodestatus[ncur+1]=-1;
|
---|
399 | if (classpop[j*nrnodes+ncur+2]==popt2) nodestatus[ncur+2]=-1;
|
---|
400 | }
|
---|
401 |
|
---|
402 | fTreeMap1[kbuild]=ncur+1;
|
---|
403 | fTreeMap2[kbuild]=ncur+2;
|
---|
404 | parent[ncur+1]=kbuild;
|
---|
405 | parent[ncur+2]=kbuild;
|
---|
406 | nodestatus[kbuild]=1;
|
---|
407 | ncur+=2;
|
---|
408 | if (ncur>=nrnodes) break;
|
---|
409 | }
|
---|
410 |
|
---|
411 | // determine number of nodes
|
---|
412 | fNumNodes=nrnodes;
|
---|
413 | for (Int_t k=nrnodes-1;k>=0;k--)
|
---|
414 | {
|
---|
415 | if (nodestatus[k]==0) fNumNodes-=1;
|
---|
416 | if (nodestatus[k]==2) nodestatus[k]=-1;
|
---|
417 | }
|
---|
418 |
|
---|
419 | fNumEndNodes=0;
|
---|
420 | for (Int_t kn=0;kn<fNumNodes;kn++)
|
---|
421 | if(nodestatus[kn]==-1)
|
---|
422 | {
|
---|
423 | fNumEndNodes++;
|
---|
424 | Double_t pp=0;
|
---|
425 | for (Int_t j=0;j<2;j++)
|
---|
426 | {
|
---|
427 | if(classpop[j*nrnodes+kn]>pp)
|
---|
428 | {
|
---|
429 | // class + status of node kn coded into fBestVar[kn]
|
---|
430 | fBestVar[kn]=j-2;
|
---|
431 | pp=classpop[j*nrnodes+kn];
|
---|
432 | }
|
---|
433 | }
|
---|
434 | fBestSplit[kn] =classpop[1*nrnodes+kn];
|
---|
435 | fBestSplit[kn]/=(classpop[0*nrnodes+kn]+classpop[1*nrnodes+kn]);
|
---|
436 | }
|
---|
437 | }
|
---|
438 |
|
---|
439 | void MRanTree::SetRules(MDataArray *rules)
|
---|
440 | {
|
---|
441 | fData=rules;
|
---|
442 | }
|
---|
443 |
|
---|
444 | Double_t MRanTree::TreeHad(const TVector &event)
|
---|
445 | {
|
---|
446 | Int_t kt=0;
|
---|
447 | // to optimize on storage space node status and node class
|
---|
448 | // are coded into fBestVar:
|
---|
449 | // status of node kt = TMath::Sign(1,fBestVar[kt])
|
---|
450 | // class of node kt = fBestVar[kt]+2 (class defined by larger
|
---|
451 | // node population, actually not used)
|
---|
452 | // hadronness assigned to node kt = fBestSplit[kt]
|
---|
453 |
|
---|
454 | for (Int_t k=0;k<fNumNodes;k++)
|
---|
455 | {
|
---|
456 | if (fBestVar[kt]<0)
|
---|
457 | break;
|
---|
458 |
|
---|
459 | const Int_t m=fBestVar[kt];
|
---|
460 | kt = event(m)<=fBestSplit[kt] ? fTreeMap1[kt] : fTreeMap2[kt];
|
---|
461 | }
|
---|
462 |
|
---|
463 | return fBestSplit[kt];
|
---|
464 | }
|
---|
465 |
|
---|
466 | Double_t MRanTree::TreeHad(const TMatrixRow &event)
|
---|
467 | {
|
---|
468 | Int_t kt=0;
|
---|
469 | // to optimize on storage space node status and node class
|
---|
470 | // are coded into fBestVar:
|
---|
471 | // status of node kt = TMath::Sign(1,fBestVar[kt])
|
---|
472 | // class of node kt = fBestVar[kt]+2 (class defined by larger
|
---|
473 | // node population, actually not used)
|
---|
474 | // hadronness assigned to node kt = fBestSplit[kt]
|
---|
475 |
|
---|
476 | for (Int_t k=0;k<fNumNodes;k++)
|
---|
477 | {
|
---|
478 | if (fBestVar[kt]<0)
|
---|
479 | break;
|
---|
480 |
|
---|
481 | const Int_t m=fBestVar[kt];
|
---|
482 | kt = event(m)<=fBestSplit[kt] ? fTreeMap1[kt] : fTreeMap2[kt];
|
---|
483 | }
|
---|
484 |
|
---|
485 | return fBestSplit[kt];
|
---|
486 | }
|
---|
487 |
|
---|
488 | Double_t MRanTree::TreeHad(const TMatrix &m, Int_t ievt)
|
---|
489 | {
|
---|
490 | return TreeHad(TMatrixRow(m, ievt));
|
---|
491 | }
|
---|
492 |
|
---|
493 | Double_t MRanTree::TreeHad()
|
---|
494 | {
|
---|
495 | TVector event;
|
---|
496 | *fData >> event;
|
---|
497 |
|
---|
498 | return TreeHad(event);
|
---|
499 | }
|
---|
500 |
|
---|
501 | Bool_t MRanTree::AsciiWrite(ostream &out) const
|
---|
502 | {
|
---|
503 | TString str;
|
---|
504 | Int_t k;
|
---|
505 |
|
---|
506 | out.width(5);out<<fNumNodes<<endl;
|
---|
507 |
|
---|
508 | for (k=0;k<fNumNodes;k++)
|
---|
509 | {
|
---|
510 | str=Form("%f",GetBestSplit(k));
|
---|
511 |
|
---|
512 | out.width(5); out << k;
|
---|
513 | out.width(5); out << GetNodeStatus(k);
|
---|
514 | out.width(5); out << GetTreeMap1(k);
|
---|
515 | out.width(5); out << GetTreeMap2(k);
|
---|
516 | out.width(5); out << GetBestVar(k);
|
---|
517 | out.width(15); out << str<<endl;
|
---|
518 | out.width(5); out << GetNodeClass(k);
|
---|
519 | }
|
---|
520 | out<<endl;
|
---|
521 |
|
---|
522 | return k==fNumNodes;
|
---|
523 | }
|
---|