/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz 12/2000 ! ! Copyright: MAGIC Software Development, 2000-2001 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MRawEvtHeader // // One Event is a sample of FADC measurements of different Pixels // (Photomultipliers) from the Camera of MAGIC. So all data (FADC) of the // interesting pixels are the modules of an event. To describe pixels the // class MRawPixel is used and the class MRawCrate to describe Crates. // To define a single events some other data members are needed // (Time of the events, tirgger pattern of event..) // // To describe one event on the level of FADC values the Class MRawEvtHeader is // created. It has the following data members: // // UInt_t fDAQEvtNumber // ----------------------- // This it the number of the Event in one // data run. The first event in this run get // the number zero. The next one is one bigger. // // Assuming that one run takes 1 hour and a // triggerrate of 1kHz the number must be able // to reach 3.6e6 Events. To reach this number // you need at least 22 bits. This is the reason // why we use an integer (of root type UInt_t) // with a range to 4.2e9. // // MTime fRawEvtTime // ------------------- // Time of the event. // The start point of the time determination can be // the millenium. From that start point the time is // measured in 200ns-count. One day for example // contains 432.e9 counts. An array of two unsigned Int is able to // contain 1.8e19 200ns-counts. This corresponds to 41.e6 // days. This should be more than the livetime of MAGIC. // Private member of MTime.h // // UInt_t fNumTrigLvl1 // -------------------- // // Number of first level trigger // This member counts the number of First Level Trigger // between the last and this event. May be that due to // dead time of the DAQ this number is different from 1. // If the DAQ is fast enough, this value should be 1. // This may be usefull in GammaRayBursts and if we // apply a data reduction in the DAQ-chain, which selects // only good events. // // UInt_t fNumTrigLvl2 // ------------------ - // // Number of second level trigger // This member counts the number of Second Level Trigger // between the last and this event. // // UInt_t fTrigPattern[2] // ----------------------- // Trigger Pattern used for this event // Each event triggers for a particular configuration and each // configuration shoul have an ID (which is not fixed yet). // // UShort_t fAllLowGainOn // ---------------------- // Type of Trigger. // This is a Byte (8 bit) to indicated if any of the pixels // have a non-negligible low gain (1) or not (0) // ///////////////////////////////////////////////////////////////////////////// #include "MRawEvtHeader.h" #include #include #include "MLog.h" #include "MLogManip.h" #include "MTime.h" #include "MArrayB.h" #include "MRawRunHeader.h" ClassImp(MRawEvtHeader); using namespace std; // -------------------------------------------------------------------------- // // Default constructor. Create the array to store the data. // MRawEvtHeader::MRawEvtHeader(const char *name, const char *title) { fName = name ? name : "MRawEvtHeader"; fTitle = title ? title : "Raw Event Header Information"; // // set all member to zero, init the pointer to ClonesArray, // fPixLoGainOn = new MArrayB; Clear(); } // -------------------------------------------------------------------------- // // Destructor. Deletes the array to store pixlogainon // MRawEvtHeader::~MRawEvtHeader() { delete fPixLoGainOn; } // -------------------------------------------------------------------------- // // you have to init the conatainer before you can read from // a raw binary file // void MRawEvtHeader::Init(MRawRunHeader *rh, MTime *t) { // // this is the number of entries in the array like specification // UInt_t fN = (rh->GetNumCrates() * rh->GetNumPixInCrate() + 7) / 8; // // initialize the array // fPixLoGainOn->Set(fN); // // this is the conatiner where we have to store the time of the event we // read from the input stream // fTime = t; } // -------------------------------------------------------------------------- // // Implementation of the Clear function // // Resets all members to zero, clear the list of Pixels // void MRawEvtHeader::Clear(Option_t *) { fDAQEvtNumber = 0; fNumTrigLvl1 = 0; fNumTrigLvl2 = 0; fTrigPattern[0] = 0; fTrigPattern[1] = 0; fTrigType = 0; fNumLoGainOn = 0; } // -------------------------------------------------------------------------- // // This member function prints all Data of one Event to *fLog. // void MRawEvtHeader::Print(Option_t *o) const { *fLog << all; *fLog << "DAQEvtNr: " << dec << fDAQEvtNumber << " ("; *fLog << "Trigger: "; *fLog << "NumLvl1=" << fNumTrigLvl1 << " "; *fLog << "NumLvl2=" << fNumTrigLvl2 << " "; *fLog << "Pattern=" << hex << setfill('0'); *fLog << setw(2) << fTrigPattern[0]; *fLog << setw(2) << fTrigPattern[1] << " " << dec; *fLog << "Type="; switch (fTrigType) { case 0: *fLog << "Trigger"; break; case 1: *fLog << "Pedestal"; break; case 2: *fLog << "Calibration"; break; } *fLog << ")" << endl; *fLog << "Number of Lo Gains On: " << fNumLoGainOn << endl; TString str(o); str.ToLower(); if (str.Contains("nogains")) return; for (unsigned int i=0; iGetSize(); i++) { for (int j=0; j<8; j++) { const UInt_t on = (*fPixLoGainOn)[i]&(1<GetSize()) *fLog << endl; } // -------------------------------------------------------------------------- // // used to set the header information (eg. from MC) // void MRawEvtHeader::FillHeader(UInt_t uiN, Float_t ulTP) { fDAQEvtNumber = uiN; fTrigPattern[0] = (UInt_t)(ulTP/4294967296.0) ; fTrigPattern[1] = (UInt_t)(ulTP-fTrigPattern[0]*4294967296.0); } Bool_t MRawEvtHeader::DecodeTime(UInt_t abstime[2]) const { // BADC|1032 --> DCBA|3210 (Byte swap - exchange MSB and LSB) *fLog << hex << all << endl << abstime[0] << " " << abstime[1] << endl; abstime[0] = (abstime[0]<<16) | (abstime[0]>>16); // abstime[1] = (abstime[1]<<16) | (abstime[1]>>16); // *fLog << hex << abstime[0] << " " << abstime[1] << endl; // *fLog << dec; abstime[0] = abstime[0]<<8&0xff00 | abstime[0]>>8&0x00ff | abstime[0]&0xffff0000; abstime[1] = abstime[1]<<8&0xff00 | abstime[1]>>8&0x00ff | abstime[1]&0xffff0000; for (int i=4*8-1; i>=0; i--) *fLog << (int)(abstime[0]&BIT(i)?1:0); *fLog << " "; for (int i=4*8-1; i>=0; i--) *fLog << (int)(abstime[1]&BIT(i)?1:0); *fLog << endl; /* *fLog << hex << abstime[0] << " " << abstime[1] << endl; */ // Strange thing! Char_t t = abstime[0]>>8 &0xf; abstime[0] &= 0xfffff0ff; // *fLog << abstime[0]<< " " << (int)t << endl; for (int i=0; i<4; i++) { abstime[0] |= (t&BIT(i) ? 1 : 0)<<(11-i); //*fLog << ((t&BIT(i) ? 1 : 0)<<(11-i)) << " "; } //*fLog << endl << abstime[0]<< endl; // Decode const Byte_t h = (abstime[0]>>18 & 0x3)*10 + (abstime[0]>>14 & 0xf); const Byte_t m = (abstime[0]>>11 & 0x7)*10 + (abstime[0]>> 7 & 0xf); const Byte_t s = (abstime[0]>> 4 & 0x7)*10 + (abstime[0]>> 0 & 0xf); const Int_t ms = ((abstime[0]>>12)&0xf)*1000 + ((abstime[0]>> 8)&0xf)* 100 + ((abstime[0]>> 4)&0xf)* 10 + ((abstime[0]>> 0)&0xf)* 1; // hms =3210 --> h=2:4 m=3:4 s=3:4 // subsec=DCBA --> subsec? *fLog << all << dec << setfill('0') << setw(2) << (int)h << ":" << setw(2) << (int)m << ":" << setw(2) << (int)s; *fLog << " " << hex; *fLog << (int)(abstime[0]>>12 & 0xf) << "."; *fLog << (int)(abstime[0]>> 8 & 0xf) << "."; *fLog << (int)(abstime[0]>> 4 & 0xf) << "."; *fLog << (int)(abstime[0]>> 0 & 0xf); *fLog << endl; // Update the time stamp with the current event time. // Make sure, that the time stamp was initialized correctly // with the start-date/time of the run (after reading the run header) // // Here the nanosec precision is ignored... (FIXME!) static int i=0; i++; fTime->Print(); fTime->UpdMagicTime(h, m, s, 0/*ms*/); fTime->Print(); return i<5; //return fTime->UpdMagicTime(h, m, s, ms); } // -------------------------------------------------------------------------- // // read the EVENT HEADER information from the input stream // return FALSE if there is now header anymore, else TRUE // // Updates the time stamp with the current event time. // Make sure, that the time stamp was initialized correctly // with the start-date/time of the run (after reading the run header) // // Remark: This 'feature' disallows single runs of more than 11h! // int MRawEvtHeader::ReadEvt(istream &fin) { fin.read((char*)&fDAQEvtNumber, 4); // Total=4 *fLog << "N: " << fDAQEvtNumber << endl; UInt_t abstime[2]; // BADC|1032 fin.read((char*)abstime, 8); // Total=12 if (!DecodeTime(abstime)) { *fLog << err << "ERROR - Event time in event header invalid... abort." << endl; return kFALSE; } Byte_t dummy[4]; fin.read((char*)&fNumTrigLvl1, 4); // Total=16 fin.read((char*)&fNumTrigLvl2, 4); // Total=20 fin.read((char*)fTrigPattern, 8); // Total=28 fin.read((char*)&fTrigType, 2); // Total=30 fin.read((char*)dummy, 2); // Total=32, was fAllLoGainOn fin.read((char*)fPixLoGainOn->GetArray(), fPixLoGainOn->GetSize()); *fLog << "T: " << fTrigType << endl; fNumLoGainOn = 0; for (unsigned int i=0; iGetSize(); i++) for (int j=0; j<8; j++) if ((*fPixLoGainOn)[i] & (1<