source: trunk/MagicSoft/Mars/mraw/MRawEvtHeader.cc@ 4851

Last change on this file since 4851 was 4648, checked in by tbretz, 20 years ago
*** empty log message ***
File size: 12.8 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: MAGIC Software Development, 2000-2004
21!
22!
23\* ======================================================================== */
24
25/////////////////////////////////////////////////////////////////////////////
26//
27// MRawEvtHeader
28//
29// One Event is a sample of FADC measurements of different Pixels
30// (Photomultipliers) from the Camera of MAGIC. So all data (FADC) of the
31// interesting pixels are the modules of an event. To describe pixels the
32// class MRawPixel is used and the class MRawCrate to describe Crates.
33// To define a single events some other data members are needed
34// (Time of the events, tirgger pattern of event..)
35//
36// To describe one event on the level of FADC values the Class MRawEvtHeader is
37// created. It has the following data members:
38//
39// UInt_t fDAQEvtNumber
40// -----------------------
41// This it the number of the Event in one
42// data run. The first event in this run get
43// the number zero. The next one is one bigger.
44//
45// Assuming that one run takes 1 hour and a
46// triggerrate of 1kHz the number must be able
47// to reach 3.6e6 Events. To reach this number
48// you need at least 22 bits. This is the reason
49// why we use an integer (of root type UInt_t)
50// with a range to 4.2e9.
51//
52// MTime fRawEvtTime
53// -------------------
54// Time of the event.
55// The start point of the time determination can be
56// the millenium. From that start point the time is
57// measured in 200ns-count. One day for example
58// contains 432.e9 counts. An array of two unsigned Int is able to
59// contain 1.8e19 200ns-counts. This corresponds to 41.e6
60// days. This should be more than the livetime of MAGIC.
61// Private member of MTime.h
62//
63// UInt_t fNumTrigLvl1
64// --------------------
65//
66// Number of first level trigger
67// This member counts the number of First Level Trigger
68// between the last and this event. May be that due to
69// dead time of the DAQ this number is different from 1.
70// If the DAQ is fast enough, this value should be 1.
71// This may be usefull in GammaRayBursts and if we
72// apply a data reduction in the DAQ-chain, which selects
73// only good events.
74//
75// UInt_t fNumTrigLvl2
76// --------------------
77//
78// Number of second level trigger
79// This member counts the number of Second Level Trigger
80// between the last and this event.
81//
82// UInt_t fTrigPattern[2]
83// -----------------------
84// Trigger Pattern used for this event
85// Each event triggers for a particular configuration and each
86// configuration should have an ID (which is not fixed yet).
87//
88// UShort_t fAllLowGainOn
89// ----------------------
90// Type of Trigger.
91// This is a Byte (8 bit) to indicated if any of the pixels
92// have a non-negligible low gain (1) or not (0)
93//
94// UInt_t fCalibPattern
95// --------------------
96//
97// Bits 1-16: Pulser slot pattern: 16 LEDs slots (see Diploma Thesis
98// of Michele)
99//
100// Bits 17-24: Power of Continous light source: 256 level
101//
102// Bits 25-28: Farbe der Continuous Light: red-amber-green/blue-uv
103//
104// Bit 29: Calibration trigger On/off
105// Bit 30: Pedestal trigger on/off
106// Bit 31: PIN Diode calibration trigger on/off
107//
108//
109// Class Version 2:
110// ---------------
111// - added fCalibPattern
112//
113/////////////////////////////////////////////////////////////////////////////
114#include "MRawEvtHeader.h"
115
116#include <iomanip>
117#include <fstream>
118
119#include "MLog.h"
120#include "MLogManip.h"
121
122#include "MTime.h"
123#include "MArrayB.h"
124#include "MRawRunHeader.h"
125
126ClassImp(MRawEvtHeader);
127
128using namespace std;
129
130// --------------------------------------------------------------------------
131//
132// Default constructor. Create the array to store the data.
133//
134MRawEvtHeader::MRawEvtHeader(const char *name, const char *title)
135{
136 fName = name ? name : "MRawEvtHeader";
137 fTitle = title ? title : "Raw Event Header Information";
138
139 //
140 // set all member to zero, init the pointer to ClonesArray,
141 //
142 fPixLoGainOn = new MArrayB;
143
144 Clear();
145}
146
147// --------------------------------------------------------------------------
148//
149// Destructor. Deletes the array to store pixlogainon
150//
151MRawEvtHeader::~MRawEvtHeader()
152{
153 delete fPixLoGainOn;
154}
155
156// --------------------------------------------------------------------------
157//
158// you have to init the conatainer before you can read from
159// a raw binary file
160//
161void MRawEvtHeader::InitRead(MRawRunHeader *rh, MTime *t)
162{
163 //
164 // this is the number of entries in the array like specification
165 //
166 UInt_t fN = (rh->GetNumCrates() * rh->GetNumPixInCrate() + 7) / 8;
167
168 //
169 // initialize the array
170 //
171 fPixLoGainOn->Set(fN);
172
173 //
174 // this is the conatiner where we have to store the time of the event we
175 // read from the input stream
176 //
177 fTime = t;
178}
179
180// --------------------------------------------------------------------------
181//
182// Implementation of the Clear function
183//
184// Resets all members to zero, clear the list of Pixels
185//
186void MRawEvtHeader::Clear(Option_t *)
187{
188 fDAQEvtNumber = 0;
189 fNumTrigLvl1 = 0;
190 fNumTrigLvl2 = 0;
191 fTrigPattern[0] = 0;
192 fTrigPattern[1] = 0;
193 fTrigType = 0;
194 fNumLoGainOn = 0;
195}
196
197// --------------------------------------------------------------------------
198//
199// This member function prints all Data of one Event to *fLog.
200//
201void MRawEvtHeader::Print(Option_t *o) const
202{
203 *fLog << all;
204 *fLog << "DAQEvtNr: " << dec << fDAQEvtNumber << " (";
205 *fLog << "Trigger: ";
206 *fLog << "NumLvl1=" << fNumTrigLvl1 << " ";
207 *fLog << "NumLvl2=" << fNumTrigLvl2 << " ";
208 *fLog << "Pattern=" << hex << setfill('0');
209 *fLog << setw(2) << fTrigPattern[0];
210 *fLog << setw(2) << fTrigPattern[1] << " " << dec;
211
212 *fLog << "Type=";
213 switch (fTrigType)
214 {
215 case 0:
216 *fLog << "Trigger";
217 break;
218 case 1:
219 *fLog << "Pedestal";
220 break;
221 case 2:
222 *fLog << "Calibration";
223 break;
224 }
225 *fLog << ")" << endl;
226 *fLog << "Number of Lo Gains On: " << fNumLoGainOn << endl;
227
228 TString str(o);
229 str.ToLower();
230
231 if (str.Contains("nogains"))
232 return;
233
234 for (unsigned int i=0; i<fPixLoGainOn->GetSize(); i++)
235 {
236 for (int j=0; j<8; j++)
237 {
238 const UInt_t on = (*fPixLoGainOn)[i]&(1<<j) ? 1 : 0;
239 *fLog << on;
240 }
241 }
242 if (fPixLoGainOn->GetSize())
243 *fLog << endl;
244}
245
246// --------------------------------------------------------------------------
247//
248// Return the size in bytes of the event header.
249//
250Int_t MRawEvtHeader::GetNumBytes() const
251{
252 return 36+fPixLoGainOn->GetSize();
253}
254
255// --------------------------------------------------------------------------
256//
257// Used to set the header information. This is for MC only. NEVER, NEVER
258// use this somewhere else!
259//
260void MRawEvtHeader::FillHeader(UInt_t uiN, Float_t ulTP)
261{
262 fDAQEvtNumber = uiN;
263 fTrigPattern[0] = (UInt_t)(ulTP/4294967296.0) ;
264 fTrigPattern[1] = (UInt_t)(ulTP-fTrigPattern[0]*4294967296.0);
265}
266
267// --------------------------------------------------------------------------
268//
269// Decode the binary Time Stamp. For more detailed information see the
270// source code.
271//
272Bool_t MRawEvtHeader::DecodeTime(UInt_t abstime[2]) const
273{
274 //
275 // SuperSecond (20 bits giving hh:mm:ss)
276 // ------------
277 //
278 // Reading the hours:
279 // Swap bits: 23->16, 22->17, 21->16, 20->19
280 //
281 abstime[0] =
282 abstime[0]>>7 & 0x00010000 |
283 abstime[0]>>5 & 0x00020000 |
284 abstime[0]>>3 & 0x00040000 |
285 abstime[0]>>1 & 0x00080000 |
286 abstime[0] & 0xff00ffff;
287
288 //
289 // SubSecond (24 bits giving number of clock ticks of a 5Mhz signal since
290 // the beginning of last second, i.e., number of ns with a precision of to
291 // 200 ns)
292 // ----------
293 //
294 // Due to a problem with one Digital Module, three of the less significant
295 // eight bits of the subsecond are corrupted. So, until new DM's arrive to
296 // La Palma, we won't use the eight first bits of the subsecond.
297 // This reduces the precision from 200 ns to of 51.2 us.
298 //
299 abstime[1] &= 0xffffff00;
300
301 //
302 // Decode Time Stamp
303 //
304 const Byte_t h = (abstime[0]>>18 & 0x3)*10 + (abstime[0]>>14 & 0xf);
305 const Byte_t m = (abstime[0]>>11 & 0x7)*10 + (abstime[0]>> 7 & 0xf);
306 const Byte_t s = (abstime[0]>> 4 & 0x7)*10 + (abstime[0]>> 0 & 0xf);
307 const UInt_t ns = abstime[1]*200;
308
309 //
310 // Update the time stamp with the current event time.
311 // Make sure, that the time stamp was initialized correctly
312 // with the start-date/time of the run (after reading the run header)
313 //
314 if (fTime->UpdMagicTime(h, m, s, ns))
315 return kTRUE;
316
317 *fLog << warn << "WARNING - Time (" << Form("%2d:%02d:%02d,%09d", h, m, s, ns);
318 *fLog << ") in header of event #" << dec << fDAQEvtNumber << " invalid..." << endl;
319
320 return kFALSE;
321}
322
323// --------------------------------------------------------------------------
324//
325// read the EVENT HEADER information from the input stream
326// return FALSE if there is now header anymore, else TRUE
327//
328// For version>2 we expect to have a valid time-stamp in the files.
329//
330// Updates the time stamp with the current event time.
331// Make sure, that the time stamp was initialized correctly
332// with the start-date/time of the run (after reading the run header)
333//
334// Remark: This 'feature' disallows single runs of more than 11h!
335//
336Int_t MRawEvtHeader::ReadEvt(istream &fin, UShort_t ver)
337{
338 Bool_t rc = kTRUE;
339
340 fin.read((char*)&fDAQEvtNumber, 4); // Total=4
341 if (!fin)
342 return kFALSE;
343
344 UInt_t abstime[2];
345 fin.read((char*)abstime, 8); // Total=12
346
347 if (ver>2)
348 if (!DecodeTime(abstime))
349 rc = kCONTINUE;
350
351 Byte_t dummy[4];
352 fin.read((char*)&fNumTrigLvl1, 4); // Total=16
353 fin.read((char*)&fNumTrigLvl2, 4); // Total=20
354 fin.read((char*)fTrigPattern, 8); // Total=28
355 fin.read((char*)&fTrigType, 2); // Total=30
356 fin.read((char*)dummy, 2); // Total=32, was fAllLoGainOn
357 fin.read((char*)fPixLoGainOn->GetArray(), fPixLoGainOn->GetSize());
358
359 fNumLoGainOn = 0;
360 for (unsigned int i=0; i<fPixLoGainOn->GetSize(); i++)
361 for (int j=0; j<8; j++)
362 if ((*fPixLoGainOn)[i] & (1<<j))
363 fNumLoGainOn++;
364
365 fin.read((char*)&dummy, 4);
366
367 return fin.eof() ? kFALSE : rc;
368}
369
370void MRawEvtHeader::SkipEvt(istream &fin, UShort_t ver)
371{
372 fin.seekg(GetNumBytes(), ios::cur);
373}
374
375// --------------------------------------------------------------------------
376//
377// Low level decoding of the trigger pattern.
378// The trigger pattern consists of 16 bits (8+8 bits) generated by the
379// trigger system.
380// The first 8 bits correspond to the trigger configuration before the
381// prescaling, the others after prescaling.
382// The meaning of the configuration depends on the chosen trigger table
383// (that is how the trigger has been programmed) and must be interpreted
384// at higher level by the analysis.
385// Bit structure:
386// not prscd | prscaled
387// xxxx xxxx xxxx xxxx <-- pattern (x=0,1)
388// bit 7654 3210 7654 3210
389// H L
390//
391// e.g. 1000 0000 1000 1000 (hex: 8080) is the pattern when no
392// L2 trigger selection and no prescaling is applied.
393//
394// Up to now only fTrigPattern[0] is used.
395//
396UInt_t MRawEvtHeader::GetTriggerID() const
397{
398 return fTrigPattern[0];
399}
400
401UInt_t MRawEvtHeader::GetCalibrationPattern() const
402{
403 return fTrigPattern[1];
404}
405/*
406// --------------------------------------------------------------------------
407//
408// return pulser slot patter, see class reference
409//
410UShort_t MRawEvtHeader::GetPulserSlotPattern() const
411{
412 return fTrigPattern[1] & 0xffff;
413}
414
415// --------------------------------------------------------------------------
416//
417// return power of continous light, see class reference
418//
419Byte_t MRawEvtHeader::GetPowerOfContLight() const
420{
421 return (fTrigPattern[1]<<16) & 0xff;
422}
423
424// --------------------------------------------------------------------------
425//
426// return color of continous light, see class reference
427//
428MRawEvtHeader::CalibCol_t MRawEvtHeader::GetContLedColor() const
429{
430 return (CalibCol_t)((fTrigPattern[1]<<24)&0xf);
431}
432*/
Note: See TracBrowser for help on using the repository browser.