| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Thomas Hengstebeck 3/2003 <mailto:hengsteb@physik.hu-berlin.de> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2000-2005 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | // MRanTree | 
|---|
| 28 | // | 
|---|
| 29 | // ParameterContainer for Tree structure | 
|---|
| 30 | // | 
|---|
| 31 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 32 | #include "MRanTree.h" | 
|---|
| 33 |  | 
|---|
| 34 | #include <iostream> | 
|---|
| 35 |  | 
|---|
| 36 | #include <TRandom.h> | 
|---|
| 37 |  | 
|---|
| 38 | #include "MArrayI.h" | 
|---|
| 39 | #include "MArrayF.h" | 
|---|
| 40 |  | 
|---|
| 41 | #include "MMath.h" | 
|---|
| 42 |  | 
|---|
| 43 | #include "MLog.h" | 
|---|
| 44 | #include "MLogManip.h" | 
|---|
| 45 |  | 
|---|
| 46 | ClassImp(MRanTree); | 
|---|
| 47 |  | 
|---|
| 48 | using namespace std; | 
|---|
| 49 |  | 
|---|
| 50 |  | 
|---|
| 51 | // -------------------------------------------------------------------------- | 
|---|
| 52 | // Default constructor. | 
|---|
| 53 | // | 
|---|
| 54 | MRanTree::MRanTree(const char *name, const char *title):fClassify(kTRUE),fNdSize(0), fNumTry(3) | 
|---|
| 55 | { | 
|---|
| 56 |  | 
|---|
| 57 | fName  = name  ? name  : "MRanTree"; | 
|---|
| 58 | fTitle = title ? title : "Storage container for structure of a single tree"; | 
|---|
| 59 | } | 
|---|
| 60 |  | 
|---|
| 61 | // -------------------------------------------------------------------------- | 
|---|
| 62 | // Copy constructor | 
|---|
| 63 | // | 
|---|
| 64 | MRanTree::MRanTree(const MRanTree &tree) | 
|---|
| 65 | { | 
|---|
| 66 | fName  = tree.fName; | 
|---|
| 67 | fTitle = tree.fTitle; | 
|---|
| 68 |  | 
|---|
| 69 | fClassify = tree.fClassify; | 
|---|
| 70 | fNdSize   = tree.fNdSize; | 
|---|
| 71 | fNumTry   = tree.fNumTry; | 
|---|
| 72 |  | 
|---|
| 73 | fNumNodes    = tree.fNumNodes; | 
|---|
| 74 | fNumEndNodes = tree.fNumEndNodes; | 
|---|
| 75 |  | 
|---|
| 76 | fBestVar   = tree.fBestVar; | 
|---|
| 77 | fTreeMap1  = tree.fTreeMap1; | 
|---|
| 78 | fTreeMap2  = tree.fTreeMap2; | 
|---|
| 79 | fBestSplit = tree.fBestSplit; | 
|---|
| 80 | fGiniDec   = tree.fGiniDec; | 
|---|
| 81 | } | 
|---|
| 82 |  | 
|---|
| 83 | void MRanTree::SetNdSize(Int_t n) | 
|---|
| 84 | { | 
|---|
| 85 | // threshold nodesize of terminal nodes, i.e. the training data is splitted | 
|---|
| 86 | // until there is only pure date in the subsets(=terminal nodes) or the | 
|---|
| 87 | // subset size is LE n | 
|---|
| 88 |  | 
|---|
| 89 | fNdSize=TMath::Max(1,n);//at least 1 event per node | 
|---|
| 90 | } | 
|---|
| 91 |  | 
|---|
| 92 | void MRanTree::SetNumTry(Int_t n) | 
|---|
| 93 | { | 
|---|
| 94 | // number of trials in random split selection: | 
|---|
| 95 | // choose at least 1 variable to split in | 
|---|
| 96 |  | 
|---|
| 97 | fNumTry=TMath::Max(1,n); | 
|---|
| 98 | } | 
|---|
| 99 |  | 
|---|
| 100 | void MRanTree::GrowTree(TMatrix *mat, const MArrayF &hadtrue, const MArrayI &idclass, | 
|---|
| 101 | MArrayI &datasort, const MArrayI &datarang, const MArrayF &tclasspop, | 
|---|
| 102 | const Float_t &mean, const Float_t &square, const MArrayI &jinbag, const MArrayF &winbag, | 
|---|
| 103 | const int nclass) | 
|---|
| 104 | { | 
|---|
| 105 | // arrays have to be initialized with generous size, so number of total nodes (nrnodes) | 
|---|
| 106 | // is estimated for worst case | 
|---|
| 107 | const Int_t numdim =mat->GetNcols(); | 
|---|
| 108 | const Int_t numdata=winbag.GetSize(); | 
|---|
| 109 | const Int_t nrnodes=2*numdata+1; | 
|---|
| 110 |  | 
|---|
| 111 | // number of events in bootstrap sample | 
|---|
| 112 | Int_t ninbag=0; | 
|---|
| 113 | for (Int_t n=0;n<numdata;n++) if(jinbag[n]==1) ninbag++; | 
|---|
| 114 |  | 
|---|
| 115 | MArrayI bestsplit(nrnodes); | 
|---|
| 116 | MArrayI bestsplitnext(nrnodes); | 
|---|
| 117 |  | 
|---|
| 118 | fBestVar.Set(nrnodes);    fBestVar.Reset(); | 
|---|
| 119 | fTreeMap1.Set(nrnodes);   fTreeMap1.Reset(); | 
|---|
| 120 | fTreeMap2.Set(nrnodes);   fTreeMap2.Reset(); | 
|---|
| 121 | fBestSplit.Set(nrnodes);  fBestSplit.Reset(); | 
|---|
| 122 | fGiniDec.Set(numdim);     fGiniDec.Reset(); | 
|---|
| 123 |  | 
|---|
| 124 |  | 
|---|
| 125 | if(fClassify) | 
|---|
| 126 | FindBestSplit=&MRanTree::FindBestSplitGini; | 
|---|
| 127 | else | 
|---|
| 128 | FindBestSplit=&MRanTree::FindBestSplitSigma; | 
|---|
| 129 |  | 
|---|
| 130 | // tree growing | 
|---|
| 131 | BuildTree(datasort,datarang,hadtrue,idclass,bestsplit, bestsplitnext, | 
|---|
| 132 | tclasspop,mean,square,winbag,ninbag,nclass); | 
|---|
| 133 |  | 
|---|
| 134 | // post processing, determine cut (or split) values fBestSplit | 
|---|
| 135 | for(Int_t k=0; k<nrnodes; k++) | 
|---|
| 136 | { | 
|---|
| 137 | if (GetNodeStatus(k)==-1) | 
|---|
| 138 | continue; | 
|---|
| 139 |  | 
|---|
| 140 | const Int_t &bsp =bestsplit[k]; | 
|---|
| 141 | const Int_t &bspn=bestsplitnext[k]; | 
|---|
| 142 | const Int_t &msp =fBestVar[k]; | 
|---|
| 143 |  | 
|---|
| 144 | fBestSplit[k] = ((*mat)(bsp, msp)+(*mat)(bspn,msp))/2; | 
|---|
| 145 | } | 
|---|
| 146 |  | 
|---|
| 147 | // resizing arrays to save memory | 
|---|
| 148 | fBestVar.Set(fNumNodes); | 
|---|
| 149 | fTreeMap1.Set(fNumNodes); | 
|---|
| 150 | fTreeMap2.Set(fNumNodes); | 
|---|
| 151 | fBestSplit.Set(fNumNodes); | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 | int MRanTree::FindBestSplitGini(const MArrayI &datasort,const MArrayI &datarang, | 
|---|
| 155 | const MArrayF &hadtrue,const MArrayI &idclass, | 
|---|
| 156 | Int_t ndstart,Int_t ndend, const MArrayF &tclasspop, | 
|---|
| 157 | const Float_t &mean, const Float_t &square, Int_t &msplit, | 
|---|
| 158 | Float_t &decsplit,Int_t &nbest, const MArrayF &winbag, | 
|---|
| 159 | const int nclass) | 
|---|
| 160 | { | 
|---|
| 161 | const Int_t nrnodes = fBestSplit.GetSize(); | 
|---|
| 162 | const Int_t numdata = (nrnodes-1)/2; | 
|---|
| 163 | const Int_t mdim = fGiniDec.GetSize(); | 
|---|
| 164 |  | 
|---|
| 165 | // For the best split, msplit is the index of the variable (e.g Hillas par., | 
|---|
| 166 | // zenith angle ,...) | 
|---|
| 167 | // split on. decsplit is the decreae in impurity measured by Gini-index. | 
|---|
| 168 | // nsplit is the case number of value of msplit split on, | 
|---|
| 169 | // and nsplitnext is the case number of the next larger value of msplit. | 
|---|
| 170 |  | 
|---|
| 171 | Int_t nbestvar=0; | 
|---|
| 172 |  | 
|---|
| 173 | // compute initial values of numerator and denominator of Gini-index, | 
|---|
| 174 | // Gini index= pno/dno | 
|---|
| 175 | Double_t pno=0; | 
|---|
| 176 | Double_t pdo=0; | 
|---|
| 177 |  | 
|---|
| 178 | // tclasspop: sum of weights for events in class | 
|---|
| 179 | for (Int_t j=0; j<nclass; j++) // loop over number of classes to classifiy | 
|---|
| 180 | { | 
|---|
| 181 | pno+=tclasspop[j]*tclasspop[j]; | 
|---|
| 182 | pdo+=tclasspop[j]; | 
|---|
| 183 | } | 
|---|
| 184 |  | 
|---|
| 185 | const Double_t crit0=pno/pdo;  // weighted mean of weights | 
|---|
| 186 |  | 
|---|
| 187 | // start main loop through variables to find best split, | 
|---|
| 188 | // (Gini-index as criterium crit) | 
|---|
| 189 |  | 
|---|
| 190 | Double_t critmax=-FLT_MAX; | 
|---|
| 191 |  | 
|---|
| 192 | // random split selection, number of trials = fNumTry | 
|---|
| 193 | for (Int_t mt=0; mt<fNumTry; mt++) // we could try ALL variables??? | 
|---|
| 194 | { | 
|---|
| 195 | const Int_t mvar= gRandom->Integer(mdim); | 
|---|
| 196 | const Int_t mn  = mvar*numdata; | 
|---|
| 197 |  | 
|---|
| 198 | // Gini index = rrn/rrd+rln/rld | 
|---|
| 199 | Double_t rrn=pno; | 
|---|
| 200 | Double_t rrd=pdo; | 
|---|
| 201 | Double_t rln=0; | 
|---|
| 202 | Double_t rld=0; | 
|---|
| 203 |  | 
|---|
| 204 | MArrayF wl(nclass);     // left node //nclass | 
|---|
| 205 | MArrayF wr(tclasspop);  // right node//nclass | 
|---|
| 206 |  | 
|---|
| 207 | Double_t critvar=-FLT_MAX; | 
|---|
| 208 | for(Int_t nsp=ndstart;nsp<=ndend-1;nsp++) | 
|---|
| 209 | { | 
|---|
| 210 | const Int_t  &nc = datasort[mn+nsp]; | 
|---|
| 211 | const Int_t   &k = idclass[nc]; | 
|---|
| 212 | const Float_t &u = winbag[nc]; | 
|---|
| 213 |  | 
|---|
| 214 | // do classification, Gini index as split rule | 
|---|
| 215 | rln   +=u*(2*wl[k]+u);  // += u*(wl[k]{i-1} + wl[k]{i-1}+u{i}) | 
|---|
| 216 | rld   +=u;   // sum of weights left  from cut total | 
|---|
| 217 | wl[k] +=u;   // sum of weights left  from cut for class k | 
|---|
| 218 |  | 
|---|
| 219 | rrn   -=u*(2*wr[k]-u);  // -= u*(wr[k]{i-1} + wr[k]{i-1}-u{i}) | 
|---|
| 220 | //  rr0=0; rr0+=u*2*tclasspop[k] | 
|---|
| 221 | //  rrn = pno - rr0 + rln | 
|---|
| 222 | rrd   -=u;   // sum of weights right from cut total | 
|---|
| 223 | wr[k] -=u;   // sum of weights right from cut for class k | 
|---|
| 224 |  | 
|---|
| 225 | // REPLACE BY? | 
|---|
| 226 | // rr0   = 0 | 
|---|
| 227 | // rr0  += u*2*tclasspop[k] | 
|---|
| 228 | // rrn   = pno - rr0 + rln | 
|---|
| 229 | // rrd   = pdo - rld | 
|---|
| 230 | // wr[k] = tclasspop[k] - wl[k] | 
|---|
| 231 |  | 
|---|
| 232 | // crit = (rln*(pdo - rld + 1) + pno - rr0) / rld*(pdo - rld) | 
|---|
| 233 |  | 
|---|
| 234 | /* | 
|---|
| 235 | if (k==background) | 
|---|
| 236 | continue; | 
|---|
| 237 | crit = TMath::Max(MMath::SignificanceLiMa(rld, rld-wl[k]), | 
|---|
| 238 | MMath::SignificanceLiMa(rrd, rrd-wr[k])) | 
|---|
| 239 | */ | 
|---|
| 240 |  | 
|---|
| 241 | // This condition is in fact a == (> cannot happen at all) | 
|---|
| 242 | // This is because we cannot set the cut between two identical values | 
|---|
| 243 | //if (datarang[mn+datasort[mn+nsp]]>=datarang[mn+datasort[mn+nsp+1]]) | 
|---|
| 244 | if (datarang[mn+nc]>=datarang[mn+datasort[mn+nsp+1]]) | 
|---|
| 245 | continue; | 
|---|
| 246 |  | 
|---|
| 247 | // If crit starts to become pretty large do WHAT??? | 
|---|
| 248 | //if (TMath::Min(rrd,rld)<=1.0e-5) // FIXME: CHECKIT FOR WEIGHTS! | 
|---|
| 249 | //    continue; | 
|---|
| 250 |  | 
|---|
| 251 | const Double_t crit=(rln/rld)+(rrn/rrd); | 
|---|
| 252 | if (!TMath::Finite(crit)) | 
|---|
| 253 | continue; | 
|---|
| 254 |  | 
|---|
| 255 | // Search for the highest value of crit | 
|---|
| 256 | if (crit<=critvar) continue; | 
|---|
| 257 |  | 
|---|
| 258 | // store the highest crit value and the corresponding event to cut at | 
|---|
| 259 | nbestvar=nsp; | 
|---|
| 260 | critvar=crit; | 
|---|
| 261 | } | 
|---|
| 262 |  | 
|---|
| 263 | if (critvar<=critmax) continue; | 
|---|
| 264 |  | 
|---|
| 265 | msplit=mvar;      // Variable in which to split | 
|---|
| 266 | nbest=nbestvar;   // event at which the best split was found | 
|---|
| 267 | critmax=critvar; | 
|---|
| 268 | } | 
|---|
| 269 |  | 
|---|
| 270 | // crit0 = MMath::SignificanceLiMa(pdo, pdo-tclasspop[0]) | 
|---|
| 271 | // mean increase of sensitivity | 
|---|
| 272 | // decsplit = sqrt(critmax/crit0) | 
|---|
| 273 | decsplit=critmax-crit0; | 
|---|
| 274 |  | 
|---|
| 275 | return critmax<-1.0e10 ? 1 : 0; | 
|---|
| 276 | } | 
|---|
| 277 |  | 
|---|
| 278 | int MRanTree::FindBestSplitSigma(const MArrayI &datasort,const MArrayI &datarang, | 
|---|
| 279 | const MArrayF &hadtrue, const MArrayI &idclass, | 
|---|
| 280 | Int_t ndstart,Int_t ndend, const MArrayF &tclasspop, | 
|---|
| 281 | const Float_t &mean, const Float_t &square, Int_t &msplit, | 
|---|
| 282 | Float_t &decsplit,Int_t &nbest, const MArrayF &winbag, | 
|---|
| 283 | const int nclass) | 
|---|
| 284 | { | 
|---|
| 285 | const Int_t nrnodes = fBestSplit.GetSize(); | 
|---|
| 286 | const Int_t numdata = (nrnodes-1)/2; | 
|---|
| 287 | const Int_t mdim = fGiniDec.GetSize(); | 
|---|
| 288 |  | 
|---|
| 289 | // For the best split, msplit is the index of the variable (e.g Hillas par., zenith angle ,...) | 
|---|
| 290 | // split on. decsplit is the decreae in impurity measured by Gini-index. | 
|---|
| 291 | // nsplit is the case number of value of msplit split on, | 
|---|
| 292 | // and nsplitnext is the case number of the next larger value of msplit. | 
|---|
| 293 |  | 
|---|
| 294 | Int_t nbestvar=0; | 
|---|
| 295 |  | 
|---|
| 296 | // compute initial values of numerator and denominator of split-index, | 
|---|
| 297 |  | 
|---|
| 298 | // resolution | 
|---|
| 299 | //Double_t pno=-(tclasspop[0]*square-mean*mean)*tclasspop[0]; | 
|---|
| 300 | //Double_t pdo= (tclasspop[0]-1.)*mean*mean; | 
|---|
| 301 |  | 
|---|
| 302 | // n*resolution | 
|---|
| 303 | //Double_t pno=-(tclasspop[0]*square-mean*mean)*tclasspop[0]; | 
|---|
| 304 | //Double_t pdo= mean*mean; | 
|---|
| 305 |  | 
|---|
| 306 | // variance | 
|---|
| 307 | //Double_t pno=-(square-mean*mean/tclasspop[0]); | 
|---|
| 308 | //Double_t pdo= (tclasspop[0]-1.); | 
|---|
| 309 |  | 
|---|
| 310 | // n*variance | 
|---|
| 311 | Double_t pno= (square-mean*mean/tclasspop[0]); | 
|---|
| 312 | Double_t pdo= 1.; | 
|---|
| 313 |  | 
|---|
| 314 | // 1./(n*variance) | 
|---|
| 315 | //Double_t pno= 1.; | 
|---|
| 316 | //Double_t pdo= (square-mean*mean/tclasspop[0]); | 
|---|
| 317 |  | 
|---|
| 318 | const Double_t crit0=pno/pdo; | 
|---|
| 319 |  | 
|---|
| 320 | // start main loop through variables to find best split, | 
|---|
| 321 |  | 
|---|
| 322 | Double_t critmin=FLT_MAX; | 
|---|
| 323 |  | 
|---|
| 324 | // random split selection, number of trials = fNumTry | 
|---|
| 325 | for (Int_t mt=0; mt<fNumTry; mt++) | 
|---|
| 326 | { | 
|---|
| 327 | const Int_t mvar= gRandom->Integer(mdim); | 
|---|
| 328 | const Int_t mn  = mvar*numdata; | 
|---|
| 329 |  | 
|---|
| 330 | Double_t esumr =mean; | 
|---|
| 331 | Double_t e2sumr=square; | 
|---|
| 332 | Double_t esuml =0; | 
|---|
| 333 | Double_t e2suml=0; | 
|---|
| 334 |  | 
|---|
| 335 | float wl=0.;// left node | 
|---|
| 336 | float wr=tclasspop[0]; // right node | 
|---|
| 337 |  | 
|---|
| 338 | Double_t critvar=critmin; | 
|---|
| 339 | for(Int_t nsp=ndstart;nsp<=ndend-1;nsp++) | 
|---|
| 340 | { | 
|---|
| 341 | const Int_t &nc=datasort[mn+nsp]; | 
|---|
| 342 | const Float_t &f=hadtrue[nc];; | 
|---|
| 343 | const Float_t &u=winbag[nc]; | 
|---|
| 344 |  | 
|---|
| 345 | e2suml+=u*f*f; | 
|---|
| 346 | esuml +=u*f; | 
|---|
| 347 | wl    +=u; | 
|---|
| 348 |  | 
|---|
| 349 | //------------------------------------------- | 
|---|
| 350 | // resolution | 
|---|
| 351 | //const Double_t rln=(wl*e2suml-esuml*esuml)*wl; | 
|---|
| 352 | //const Double_t rld=(wl-1.)*esuml*esuml; | 
|---|
| 353 |  | 
|---|
| 354 | // resolution times n | 
|---|
| 355 | //const Double_t rln=(wl*e2suml-esuml*esuml)*wl; | 
|---|
| 356 | //const Double_t rld=esuml*esuml; | 
|---|
| 357 |  | 
|---|
| 358 | // sigma | 
|---|
| 359 | //const Double_t rln=(e2suml-esuml*esuml/wl); | 
|---|
| 360 | //const Double_t rld=(wl-1.); | 
|---|
| 361 |  | 
|---|
| 362 | // sigma times n | 
|---|
| 363 | Double_t rln=(e2suml-esuml*esuml/wl); | 
|---|
| 364 | Double_t rld=1.; | 
|---|
| 365 |  | 
|---|
| 366 | // 1./(n*variance) | 
|---|
| 367 | //const Double_t rln=1.; | 
|---|
| 368 | //const Double_t rld=(e2suml-esuml*esuml/wl); | 
|---|
| 369 | //------------------------------------------- | 
|---|
| 370 |  | 
|---|
| 371 | // REPLACE BY??? | 
|---|
| 372 | e2sumr-=u*f*f;   // e2sumr = square       - e2suml | 
|---|
| 373 | esumr -=u*f;     // esumr  = mean         - esuml | 
|---|
| 374 | wr    -=u;       // wr     = tclasspop[0] - wl | 
|---|
| 375 |  | 
|---|
| 376 | //------------------------------------------- | 
|---|
| 377 | // resolution | 
|---|
| 378 | //const Double_t rrn=(wr*e2sumr-esumr*esumr)*wr; | 
|---|
| 379 | //const Double_t rrd=(wr-1.)*esumr*esumr; | 
|---|
| 380 |  | 
|---|
| 381 | // resolution times n | 
|---|
| 382 | //const Double_t rrn=(wr*e2sumr-esumr*esumr)*wr; | 
|---|
| 383 | //const Double_t rrd=esumr*esumr; | 
|---|
| 384 |  | 
|---|
| 385 | // sigma | 
|---|
| 386 | //const Double_t rrn=(e2sumr-esumr*esumr/wr); | 
|---|
| 387 | //const Double_t rrd=(wr-1.); | 
|---|
| 388 |  | 
|---|
| 389 | // sigma times n | 
|---|
| 390 | const Double_t rrn=(e2sumr-esumr*esumr/wr); | 
|---|
| 391 | const Double_t rrd=1.; | 
|---|
| 392 |  | 
|---|
| 393 | // 1./(n*variance) | 
|---|
| 394 | //const Double_t rrn=1.; | 
|---|
| 395 | //const Double_t rrd=(e2sumr-esumr*esumr/wr); | 
|---|
| 396 | //------------------------------------------- | 
|---|
| 397 |  | 
|---|
| 398 | if (datarang[mn+nc]>=datarang[mn+datasort[mn+nsp+1]]) | 
|---|
| 399 | continue; | 
|---|
| 400 |  | 
|---|
| 401 | //if (TMath::Min(rrd,rld)<=1.0e-5) | 
|---|
| 402 | //    continue; | 
|---|
| 403 |  | 
|---|
| 404 | const Double_t crit=(rln/rld)+(rrn/rrd); | 
|---|
| 405 | if (!TMath::Finite(crit)) | 
|---|
| 406 | continue; | 
|---|
| 407 |  | 
|---|
| 408 | if (crit>=critvar) continue; | 
|---|
| 409 |  | 
|---|
| 410 | nbestvar=nsp; | 
|---|
| 411 | critvar=crit; | 
|---|
| 412 | } | 
|---|
| 413 |  | 
|---|
| 414 | if (critvar>=critmin) continue; | 
|---|
| 415 |  | 
|---|
| 416 | msplit=mvar; | 
|---|
| 417 | nbest=nbestvar; | 
|---|
| 418 | critmin=critvar; | 
|---|
| 419 | } | 
|---|
| 420 |  | 
|---|
| 421 | decsplit=crit0-critmin; | 
|---|
| 422 |  | 
|---|
| 423 | //return critmin>1.0e20 ? 1 : 0; | 
|---|
| 424 | return decsplit<0 ? 1 : 0; | 
|---|
| 425 | } | 
|---|
| 426 |  | 
|---|
| 427 | void MRanTree::MoveData(MArrayI &datasort,Int_t ndstart, Int_t ndend, | 
|---|
| 428 | MArrayI &idmove,MArrayI &ncase,Int_t msplit, | 
|---|
| 429 | Int_t nbest,Int_t &ndendl) | 
|---|
| 430 | { | 
|---|
| 431 | // This is the heart of the BuildTree construction. Based on the best split | 
|---|
| 432 | // the data in the part of datasort corresponding to the current node is moved to the | 
|---|
| 433 | // left if it belongs to the left child and right if it belongs to the right child-node. | 
|---|
| 434 | const Int_t numdata = ncase.GetSize(); | 
|---|
| 435 | const Int_t mdim    = fGiniDec.GetSize(); | 
|---|
| 436 |  | 
|---|
| 437 | MArrayI tdatasort(numdata); | 
|---|
| 438 |  | 
|---|
| 439 | // compute idmove = indicator of case nos. going left | 
|---|
| 440 | for (Int_t nsp=ndstart;nsp<=ndend;nsp++) | 
|---|
| 441 | { | 
|---|
| 442 | const Int_t &nc=datasort[msplit*numdata+nsp]; | 
|---|
| 443 | idmove[nc]= nsp<=nbest?1:0; | 
|---|
| 444 | } | 
|---|
| 445 | ndendl=nbest; | 
|---|
| 446 |  | 
|---|
| 447 | // shift case. nos. right and left for numerical variables. | 
|---|
| 448 | for(Int_t msh=0;msh<mdim;msh++) | 
|---|
| 449 | { | 
|---|
| 450 | Int_t k=ndstart-1; | 
|---|
| 451 | for (Int_t n=ndstart;n<=ndend;n++) | 
|---|
| 452 | { | 
|---|
| 453 | const Int_t &ih=datasort[msh*numdata+n]; | 
|---|
| 454 | if (idmove[ih]==1) | 
|---|
| 455 | tdatasort[++k]=datasort[msh*numdata+n]; | 
|---|
| 456 | } | 
|---|
| 457 |  | 
|---|
| 458 | for (Int_t n=ndstart;n<=ndend;n++) | 
|---|
| 459 | { | 
|---|
| 460 | const Int_t &ih=datasort[msh*numdata+n]; | 
|---|
| 461 | if (idmove[ih]==0) | 
|---|
| 462 | tdatasort[++k]=datasort[msh*numdata+n]; | 
|---|
| 463 | } | 
|---|
| 464 |  | 
|---|
| 465 | for(Int_t m=ndstart;m<=ndend;m++) | 
|---|
| 466 | datasort[msh*numdata+m]=tdatasort[m]; | 
|---|
| 467 | } | 
|---|
| 468 |  | 
|---|
| 469 | // compute case nos. for right and left nodes. | 
|---|
| 470 |  | 
|---|
| 471 | for(Int_t n=ndstart;n<=ndend;n++) | 
|---|
| 472 | ncase[n]=datasort[msplit*numdata+n]; | 
|---|
| 473 | } | 
|---|
| 474 |  | 
|---|
| 475 | void MRanTree::BuildTree(MArrayI &datasort,const MArrayI &datarang, const MArrayF &hadtrue, | 
|---|
| 476 | const MArrayI &idclass, MArrayI &bestsplit, MArrayI &bestsplitnext, | 
|---|
| 477 | const MArrayF &tclasspop, const Float_t &tmean, const Float_t &tsquare, const MArrayF &winbag, | 
|---|
| 478 | Int_t ninbag, const int nclass) | 
|---|
| 479 | { | 
|---|
| 480 | // Buildtree consists of repeated calls to two void functions, FindBestSplit and MoveData. | 
|---|
| 481 | // Findbestsplit does just that--it finds the best split of the current node. | 
|---|
| 482 | // MoveData moves the data in the split node right and left so that the data | 
|---|
| 483 | // corresponding to each child node is contiguous. | 
|---|
| 484 | // | 
|---|
| 485 | // buildtree bookkeeping: | 
|---|
| 486 | // ncur is the total number of nodes to date.  nodestatus(k)=1 if the kth node has been split. | 
|---|
| 487 | // nodestatus(k)=2 if the node exists but has not yet been split, and =-1 if the node is | 
|---|
| 488 | // terminal.  A node is terminal if its size is below a threshold value, or if it is all | 
|---|
| 489 | // one class, or if all the data-values are equal.  If the current node k is split, then its | 
|---|
| 490 | // children are numbered ncur+1 (left), and ncur+2(right), ncur increases to ncur+2 and | 
|---|
| 491 | // the next node to be split is numbered k+1.  When no more nodes can be split, buildtree | 
|---|
| 492 | // returns. | 
|---|
| 493 | const Int_t mdim    = fGiniDec.GetSize(); | 
|---|
| 494 | const Int_t nrnodes = fBestSplit.GetSize(); | 
|---|
| 495 | const Int_t numdata = (nrnodes-1)/2; | 
|---|
| 496 |  | 
|---|
| 497 | MArrayI nodepop(nrnodes); | 
|---|
| 498 | MArrayI nodestart(nrnodes); | 
|---|
| 499 | MArrayI parent(nrnodes); | 
|---|
| 500 |  | 
|---|
| 501 | MArrayI ncase(numdata); | 
|---|
| 502 | MArrayI idmove(numdata); | 
|---|
| 503 | MArrayI iv(mdim); | 
|---|
| 504 |  | 
|---|
| 505 | MArrayF classpop(nrnodes*nclass);//nclass | 
|---|
| 506 | MArrayI nodestatus(nrnodes); | 
|---|
| 507 |  | 
|---|
| 508 | for (Int_t j=0;j<nclass;j++) | 
|---|
| 509 | classpop[j*nrnodes+0]=tclasspop[j]; | 
|---|
| 510 |  | 
|---|
| 511 | MArrayF mean(nrnodes); | 
|---|
| 512 | MArrayF square(nrnodes); | 
|---|
| 513 | MArrayF lclasspop(tclasspop); | 
|---|
| 514 |  | 
|---|
| 515 | mean[0]=tmean; | 
|---|
| 516 | square[0]=tsquare; | 
|---|
| 517 |  | 
|---|
| 518 |  | 
|---|
| 519 | Int_t ncur=0; | 
|---|
| 520 | nodepop[0]=ninbag; | 
|---|
| 521 | nodestatus[0]=2; | 
|---|
| 522 |  | 
|---|
| 523 | // start main loop | 
|---|
| 524 | for (Int_t kbuild=0; kbuild<nrnodes; kbuild++) | 
|---|
| 525 | { | 
|---|
| 526 | if (kbuild>ncur) break; | 
|---|
| 527 | if (nodestatus[kbuild]!=2) continue; | 
|---|
| 528 |  | 
|---|
| 529 | // initialize for next call to FindBestSplit | 
|---|
| 530 |  | 
|---|
| 531 | const Int_t ndstart=nodestart[kbuild]; | 
|---|
| 532 | const Int_t ndend=ndstart+nodepop[kbuild]-1; | 
|---|
| 533 |  | 
|---|
| 534 | for (Int_t j=0;j<nclass;j++) | 
|---|
| 535 | lclasspop[j]=classpop[j*nrnodes+kbuild]; | 
|---|
| 536 |  | 
|---|
| 537 | Int_t msplit, nbest; | 
|---|
| 538 | Float_t decsplit=0; | 
|---|
| 539 |  | 
|---|
| 540 | if ((this->*FindBestSplit)(datasort,datarang,hadtrue,idclass,ndstart, | 
|---|
| 541 | ndend, lclasspop,mean[kbuild],square[kbuild],msplit,decsplit, | 
|---|
| 542 | nbest,winbag,nclass)) | 
|---|
| 543 | { | 
|---|
| 544 | nodestatus[kbuild]=-1; | 
|---|
| 545 | continue; | 
|---|
| 546 | } | 
|---|
| 547 |  | 
|---|
| 548 | fBestVar[kbuild]=msplit; | 
|---|
| 549 | fGiniDec[msplit]+=decsplit; | 
|---|
| 550 |  | 
|---|
| 551 | bestsplit[kbuild]=datasort[msplit*numdata+nbest]; | 
|---|
| 552 | bestsplitnext[kbuild]=datasort[msplit*numdata+nbest+1]; | 
|---|
| 553 |  | 
|---|
| 554 | Int_t ndendl; | 
|---|
| 555 | MoveData(datasort,ndstart,ndend,idmove,ncase, | 
|---|
| 556 | msplit,nbest,ndendl); | 
|---|
| 557 |  | 
|---|
| 558 | // leftnode no.= ncur+1, rightnode no. = ncur+2. | 
|---|
| 559 | nodepop[ncur+1]=ndendl-ndstart+1; | 
|---|
| 560 | nodepop[ncur+2]=ndend-ndendl; | 
|---|
| 561 | nodestart[ncur+1]=ndstart; | 
|---|
| 562 | nodestart[ncur+2]=ndendl+1; | 
|---|
| 563 |  | 
|---|
| 564 | // find class populations in both nodes | 
|---|
| 565 | for (Int_t n=ndstart;n<=ndendl;n++) | 
|---|
| 566 | { | 
|---|
| 567 | const Int_t &nc=ncase[n]; | 
|---|
| 568 | const int j=idclass[nc]; | 
|---|
| 569 |  | 
|---|
| 570 | // statistics left from cut | 
|---|
| 571 | mean[ncur+1]+=hadtrue[nc]*winbag[nc]; | 
|---|
| 572 | square[ncur+1]+=hadtrue[nc]*hadtrue[nc]*winbag[nc]; | 
|---|
| 573 |  | 
|---|
| 574 | // sum of weights left from cut | 
|---|
| 575 | classpop[j*nrnodes+ncur+1]+=winbag[nc]; | 
|---|
| 576 | } | 
|---|
| 577 |  | 
|---|
| 578 | for (Int_t n=ndendl+1;n<=ndend;n++) | 
|---|
| 579 | { | 
|---|
| 580 | const Int_t &nc=ncase[n]; | 
|---|
| 581 | const int j=idclass[nc]; | 
|---|
| 582 |  | 
|---|
| 583 | // statistics right from cut | 
|---|
| 584 | mean[ncur+2]  +=hadtrue[nc]*winbag[nc]; | 
|---|
| 585 | square[ncur+2]+=hadtrue[nc]*hadtrue[nc]*winbag[nc]; | 
|---|
| 586 |  | 
|---|
| 587 | // sum of weights right from cut | 
|---|
| 588 | classpop[j*nrnodes+ncur+2]+=winbag[nc]; | 
|---|
| 589 | } | 
|---|
| 590 |  | 
|---|
| 591 | // check on nodestatus | 
|---|
| 592 |  | 
|---|
| 593 | nodestatus[ncur+1]=2; | 
|---|
| 594 | nodestatus[ncur+2]=2; | 
|---|
| 595 | if (nodepop[ncur+1]<=fNdSize) nodestatus[ncur+1]=-1; | 
|---|
| 596 | if (nodepop[ncur+2]<=fNdSize) nodestatus[ncur+2]=-1; | 
|---|
| 597 |  | 
|---|
| 598 |  | 
|---|
| 599 | Double_t popt1=0; | 
|---|
| 600 | Double_t popt2=0; | 
|---|
| 601 | for (Int_t j=0;j<nclass;j++) | 
|---|
| 602 | { | 
|---|
| 603 | popt1+=classpop[j*nrnodes+ncur+1]; | 
|---|
| 604 | popt2+=classpop[j*nrnodes+ncur+2]; | 
|---|
| 605 | } | 
|---|
| 606 |  | 
|---|
| 607 | if(fClassify) | 
|---|
| 608 | { | 
|---|
| 609 | // check if only members of one class in node | 
|---|
| 610 | for (Int_t j=0;j<nclass;j++) | 
|---|
| 611 | { | 
|---|
| 612 | if (classpop[j*nrnodes+ncur+1]==popt1) nodestatus[ncur+1]=-1; | 
|---|
| 613 | if (classpop[j*nrnodes+ncur+2]==popt2) nodestatus[ncur+2]=-1; | 
|---|
| 614 | } | 
|---|
| 615 | } | 
|---|
| 616 |  | 
|---|
| 617 | fTreeMap1[kbuild]=ncur+1; | 
|---|
| 618 | fTreeMap2[kbuild]=ncur+2; | 
|---|
| 619 | parent[ncur+1]=kbuild; | 
|---|
| 620 | parent[ncur+2]=kbuild; | 
|---|
| 621 | nodestatus[kbuild]=1; | 
|---|
| 622 | ncur+=2; | 
|---|
| 623 | if (ncur>=nrnodes) break; | 
|---|
| 624 | } | 
|---|
| 625 |  | 
|---|
| 626 | // determine number of nodes | 
|---|
| 627 | fNumNodes=nrnodes; | 
|---|
| 628 | for (Int_t k=nrnodes-1;k>=0;k--) | 
|---|
| 629 | { | 
|---|
| 630 | if (nodestatus[k]==0) fNumNodes-=1; | 
|---|
| 631 | if (nodestatus[k]==2) nodestatus[k]=-1; | 
|---|
| 632 | } | 
|---|
| 633 |  | 
|---|
| 634 | fNumEndNodes=0; | 
|---|
| 635 | for (Int_t kn=0;kn<fNumNodes;kn++) | 
|---|
| 636 | if(nodestatus[kn]==-1) | 
|---|
| 637 | { | 
|---|
| 638 | fNumEndNodes++; | 
|---|
| 639 |  | 
|---|
| 640 | Double_t pp=0; | 
|---|
| 641 | for (Int_t j=0;j<nclass;j++) | 
|---|
| 642 | { | 
|---|
| 643 | if(classpop[j*nrnodes+kn]>pp) | 
|---|
| 644 | { | 
|---|
| 645 | // class + status of node kn coded into fBestVar[kn] | 
|---|
| 646 | fBestVar[kn]=j-nclass; | 
|---|
| 647 | pp=classpop[j*nrnodes+kn]; | 
|---|
| 648 | } | 
|---|
| 649 | } | 
|---|
| 650 |  | 
|---|
| 651 | float sum=0; | 
|---|
| 652 | for(int i=0;i<nclass;i++) sum+=classpop[i*nrnodes+kn]; | 
|---|
| 653 |  | 
|---|
| 654 | fBestSplit[kn]=mean[kn]/sum; | 
|---|
| 655 | } | 
|---|
| 656 | } | 
|---|
| 657 |  | 
|---|
| 658 | Double_t MRanTree::TreeHad(const Float_t *evt) | 
|---|
| 659 | { | 
|---|
| 660 | // to optimize on storage space node status and node class | 
|---|
| 661 | // are coded into fBestVar: | 
|---|
| 662 | // status of node kt = TMath::Sign(1,fBestVar[kt]) | 
|---|
| 663 | // class  of node kt = fBestVar[kt]+2 (class defined by larger | 
|---|
| 664 | //  node population, actually not used) | 
|---|
| 665 | // hadronness assigned to node kt = fBestSplit[kt] | 
|---|
| 666 |  | 
|---|
| 667 | // To get rid of the range check of the root classes | 
|---|
| 668 | const Float_t *split = fBestSplit.GetArray(); | 
|---|
| 669 | const Int_t   *map1  = fTreeMap1.GetArray(); | 
|---|
| 670 | const Int_t   *map2  = fTreeMap2.GetArray(); | 
|---|
| 671 | const Int_t   *best  = fBestVar.GetArray(); | 
|---|
| 672 |  | 
|---|
| 673 | Int_t kt=0; | 
|---|
| 674 | for (Int_t k=0; k<fNumNodes; k++) | 
|---|
| 675 | { | 
|---|
| 676 | if (best[kt]<0) | 
|---|
| 677 | break; | 
|---|
| 678 |  | 
|---|
| 679 | const Int_t m=best[kt]; | 
|---|
| 680 | kt = evt[m]<=split[kt] ? map1[kt] : map2[kt]; | 
|---|
| 681 | } | 
|---|
| 682 |  | 
|---|
| 683 | return split[kt]; | 
|---|
| 684 | } | 
|---|
| 685 |  | 
|---|
| 686 | Double_t MRanTree::TreeHad(const TVector &event) | 
|---|
| 687 | { | 
|---|
| 688 | return TreeHad(event.GetMatrixArray()); | 
|---|
| 689 | } | 
|---|
| 690 |  | 
|---|
| 691 | Double_t MRanTree::TreeHad(const TMatrixFRow_const &event) | 
|---|
| 692 | { | 
|---|
| 693 | return TreeHad(event.GetPtr()); | 
|---|
| 694 | } | 
|---|
| 695 |  | 
|---|
| 696 | Double_t MRanTree::TreeHad(const TMatrix &m, Int_t ievt) | 
|---|
| 697 | { | 
|---|
| 698 | #if ROOT_VERSION_CODE < ROOT_VERSION(4,00,8) | 
|---|
| 699 | return TreeHad(TMatrixRow(m, ievt)); | 
|---|
| 700 | #else | 
|---|
| 701 | return TreeHad(TMatrixFRow_const(m, ievt)); | 
|---|
| 702 | #endif | 
|---|
| 703 | } | 
|---|
| 704 |  | 
|---|
| 705 | Bool_t MRanTree::AsciiWrite(ostream &out) const | 
|---|
| 706 | { | 
|---|
| 707 | TString str; | 
|---|
| 708 | Int_t k; | 
|---|
| 709 |  | 
|---|
| 710 | out.width(5);out<<fNumNodes<<endl; | 
|---|
| 711 |  | 
|---|
| 712 | for (k=0;k<fNumNodes;k++) | 
|---|
| 713 | { | 
|---|
| 714 | str=Form("%f",GetBestSplit(k)); | 
|---|
| 715 |  | 
|---|
| 716 | out.width(5);  out << k; | 
|---|
| 717 | out.width(5);  out << GetNodeStatus(k); | 
|---|
| 718 | out.width(5);  out << GetTreeMap1(k); | 
|---|
| 719 | out.width(5);  out << GetTreeMap2(k); | 
|---|
| 720 | out.width(5);  out << GetBestVar(k); | 
|---|
| 721 | out.width(15); out << str<<endl; | 
|---|
| 722 | out.width(5);  out << GetNodeClass(k); | 
|---|
| 723 | } | 
|---|
| 724 | out<<endl; | 
|---|
| 725 |  | 
|---|
| 726 | return k==fNumNodes; | 
|---|
| 727 | } | 
|---|