| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@alwa02.physik.uni-siegen.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2003
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MRanTree
|
|---|
| 28 | //
|
|---|
| 29 | // ParameterContainer for Tree structure
|
|---|
| 30 | //
|
|---|
| 31 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 32 | #include "MRanTree.h"
|
|---|
| 33 |
|
|---|
| 34 | #include <iostream>
|
|---|
| 35 |
|
|---|
| 36 | #include <TVector.h>
|
|---|
| 37 | #include <TMatrix.h>
|
|---|
| 38 | #include <TRandom.h>
|
|---|
| 39 |
|
|---|
| 40 | #include "MDataArray.h"
|
|---|
| 41 |
|
|---|
| 42 | #include "MLog.h"
|
|---|
| 43 | #include "MLogManip.h"
|
|---|
| 44 |
|
|---|
| 45 | ClassImp(MRanTree);
|
|---|
| 46 |
|
|---|
| 47 | using namespace std;
|
|---|
| 48 |
|
|---|
| 49 | // --------------------------------------------------------------------------
|
|---|
| 50 | //
|
|---|
| 51 | // Default constructor.
|
|---|
| 52 | //
|
|---|
| 53 | MRanTree::MRanTree(const char *name, const char *title):fNdSize(0), fNumTry(3), fData(NULL)
|
|---|
| 54 | {
|
|---|
| 55 |
|
|---|
| 56 | fName = name ? name : "MRanTree";
|
|---|
| 57 | fTitle = title ? title : "Storage container for structure of a single tree";
|
|---|
| 58 | }
|
|---|
| 59 |
|
|---|
| 60 | void MRanTree::SetNdSize(Int_t n)
|
|---|
| 61 | {
|
|---|
| 62 | // threshold nodesize of terminal nodes, i.e. the training data is splitted
|
|---|
| 63 | // until there is only pure date in the subsets(=terminal nodes) or the
|
|---|
| 64 | // subset size is LE n
|
|---|
| 65 |
|
|---|
| 66 | fNdSize=TMath::Max(1,n);//at least 1 event per node
|
|---|
| 67 | }
|
|---|
| 68 |
|
|---|
| 69 | void MRanTree::SetNumTry(Int_t n)
|
|---|
| 70 | {
|
|---|
| 71 | // number of trials in random split selection:
|
|---|
| 72 | // choose at least 1 variable to split in
|
|---|
| 73 |
|
|---|
| 74 | fNumTry=TMath::Max(1,n);
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 | void MRanTree::GrowTree(const TMatrix &mhad, const TMatrix &mgam,
|
|---|
| 78 | const TArrayI &hadtrue, TArrayI &datasort,
|
|---|
| 79 | const TArrayI &datarang, TArrayF &tclasspop, TArrayI &jinbag,
|
|---|
| 80 | const TArrayF &winbag)
|
|---|
| 81 | {
|
|---|
| 82 | // arrays have to be initialized with generous size, so number of total nodes (nrnodes)
|
|---|
| 83 | // is estimated for worst case
|
|---|
| 84 | const Int_t numdim =mhad.GetNcols();
|
|---|
| 85 | const Int_t numdata=winbag.GetSize();
|
|---|
| 86 | const Int_t nrnodes=2*numdata+1;
|
|---|
| 87 |
|
|---|
| 88 | // number of events in bootstrap sample
|
|---|
| 89 | Int_t ninbag=0;
|
|---|
| 90 | for (Int_t n=0;n<numdata;n++)
|
|---|
| 91 | if(jinbag[n]==1) ninbag++;
|
|---|
| 92 |
|
|---|
| 93 | TArrayI bestsplit(nrnodes);
|
|---|
| 94 | TArrayI bestsplitnext(nrnodes);
|
|---|
| 95 |
|
|---|
| 96 | fBestVar.Set(nrnodes);
|
|---|
| 97 | fTreeMap1.Set(nrnodes);
|
|---|
| 98 | fTreeMap2.Set(nrnodes);
|
|---|
| 99 | fBestSplit.Set(nrnodes);
|
|---|
| 100 |
|
|---|
| 101 | fTreeMap1.Reset();
|
|---|
| 102 | fTreeMap2.Reset();
|
|---|
| 103 | fBestSplit.Reset();
|
|---|
| 104 |
|
|---|
| 105 | fGiniDec.Set(numdim);
|
|---|
| 106 | fGiniDec.Reset();
|
|---|
| 107 |
|
|---|
| 108 | // tree growing
|
|---|
| 109 | BuildTree(datasort,datarang,hadtrue,bestsplit,
|
|---|
| 110 | bestsplitnext,tclasspop,winbag,ninbag);
|
|---|
| 111 |
|
|---|
| 112 | // post processing, determine cut (or split) values fBestSplit
|
|---|
| 113 | Int_t nhad=mhad.GetNrows();
|
|---|
| 114 |
|
|---|
| 115 | for(Int_t k=0; k<nrnodes; k++)
|
|---|
| 116 | {
|
|---|
| 117 | if (GetNodeStatus(k)==-1)
|
|---|
| 118 | continue;
|
|---|
| 119 |
|
|---|
| 120 | const Int_t &bsp =bestsplit[k];
|
|---|
| 121 | const Int_t &bspn=bestsplitnext[k];
|
|---|
| 122 | const Int_t &msp =fBestVar[k];
|
|---|
| 123 |
|
|---|
| 124 | fBestSplit[k] = bsp<nhad ? mhad(bsp, msp):mgam(bsp-nhad, msp);
|
|---|
| 125 | fBestSplit[k] += bspn<nhad ? mhad(bspn,msp):mgam(bspn-nhad,msp);
|
|---|
| 126 | fBestSplit[k] /= 2;
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 | // resizing arrays to save memory
|
|---|
| 130 | fBestVar.Set(fNumNodes);
|
|---|
| 131 | fTreeMap1.Set(fNumNodes);
|
|---|
| 132 | fTreeMap2.Set(fNumNodes);
|
|---|
| 133 | fBestSplit.Set(fNumNodes);
|
|---|
| 134 | }
|
|---|
| 135 |
|
|---|
| 136 | Int_t MRanTree::FindBestSplit(const TArrayI &datasort,const TArrayI &datarang,
|
|---|
| 137 | const TArrayI &hadtrue,Int_t ndstart,Int_t ndend,TArrayF &tclasspop,
|
|---|
| 138 | Int_t &msplit,Float_t &decsplit,Int_t &nbest,
|
|---|
| 139 | const TArrayF &winbag)
|
|---|
| 140 | {
|
|---|
| 141 | const Int_t nrnodes = fBestSplit.GetSize();
|
|---|
| 142 | const Int_t numdata = (nrnodes-1)/2;
|
|---|
| 143 | const Int_t mdim = fGiniDec.GetSize();
|
|---|
| 144 |
|
|---|
| 145 | // weighted class populations after split
|
|---|
| 146 | TArrayF wc(2);
|
|---|
| 147 | TArrayF wr(2); // right node
|
|---|
| 148 |
|
|---|
| 149 | // For the best split, msplit is the index of the variable (e.g Hillas par., zenith angle ,...)
|
|---|
| 150 | // split on. decsplit is the decreae in impurity measured by Gini-index.
|
|---|
| 151 | // nsplit is the case number of value of msplit split on,
|
|---|
| 152 | // and nsplitnext is the case number of the next larger value of msplit.
|
|---|
| 153 |
|
|---|
| 154 | Int_t nbestvar=0;
|
|---|
| 155 |
|
|---|
| 156 | // compute initial values of numerator and denominator of Gini-index,
|
|---|
| 157 | // Gini index= pno/dno
|
|---|
| 158 | Double_t pno=0;
|
|---|
| 159 | Double_t pdo=0;
|
|---|
| 160 | for (Int_t j=0; j<2; j++)
|
|---|
| 161 | {
|
|---|
| 162 | pno+=tclasspop[j]*tclasspop[j];
|
|---|
| 163 | pdo+=tclasspop[j];
|
|---|
| 164 | }
|
|---|
| 165 |
|
|---|
| 166 | const Double_t crit0=pno/pdo;
|
|---|
| 167 | Int_t jstat=0;
|
|---|
| 168 |
|
|---|
| 169 | // start main loop through variables to find best split,
|
|---|
| 170 | // (Gini-index as criterium crit)
|
|---|
| 171 |
|
|---|
| 172 | Double_t critmax=-FLT_MAX;
|
|---|
| 173 |
|
|---|
| 174 | // random split selection, number of trials = fNumTry
|
|---|
| 175 | for (Int_t mt=0; mt<fNumTry; mt++)
|
|---|
| 176 | {
|
|---|
| 177 | const Int_t mvar=Int_t(gRandom->Rndm()*mdim);
|
|---|
| 178 | const Int_t mn = mvar*numdata;
|
|---|
| 179 |
|
|---|
| 180 | // Gini index = rrn/rrd+rln/rld
|
|---|
| 181 | Double_t rrn=pno;
|
|---|
| 182 | Double_t rrd=pdo;
|
|---|
| 183 | Double_t rln=0;
|
|---|
| 184 | Double_t rld=0;
|
|---|
| 185 |
|
|---|
| 186 | TArrayF wl(2); // left node
|
|---|
| 187 | wr = tclasspop;
|
|---|
| 188 |
|
|---|
| 189 | Double_t critvar=-1.0e20;
|
|---|
| 190 |
|
|---|
| 191 | for(Int_t nsp=ndstart;nsp<=ndend-1;nsp++)
|
|---|
| 192 | {
|
|---|
| 193 | const Int_t &nc=datasort[mn+nsp];
|
|---|
| 194 | const Int_t &k=hadtrue[nc];
|
|---|
| 195 |
|
|---|
| 196 | const Float_t &u=winbag[nc];
|
|---|
| 197 |
|
|---|
| 198 | rln+=u*(2*wl[k]+u);
|
|---|
| 199 | rrn+=u*(-2*wr[k]+u);
|
|---|
| 200 | rld+=u;
|
|---|
| 201 | rrd-=u;
|
|---|
| 202 |
|
|---|
| 203 | wl[k]+=u;
|
|---|
| 204 | wr[k]-=u;
|
|---|
| 205 |
|
|---|
| 206 | if (datarang[mn+nc]>=datarang[mn+datasort[mn+nsp+1]])
|
|---|
| 207 | continue;
|
|---|
| 208 | if (TMath::Min(rrd,rld)<=1.0e-5)
|
|---|
| 209 | continue;
|
|---|
| 210 |
|
|---|
| 211 | const Double_t crit=(rln/rld)+(rrn/rrd);
|
|---|
| 212 | if (crit<=critvar)
|
|---|
| 213 | continue;
|
|---|
| 214 |
|
|---|
| 215 | nbestvar=nsp;
|
|---|
| 216 | critvar=crit;
|
|---|
| 217 | }
|
|---|
| 218 |
|
|---|
| 219 | if (critvar<=critmax)
|
|---|
| 220 | continue;
|
|---|
| 221 |
|
|---|
| 222 | msplit=mvar;
|
|---|
| 223 | nbest=nbestvar;
|
|---|
| 224 | critmax=critvar;
|
|---|
| 225 | }
|
|---|
| 226 |
|
|---|
| 227 | decsplit=critmax-crit0;
|
|---|
| 228 |
|
|---|
| 229 | return critmax<-1.0e10 ? 1 : jstat;
|
|---|
| 230 | }
|
|---|
| 231 |
|
|---|
| 232 | void MRanTree::MoveData(TArrayI &datasort,Int_t ndstart,
|
|---|
| 233 | Int_t ndend,TArrayI &idmove,TArrayI &ncase,Int_t msplit,
|
|---|
| 234 | Int_t nbest,Int_t &ndendl)
|
|---|
| 235 | {
|
|---|
| 236 | // This is the heart of the BuildTree construction. Based on the best split
|
|---|
| 237 | // the data in the part of datasort corresponding to the current node is moved to the
|
|---|
| 238 | // left if it belongs to the left child and right if it belongs to the right child-node.
|
|---|
| 239 | const Int_t numdata = ncase.GetSize();
|
|---|
| 240 | const Int_t mdim = fGiniDec.GetSize();
|
|---|
| 241 |
|
|---|
| 242 | TArrayI tdatasort(numdata);
|
|---|
| 243 |
|
|---|
| 244 | // compute idmove = indicator of case nos. going left
|
|---|
| 245 |
|
|---|
| 246 | for (Int_t nsp=ndstart;nsp<=ndend;nsp++)
|
|---|
| 247 | {
|
|---|
| 248 | const Int_t &nc=datasort[msplit*numdata+nsp];
|
|---|
| 249 | idmove[nc]= nsp<=nbest?1:0;
|
|---|
| 250 | }
|
|---|
| 251 | ndendl=nbest;
|
|---|
| 252 |
|
|---|
| 253 | // shift case. nos. right and left for numerical variables.
|
|---|
| 254 |
|
|---|
| 255 | for(Int_t msh=0;msh<mdim;msh++)
|
|---|
| 256 | {
|
|---|
| 257 | Int_t k=ndstart-1;
|
|---|
| 258 | for (Int_t n=ndstart;n<=ndend;n++)
|
|---|
| 259 | {
|
|---|
| 260 | const Int_t &ih=datasort[msh*numdata+n];
|
|---|
| 261 | if (idmove[ih]==1)
|
|---|
| 262 | tdatasort[++k]=datasort[msh*numdata+n];
|
|---|
| 263 | }
|
|---|
| 264 |
|
|---|
| 265 | for (Int_t n=ndstart;n<=ndend;n++)
|
|---|
| 266 | {
|
|---|
| 267 | const Int_t &ih=datasort[msh*numdata+n];
|
|---|
| 268 | if (idmove[ih]==0)
|
|---|
| 269 | tdatasort[++k]=datasort[msh*numdata+n];
|
|---|
| 270 | }
|
|---|
| 271 |
|
|---|
| 272 | for(Int_t m=ndstart;m<=ndend;m++)
|
|---|
| 273 | datasort[msh*numdata+m]=tdatasort[m];
|
|---|
| 274 | }
|
|---|
| 275 |
|
|---|
| 276 | // compute case nos. for right and left nodes.
|
|---|
| 277 |
|
|---|
| 278 | for(Int_t n=ndstart;n<=ndend;n++)
|
|---|
| 279 | ncase[n]=datasort[msplit*numdata+n];
|
|---|
| 280 | }
|
|---|
| 281 |
|
|---|
| 282 | void MRanTree::BuildTree(TArrayI &datasort,const TArrayI &datarang,
|
|---|
| 283 | const TArrayI &hadtrue, TArrayI &bestsplit,
|
|---|
| 284 | TArrayI &bestsplitnext, TArrayF &tclasspop,
|
|---|
| 285 | const TArrayF &winbag, Int_t ninbag)
|
|---|
| 286 | {
|
|---|
| 287 | // Buildtree consists of repeated calls to two void functions, FindBestSplit and MoveData.
|
|---|
| 288 | // Findbestsplit does just that--it finds the best split of the current node.
|
|---|
| 289 | // MoveData moves the data in the split node right and left so that the data
|
|---|
| 290 | // corresponding to each child node is contiguous.
|
|---|
| 291 | //
|
|---|
| 292 | // buildtree bookkeeping:
|
|---|
| 293 | // ncur is the total number of nodes to date. nodestatus(k)=1 if the kth node has been split.
|
|---|
| 294 | // nodestatus(k)=2 if the node exists but has not yet been split, and =-1 if the node is
|
|---|
| 295 | // terminal. A node is terminal if its size is below a threshold value, or if it is all
|
|---|
| 296 | // one class, or if all the data-values are equal. If the current node k is split, then its
|
|---|
| 297 | // children are numbered ncur+1 (left), and ncur+2(right), ncur increases to ncur+2 and
|
|---|
| 298 | // the next node to be split is numbered k+1. When no more nodes can be split, buildtree
|
|---|
| 299 | // returns.
|
|---|
| 300 | const Int_t mdim = fGiniDec.GetSize();
|
|---|
| 301 | const Int_t nrnodes = fBestSplit.GetSize();
|
|---|
| 302 | const Int_t numdata = (nrnodes-1)/2;
|
|---|
| 303 |
|
|---|
| 304 | TArrayI nodepop(nrnodes);
|
|---|
| 305 | TArrayI nodestart(nrnodes);
|
|---|
| 306 | TArrayI parent(nrnodes);
|
|---|
| 307 |
|
|---|
| 308 | TArrayI ncase(numdata);
|
|---|
| 309 | TArrayI idmove(numdata);
|
|---|
| 310 | TArrayI iv(mdim);
|
|---|
| 311 |
|
|---|
| 312 | TArrayF classpop(nrnodes*2);
|
|---|
| 313 | TArrayI nodestatus(nrnodes);
|
|---|
| 314 |
|
|---|
| 315 | for (Int_t j=0;j<2;j++)
|
|---|
| 316 | classpop[j*nrnodes+0]=tclasspop[j];
|
|---|
| 317 |
|
|---|
| 318 | Int_t ncur=0;
|
|---|
| 319 | nodepop[0]=ninbag;
|
|---|
| 320 | nodestatus[0]=2;
|
|---|
| 321 |
|
|---|
| 322 | // start main loop
|
|---|
| 323 | for (Int_t kbuild=0; kbuild<nrnodes; kbuild++)
|
|---|
| 324 | {
|
|---|
| 325 | if (kbuild>ncur) break;
|
|---|
| 326 | if (nodestatus[kbuild]!=2) continue;
|
|---|
| 327 |
|
|---|
| 328 | // initialize for next call to FindBestSplit
|
|---|
| 329 |
|
|---|
| 330 | const Int_t ndstart=nodestart[kbuild];
|
|---|
| 331 | const Int_t ndend=ndstart+nodepop[kbuild]-1;
|
|---|
| 332 | for (Int_t j=0;j<2;j++)
|
|---|
| 333 | tclasspop[j]=classpop[j*nrnodes+kbuild];
|
|---|
| 334 |
|
|---|
| 335 | Int_t msplit, nbest;
|
|---|
| 336 | Float_t decsplit=0;
|
|---|
| 337 | const Int_t jstat=FindBestSplit(datasort,datarang,hadtrue,
|
|---|
| 338 | ndstart,ndend,tclasspop,msplit,
|
|---|
| 339 | decsplit,nbest,winbag);
|
|---|
| 340 |
|
|---|
| 341 | if (jstat==1)
|
|---|
| 342 | {
|
|---|
| 343 | nodestatus[kbuild]=-1;
|
|---|
| 344 | continue;
|
|---|
| 345 | }
|
|---|
| 346 |
|
|---|
| 347 | fBestVar[kbuild]=msplit;
|
|---|
| 348 | fGiniDec[msplit]+=decsplit;
|
|---|
| 349 |
|
|---|
| 350 | bestsplit[kbuild]=datasort[msplit*numdata+nbest];
|
|---|
| 351 | bestsplitnext[kbuild]=datasort[msplit*numdata+nbest+1];
|
|---|
| 352 |
|
|---|
| 353 | Int_t ndendl;
|
|---|
| 354 | MoveData(datasort,ndstart,ndend,idmove,ncase,
|
|---|
| 355 | msplit,nbest,ndendl);
|
|---|
| 356 |
|
|---|
| 357 | // leftnode no.= ncur+1, rightnode no. = ncur+2.
|
|---|
| 358 |
|
|---|
| 359 | nodepop[ncur+1]=ndendl-ndstart+1;
|
|---|
| 360 | nodepop[ncur+2]=ndend-ndendl;
|
|---|
| 361 | nodestart[ncur+1]=ndstart;
|
|---|
| 362 | nodestart[ncur+2]=ndendl+1;
|
|---|
| 363 |
|
|---|
| 364 | // find class populations in both nodes
|
|---|
| 365 |
|
|---|
| 366 | for (Int_t n=ndstart;n<=ndendl;n++)
|
|---|
| 367 | {
|
|---|
| 368 | const Int_t &nc=ncase[n];
|
|---|
| 369 | const Int_t &j=hadtrue[nc];
|
|---|
| 370 | classpop[j*nrnodes+ncur+1]+=winbag[nc];
|
|---|
| 371 | }
|
|---|
| 372 |
|
|---|
| 373 | for (Int_t n=ndendl+1;n<=ndend;n++)
|
|---|
| 374 | {
|
|---|
| 375 | const Int_t &nc=ncase[n];
|
|---|
| 376 | const Int_t &j=hadtrue[nc];
|
|---|
| 377 | classpop[j*nrnodes+ncur+2]+=winbag[nc];
|
|---|
| 378 | }
|
|---|
| 379 |
|
|---|
| 380 | // check on nodestatus
|
|---|
| 381 |
|
|---|
| 382 | nodestatus[ncur+1]=2;
|
|---|
| 383 | nodestatus[ncur+2]=2;
|
|---|
| 384 | if (nodepop[ncur+1]<=fNdSize) nodestatus[ncur+1]=-1;
|
|---|
| 385 | if (nodepop[ncur+2]<=fNdSize) nodestatus[ncur+2]=-1;
|
|---|
| 386 |
|
|---|
| 387 | Double_t popt1=0;
|
|---|
| 388 | Double_t popt2=0;
|
|---|
| 389 | for (Int_t j=0;j<2;j++)
|
|---|
| 390 | {
|
|---|
| 391 | popt1+=classpop[j*nrnodes+ncur+1];
|
|---|
| 392 | popt2+=classpop[j*nrnodes+ncur+2];
|
|---|
| 393 | }
|
|---|
| 394 |
|
|---|
| 395 | for (Int_t j=0;j<2;j++)
|
|---|
| 396 | {
|
|---|
| 397 | if (classpop[j*nrnodes+ncur+1]==popt1) nodestatus[ncur+1]=-1;
|
|---|
| 398 | if (classpop[j*nrnodes+ncur+2]==popt2) nodestatus[ncur+2]=-1;
|
|---|
| 399 | }
|
|---|
| 400 |
|
|---|
| 401 | fTreeMap1[kbuild]=ncur+1;
|
|---|
| 402 | fTreeMap2[kbuild]=ncur+2;
|
|---|
| 403 | parent[ncur+1]=kbuild;
|
|---|
| 404 | parent[ncur+2]=kbuild;
|
|---|
| 405 | nodestatus[kbuild]=1;
|
|---|
| 406 | ncur+=2;
|
|---|
| 407 | if (ncur>=nrnodes) break;
|
|---|
| 408 | }
|
|---|
| 409 |
|
|---|
| 410 | // determine number of nodes
|
|---|
| 411 | fNumNodes=nrnodes;
|
|---|
| 412 | for (Int_t k=nrnodes-1;k>=0;k--)
|
|---|
| 413 | {
|
|---|
| 414 | if (nodestatus[k]==0) fNumNodes-=1;
|
|---|
| 415 | if (nodestatus[k]==2) nodestatus[k]=-1;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | fNumEndNodes=0;
|
|---|
| 419 | for (Int_t kn=0;kn<fNumNodes;kn++)
|
|---|
| 420 | if(nodestatus[kn]==-1)
|
|---|
| 421 | {
|
|---|
| 422 | fNumEndNodes++;
|
|---|
| 423 | Double_t pp=0;
|
|---|
| 424 | for (Int_t j=0;j<2;j++)
|
|---|
| 425 | {
|
|---|
| 426 | if(classpop[j*nrnodes+kn]>pp)
|
|---|
| 427 | {
|
|---|
| 428 | // class + status of node kn coded into fBestVar[kn]
|
|---|
| 429 | fBestVar[kn]=j-2;
|
|---|
| 430 | pp=classpop[j*nrnodes+kn];
|
|---|
| 431 | }
|
|---|
| 432 | }
|
|---|
| 433 | fBestSplit[kn] =classpop[1*nrnodes+kn];
|
|---|
| 434 | fBestSplit[kn]/=(classpop[0*nrnodes+kn]+classpop[1*nrnodes+kn]);
|
|---|
| 435 | }
|
|---|
| 436 | }
|
|---|
| 437 |
|
|---|
| 438 | void MRanTree::SetRules(MDataArray *rules)
|
|---|
| 439 | {
|
|---|
| 440 | fData=rules;
|
|---|
| 441 | }
|
|---|
| 442 |
|
|---|
| 443 | Double_t MRanTree::TreeHad(const TVector &event)
|
|---|
| 444 | {
|
|---|
| 445 | Int_t kt=0;
|
|---|
| 446 | // to optimize on storage space node status and node class
|
|---|
| 447 | // are coded into fBestVar:
|
|---|
| 448 | // status of node kt = TMath::Sign(1,fBestVar[kt])
|
|---|
| 449 | // class of node kt = fBestVar[kt]+2 (class defined by larger
|
|---|
| 450 | // node population, actually not used)
|
|---|
| 451 | // hadronness assigned to node kt = fBestSplit[kt]
|
|---|
| 452 |
|
|---|
| 453 | for (Int_t k=0;k<fNumNodes;k++)
|
|---|
| 454 | {
|
|---|
| 455 | if (fBestVar[kt]<0)
|
|---|
| 456 | break;
|
|---|
| 457 |
|
|---|
| 458 | const Int_t m=fBestVar[kt];
|
|---|
| 459 | kt = event(m)<=fBestSplit[kt] ? fTreeMap1[kt] : fTreeMap2[kt];
|
|---|
| 460 | }
|
|---|
| 461 |
|
|---|
| 462 | return fBestSplit[kt];
|
|---|
| 463 | }
|
|---|
| 464 |
|
|---|
| 465 | Double_t MRanTree::TreeHad(const TMatrixRow &event)
|
|---|
| 466 | {
|
|---|
| 467 | Int_t kt=0;
|
|---|
| 468 | // to optimize on storage space node status and node class
|
|---|
| 469 | // are coded into fBestVar:
|
|---|
| 470 | // status of node kt = TMath::Sign(1,fBestVar[kt])
|
|---|
| 471 | // class of node kt = fBestVar[kt]+2 (class defined by larger
|
|---|
| 472 | // node population, actually not used)
|
|---|
| 473 | // hadronness assigned to node kt = fBestSplit[kt]
|
|---|
| 474 |
|
|---|
| 475 | for (Int_t k=0;k<fNumNodes;k++)
|
|---|
| 476 | {
|
|---|
| 477 | if (fBestVar[kt]<0)
|
|---|
| 478 | break;
|
|---|
| 479 |
|
|---|
| 480 | const Int_t m=fBestVar[kt];
|
|---|
| 481 | kt = event(m)<=fBestSplit[kt] ? fTreeMap1[kt] : fTreeMap2[kt];
|
|---|
| 482 | }
|
|---|
| 483 |
|
|---|
| 484 | return fBestSplit[kt];
|
|---|
| 485 | }
|
|---|
| 486 |
|
|---|
| 487 | Double_t MRanTree::TreeHad(const TMatrix &m, Int_t ievt)
|
|---|
| 488 | {
|
|---|
| 489 | #if ROOT_VERSION_CODE < ROOT_VERSION(4,00,8)
|
|---|
| 490 | return TreeHad(TMatrixRow(m, ievt));
|
|---|
| 491 | #else
|
|---|
| 492 | return TreeHad(TMatrixFRow_const(m, ievt));
|
|---|
| 493 | #endif
|
|---|
| 494 | }
|
|---|
| 495 |
|
|---|
| 496 | Double_t MRanTree::TreeHad()
|
|---|
| 497 | {
|
|---|
| 498 | TVector event;
|
|---|
| 499 | *fData >> event;
|
|---|
| 500 |
|
|---|
| 501 | return TreeHad(event);
|
|---|
| 502 | }
|
|---|
| 503 |
|
|---|
| 504 | Bool_t MRanTree::AsciiWrite(ostream &out) const
|
|---|
| 505 | {
|
|---|
| 506 | TString str;
|
|---|
| 507 | Int_t k;
|
|---|
| 508 |
|
|---|
| 509 | out.width(5);out<<fNumNodes<<endl;
|
|---|
| 510 |
|
|---|
| 511 | for (k=0;k<fNumNodes;k++)
|
|---|
| 512 | {
|
|---|
| 513 | str=Form("%f",GetBestSplit(k));
|
|---|
| 514 |
|
|---|
| 515 | out.width(5); out << k;
|
|---|
| 516 | out.width(5); out << GetNodeStatus(k);
|
|---|
| 517 | out.width(5); out << GetTreeMap1(k);
|
|---|
| 518 | out.width(5); out << GetTreeMap2(k);
|
|---|
| 519 | out.width(5); out << GetBestVar(k);
|
|---|
| 520 | out.width(15); out << str<<endl;
|
|---|
| 521 | out.width(5); out << GetNodeClass(k);
|
|---|
| 522 | }
|
|---|
| 523 | out<<endl;
|
|---|
| 524 |
|
|---|
| 525 | return k==fNumNodes;
|
|---|
| 526 | }
|
|---|