source: trunk/MagicSoft/Mars/mraw/MRawEvtHeader.cc@ 3843

Last change on this file since 3843 was 3800, checked in by tbretz, 21 years ago
*** empty log message ***
File size: 11.2 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: MAGIC Software Development, 2000-2004
21!
22!
23\* ======================================================================== */
24
25/////////////////////////////////////////////////////////////////////////////
26//
27// MRawEvtHeader
28//
29// One Event is a sample of FADC measurements of different Pixels
30// (Photomultipliers) from the Camera of MAGIC. So all data (FADC) of the
31// interesting pixels are the modules of an event. To describe pixels the
32// class MRawPixel is used and the class MRawCrate to describe Crates.
33// To define a single events some other data members are needed
34// (Time of the events, tirgger pattern of event..)
35//
36// To describe one event on the level of FADC values the Class MRawEvtHeader is
37// created. It has the following data members:
38//
39// UInt_t fDAQEvtNumber
40// -----------------------
41// This it the number of the Event in one
42// data run. The first event in this run get
43// the number zero. The next one is one bigger.
44//
45// Assuming that one run takes 1 hour and a
46// triggerrate of 1kHz the number must be able
47// to reach 3.6e6 Events. To reach this number
48// you need at least 22 bits. This is the reason
49// why we use an integer (of root type UInt_t)
50// with a range to 4.2e9.
51//
52// MTime fRawEvtTime
53// -------------------
54// Time of the event.
55// The start point of the time determination can be
56// the millenium. From that start point the time is
57// measured in 200ns-count. One day for example
58// contains 432.e9 counts. An array of two unsigned Int is able to
59// contain 1.8e19 200ns-counts. This corresponds to 41.e6
60// days. This should be more than the livetime of MAGIC.
61// Private member of MTime.h
62//
63// UInt_t fNumTrigLvl1
64// --------------------
65//
66// Number of first level trigger
67// This member counts the number of First Level Trigger
68// between the last and this event. May be that due to
69// dead time of the DAQ this number is different from 1.
70// If the DAQ is fast enough, this value should be 1.
71// This may be usefull in GammaRayBursts and if we
72// apply a data reduction in the DAQ-chain, which selects
73// only good events.
74//
75// UInt_t fNumTrigLvl2
76// ------------------ -
77//
78// Number of second level trigger
79// This member counts the number of Second Level Trigger
80// between the last and this event.
81//
82// UInt_t fTrigPattern[2]
83// -----------------------
84// Trigger Pattern used for this event
85// Each event triggers for a particular configuration and each
86// configuration should have an ID (which is not fixed yet).
87//
88// UShort_t fAllLowGainOn
89// ----------------------
90// Type of Trigger.
91// This is a Byte (8 bit) to indicated if any of the pixels
92// have a non-negligible low gain (1) or not (0)
93//
94/////////////////////////////////////////////////////////////////////////////
95#include "MRawEvtHeader.h"
96
97#include <iomanip>
98#include <fstream>
99
100#include "MLog.h"
101#include "MLogManip.h"
102
103#include "MTime.h"
104#include "MArrayB.h"
105#include "MRawRunHeader.h"
106
107ClassImp(MRawEvtHeader);
108
109using namespace std;
110
111// --------------------------------------------------------------------------
112//
113// Default constructor. Create the array to store the data.
114//
115MRawEvtHeader::MRawEvtHeader(const char *name, const char *title)
116{
117 fName = name ? name : "MRawEvtHeader";
118 fTitle = title ? title : "Raw Event Header Information";
119
120 //
121 // set all member to zero, init the pointer to ClonesArray,
122 //
123 fPixLoGainOn = new MArrayB;
124
125 Clear();
126}
127
128// --------------------------------------------------------------------------
129//
130// Destructor. Deletes the array to store pixlogainon
131//
132MRawEvtHeader::~MRawEvtHeader()
133{
134 delete fPixLoGainOn;
135}
136
137// --------------------------------------------------------------------------
138//
139// you have to init the conatainer before you can read from
140// a raw binary file
141//
142void MRawEvtHeader::Init(MRawRunHeader *rh, MTime *t)
143{
144 //
145 // this is the number of entries in the array like specification
146 //
147 UInt_t fN = (rh->GetNumCrates() * rh->GetNumPixInCrate() + 7) / 8;
148
149 //
150 // initialize the array
151 //
152 fPixLoGainOn->Set(fN);
153
154 //
155 // this is the conatiner where we have to store the time of the event we
156 // read from the input stream
157 //
158 fTime = t;
159}
160
161// --------------------------------------------------------------------------
162//
163// Implementation of the Clear function
164//
165// Resets all members to zero, clear the list of Pixels
166//
167void MRawEvtHeader::Clear(Option_t *)
168{
169 fDAQEvtNumber = 0;
170 fNumTrigLvl1 = 0;
171 fNumTrigLvl2 = 0;
172 fTrigPattern[0] = 0;
173 fTrigPattern[1] = 0;
174 fTrigType = 0;
175 fNumLoGainOn = 0;
176}
177
178// --------------------------------------------------------------------------
179//
180// This member function prints all Data of one Event to *fLog.
181//
182void MRawEvtHeader::Print(Option_t *o) const
183{
184 *fLog << all;
185 *fLog << "DAQEvtNr: " << dec << fDAQEvtNumber << " (";
186 *fLog << "Trigger: ";
187 *fLog << "NumLvl1=" << fNumTrigLvl1 << " ";
188 *fLog << "NumLvl2=" << fNumTrigLvl2 << " ";
189 *fLog << "Pattern=" << hex << setfill('0');
190 *fLog << setw(2) << fTrigPattern[0];
191 *fLog << setw(2) << fTrigPattern[1] << " " << dec;
192
193 *fLog << "Type=";
194 switch (fTrigType)
195 {
196 case 0:
197 *fLog << "Trigger";
198 break;
199 case 1:
200 *fLog << "Pedestal";
201 break;
202 case 2:
203 *fLog << "Calibration";
204 break;
205 }
206 *fLog << ")" << endl;
207 *fLog << "Number of Lo Gains On: " << fNumLoGainOn << endl;
208
209 TString str(o);
210 str.ToLower();
211
212 if (str.Contains("nogains"))
213 return;
214
215 for (unsigned int i=0; i<fPixLoGainOn->GetSize(); i++)
216 {
217 for (int j=0; j<8; j++)
218 {
219 const UInt_t on = (*fPixLoGainOn)[i]&(1<<j) ? 1 : 0;
220 *fLog << on;
221 }
222 }
223 if (fPixLoGainOn->GetSize())
224 *fLog << endl;
225}
226
227// --------------------------------------------------------------------------
228//
229// Used to set the header information. This is for MC only. NEVER, NEVER
230// use this somewhere else!
231//
232void MRawEvtHeader::FillHeader(UInt_t uiN, Float_t ulTP)
233{
234 fDAQEvtNumber = uiN;
235 fTrigPattern[0] = (UInt_t)(ulTP/4294967296.0) ;
236 fTrigPattern[1] = (UInt_t)(ulTP-fTrigPattern[0]*4294967296.0);
237}
238
239// --------------------------------------------------------------------------
240//
241// Decode the binary Time Stamp. For more detailed information see the
242// source code.
243//
244Bool_t MRawEvtHeader::DecodeTime(UInt_t abstime[2]) const
245{
246 //
247 // SuperSecond (20 bits giving hh:mm:ss)
248 // ------------
249 //
250 // Reading the hours:
251 // Swap bits: 23->16, 22->17, 21->16, 20->19
252 //
253 abstime[0] =
254 abstime[0]>>7 & 0x00010000 |
255 abstime[0]>>5 & 0x00020000 |
256 abstime[0]>>3 & 0x00040000 |
257 abstime[0]>>1 & 0x00080000 |
258 abstime[0] & 0xff00ffff;
259
260 //
261 // SubSecond (24 bits giving number of clock ticks of a 5Mhz signal since
262 // the beginning of last second, i.e., number of ns with a precision of to
263 // 200 ns)
264 // ----------
265 //
266 // Due to a problem with one Digital Module, three of the less significant
267 // eight bits of the subsecond are corrupted. So, until new DM's arrive to
268 // La Palma, we won't use the eight first bits of the subsecond.
269 // This reduces the precision from 200 ns to of 51.2 us.
270 //
271 abstime[1] &= 0xffffff00;
272
273 //
274 // Decode Time Stamp
275 //
276 const Byte_t h = (abstime[0]>>18 & 0x3)*10 + (abstime[0]>>14 & 0xf);
277 const Byte_t m = (abstime[0]>>11 & 0x7)*10 + (abstime[0]>> 7 & 0xf);
278 const Byte_t s = (abstime[0]>> 4 & 0x7)*10 + (abstime[0]>> 0 & 0xf);
279 const UInt_t ns = abstime[1]*200;
280
281 //
282 // Update the time stamp with the current event time.
283 // Make sure, that the time stamp was initialized correctly
284 // with the start-date/time of the run (after reading the run header)
285 //
286 return fTime->UpdMagicTime(h, m, s, ns);
287}
288
289// --------------------------------------------------------------------------
290//
291// read the EVENT HEADER information from the input stream
292// return FALSE if there is now header anymore, else TRUE
293//
294// For version>2 we expect to have a valid time-stamp in the files.
295//
296// Updates the time stamp with the current event time.
297// Make sure, that the time stamp was initialized correctly
298// with the start-date/time of the run (after reading the run header)
299//
300// Remark: This 'feature' disallows single runs of more than 11h!
301//
302int MRawEvtHeader::ReadEvt(istream &fin, UShort_t ver)
303{
304 fin.read((char*)&fDAQEvtNumber, 4); // Total=4
305
306 UInt_t abstime[2];
307 fin.read((char*)abstime, 8); // Total=12
308
309 if (ver>2)
310 if (!DecodeTime(abstime))
311 {
312 *fLog << warn << "WARNING - Event time in event header invalid... abort." << endl;
313 return kCONTINUE;
314 }
315
316 Byte_t dummy[4];
317 fin.read((char*)&fNumTrigLvl1, 4); // Total=16
318 fin.read((char*)&fNumTrigLvl2, 4); // Total=20
319 fin.read((char*)fTrigPattern, 8); // Total=28
320 fin.read((char*)&fTrigType, 2); // Total=30
321 fin.read((char*)dummy, 2); // Total=32, was fAllLoGainOn
322 fin.read((char*)fPixLoGainOn->GetArray(), fPixLoGainOn->GetSize());
323
324 fNumLoGainOn = 0;
325 for (unsigned int i=0; i<fPixLoGainOn->GetSize(); i++)
326 for (int j=0; j<8; j++)
327 if ((*fPixLoGainOn)[i] & (1<<j))
328 fNumLoGainOn++;
329
330 fin.read((char*)&dummy, 4);
331
332 return !fin.eof();
333}
334
335void MRawEvtHeader::SkipEvt(istream &fin, UShort_t ver)
336{
337 fin.seekg(36+fPixLoGainOn->GetSize(), ios::cur);
338}
339
340// --------------------------------------------------------------------------
341//
342// Low level decoding of the trigger pattern.
343// The trigger pattern consists of 16 bits (8+8 bits) generated by the
344// trigger system.
345// The first 8 bits correspond to the trigger configuration before the
346// prescaling, the others after prescaling.
347// The meaning of the configuration depends on the chosen trigger table
348// (that is how the trigger has been programmed) and must be interpreted
349// at higher level by the analysis.
350// Bit structure:
351// not prscd | prscaled
352// xxxx xxxx xxxx xxxx <-- pattern (x=0,1)
353// bit 7654 3210 7654 3210
354// H L
355//
356// e.g. 1000 0000 1000 1000 (hex: 8080) is the pattern when no
357// L2 trigger selection and no prescaling is applied.
358//
359// Up to now only fTrigPattern[0] is used.
360//
361UInt_t MRawEvtHeader::GetTriggerID() const
362{
363 UInt_t trigID=0;
364
365 trigID = fTrigPattern[0];
366
367 return trigID;
368}
Note: See TracBrowser for help on using the repository browser.