| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Hendrik Bartko, 09/2004 <mailto:hbartko@mppmu.mpg.de>
|
|---|
| 19 | ! Author(s): Markus Gaug, 05/2004 <mailto:markus@ifae.es>
|
|---|
| 20 | ! Author(s): Diego Tescaro, 05/2004 <mailto:tescaro@pd.infn.it>
|
|---|
| 21 | !
|
|---|
| 22 | ! Copyright: MAGIC Software Development, 2000-2004
|
|---|
| 23 | !
|
|---|
| 24 | !
|
|---|
| 25 | \* ======================================================================== */
|
|---|
| 26 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 27 | //
|
|---|
| 28 | // MExtractTimeAndChargeDigitalFilter
|
|---|
| 29 | //
|
|---|
| 30 | // Hendrik has promised to write more documentation
|
|---|
| 31 | //
|
|---|
| 32 | //
|
|---|
| 33 | // The following variables have to be set by the derived class and
|
|---|
| 34 | // do not have defaults:
|
|---|
| 35 | // - fNumHiGainSamples
|
|---|
| 36 | // - fNumLoGainSamples
|
|---|
| 37 | // - fSqrtHiGainSamples
|
|---|
| 38 | // - fSqrtLoGainSamples
|
|---|
| 39 | //
|
|---|
| 40 | // Input Containers:
|
|---|
| 41 | // MRawEvtData
|
|---|
| 42 | // MRawRunHeader
|
|---|
| 43 | // MPedestalCam
|
|---|
| 44 | //
|
|---|
| 45 | // Output Containers:
|
|---|
| 46 | // MArrivalTimeCam
|
|---|
| 47 | // MExtractedSignalCam
|
|---|
| 48 | //
|
|---|
| 49 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 50 | #include "MExtractTimeAndChargeDigitalFilter.h"
|
|---|
| 51 |
|
|---|
| 52 | #include <errno.h>
|
|---|
| 53 | #include <fstream>
|
|---|
| 54 |
|
|---|
| 55 | #include <TFile.h>
|
|---|
| 56 | #include <TH1F.h>
|
|---|
| 57 | #include <TH2F.h>
|
|---|
| 58 | #include <TString.h>
|
|---|
| 59 | #include <TMatrix.h>
|
|---|
| 60 |
|
|---|
| 61 | #include "MLog.h"
|
|---|
| 62 | #include "MLogManip.h"
|
|---|
| 63 |
|
|---|
| 64 | #include "MPedestalPix.h"
|
|---|
| 65 |
|
|---|
| 66 | ClassImp(MExtractTimeAndChargeDigitalFilter);
|
|---|
| 67 |
|
|---|
| 68 | using namespace std;
|
|---|
| 69 |
|
|---|
| 70 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgHiGainFirst = 0;
|
|---|
| 71 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgHiGainLast = 14;
|
|---|
| 72 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgLoGainFirst = 3;
|
|---|
| 73 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgLoGainLast = 14;
|
|---|
| 74 | const Int_t MExtractTimeAndChargeDigitalFilter::fgWindowSizeHiGain = 6;
|
|---|
| 75 | const Int_t MExtractTimeAndChargeDigitalFilter::fgWindowSizeLoGain = 6;
|
|---|
| 76 | const Int_t MExtractTimeAndChargeDigitalFilter::fgBinningResolutionHiGain = 10;
|
|---|
| 77 | const Int_t MExtractTimeAndChargeDigitalFilter::fgBinningResolutionLoGain = 10;
|
|---|
| 78 | const Int_t MExtractTimeAndChargeDigitalFilter::fgSignalStartBinHiGain = 4;
|
|---|
| 79 | const Int_t MExtractTimeAndChargeDigitalFilter::fgSignalStartBinLoGain = 4;
|
|---|
| 80 | const TString MExtractTimeAndChargeDigitalFilter::fgNameWeightsFile = "msignal/cosmics_weights.dat";
|
|---|
| 81 | const Float_t MExtractTimeAndChargeDigitalFilter::fgOffsetLoGain = 1.8; // 5 ns
|
|---|
| 82 | // --------------------------------------------------------------------------
|
|---|
| 83 | //
|
|---|
| 84 | // Default constructor.
|
|---|
| 85 | //
|
|---|
| 86 | // Calls:
|
|---|
| 87 | // - SetWindowSize();
|
|---|
| 88 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast)
|
|---|
| 89 | // - SetBinningResolution();
|
|---|
| 90 | //
|
|---|
| 91 | // Sets all weights to 1.
|
|---|
| 92 | //
|
|---|
| 93 | MExtractTimeAndChargeDigitalFilter::MExtractTimeAndChargeDigitalFilter(const char *name, const char *title)
|
|---|
| 94 | : fWeightsSet(kFALSE), fRandomIter(0)
|
|---|
| 95 | {
|
|---|
| 96 | fName = name ? name : "MExtractTimeAndChargeDigitalFilter";
|
|---|
| 97 | fTitle = title ? title : "Digital Filter";
|
|---|
| 98 |
|
|---|
| 99 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast);
|
|---|
| 100 | SetWindowSize();
|
|---|
| 101 | SetBinningResolution();
|
|---|
| 102 | SetSignalStartBin();
|
|---|
| 103 |
|
|---|
| 104 | SetNameWeightsFile();
|
|---|
| 105 | SetOffsetLoGain(fgOffsetLoGain);
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | // ---------------------------------------------------------------------------------------
|
|---|
| 109 | //
|
|---|
| 110 | // Checks:
|
|---|
| 111 | // - if a window is bigger than the one defined by the ranges, set it to the available range
|
|---|
| 112 | //
|
|---|
| 113 | // Sets:
|
|---|
| 114 | // - fNumHiGainSamples to: (Float_t)fWindowSizeHiGain
|
|---|
| 115 | // - fNumLoGainSamples to: (Float_t)fWindowSizeLoGain
|
|---|
| 116 | //
|
|---|
| 117 | void MExtractTimeAndChargeDigitalFilter::SetWindowSize(Int_t windowh, Int_t windowl)
|
|---|
| 118 | {
|
|---|
| 119 |
|
|---|
| 120 | if (windowh != fgWindowSizeHiGain)
|
|---|
| 121 | *fLog << warn << GetDescriptor()
|
|---|
| 122 | << ": ATTENTION!!! If you are not Hendrik Bartko, do NOT use a different window size than the default." << endl;
|
|---|
| 123 | if (windowl != fgWindowSizeLoGain)
|
|---|
| 124 | *fLog << warn << GetDescriptor()
|
|---|
| 125 | << ": ATTENTION!!! If you are not Hendrik Bartko, do NOT use a different window size than the default" << endl;
|
|---|
| 126 |
|
|---|
| 127 | fWindowSizeHiGain = windowh;
|
|---|
| 128 | fWindowSizeLoGain = windowl;
|
|---|
| 129 |
|
|---|
| 130 | const Int_t availhirange = (Int_t)(fHiGainLast-fHiGainFirst+1);
|
|---|
| 131 |
|
|---|
| 132 | if (fWindowSizeHiGain > availhirange)
|
|---|
| 133 | {
|
|---|
| 134 | // Please simplify this!
|
|---|
| 135 | *fLog << warn << GetDescriptor()
|
|---|
| 136 | << Form("%s%2i%s%2i%s%2i%s",": Hi Gain window size: ",fWindowSizeHiGain,
|
|---|
| 137 | " is bigger than available range: [",(int)fHiGainFirst,",",(int)fHiGainLast,"]") << endl;
|
|---|
| 138 | fHiGainLast = fHiGainFirst + fWindowSizeHiGain;
|
|---|
| 139 | *fLog << warn << GetDescriptor()
|
|---|
| 140 | << ": Will set the upper range to: " << (int)fHiGainLast << endl;
|
|---|
| 141 | }
|
|---|
| 142 |
|
|---|
| 143 | if (fWindowSizeHiGain < 2)
|
|---|
| 144 | {
|
|---|
| 145 | fWindowSizeHiGain = 2;
|
|---|
| 146 | *fLog << warn << GetDescriptor() << ": High Gain window size set to two samples" << endl;
|
|---|
| 147 | }
|
|---|
| 148 |
|
|---|
| 149 | if (fLoGainLast != 0 && fWindowSizeLoGain != 0)
|
|---|
| 150 | {
|
|---|
| 151 | const Int_t availlorange = (Int_t)(fLoGainLast-fLoGainFirst+1);
|
|---|
| 152 |
|
|---|
| 153 | if (fWindowSizeLoGain > availlorange)
|
|---|
| 154 | {
|
|---|
| 155 | // Please simplify this!
|
|---|
| 156 | *fLog << warn << GetDescriptor()
|
|---|
| 157 | << Form("%s%2i%s%2i%s%2i%s",": Lo Gain window size: ",fWindowSizeLoGain,
|
|---|
| 158 | " is bigger than available range: [",(int)fLoGainFirst,",",(int)fLoGainLast,"]") << endl;
|
|---|
| 159 | fLoGainLast = fLoGainFirst + fWindowSizeLoGain;
|
|---|
| 160 | *fLog << warn << GetDescriptor()
|
|---|
| 161 | << ": Will set the upper range to: " << (int)fLoGainLast << endl;
|
|---|
| 162 | }
|
|---|
| 163 |
|
|---|
| 164 | if (fWindowSizeLoGain<2)
|
|---|
| 165 | {
|
|---|
| 166 | fWindowSizeLoGain = 2;
|
|---|
| 167 | *fLog << warn << GetDescriptor() << ": Low Gain window size set to two samples" << endl;
|
|---|
| 168 | }
|
|---|
| 169 | }
|
|---|
| 170 | //
|
|---|
| 171 | // We need here the effective number of samples which is about 2.5 in the case of a window
|
|---|
| 172 | // size of 6. The exact numbers have to be found still.
|
|---|
| 173 | //
|
|---|
| 174 | fNumHiGainSamples = (Float_t)fWindowSizeHiGain/2.4;
|
|---|
| 175 | fNumLoGainSamples = (Float_t)fWindowSizeLoGain/2.4;
|
|---|
| 176 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
|---|
| 177 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
|---|
| 178 |
|
|---|
| 179 | }
|
|---|
| 180 |
|
|---|
| 181 | // --------------------------------------------------------------------------
|
|---|
| 182 | //
|
|---|
| 183 | // InitArrays
|
|---|
| 184 | //
|
|---|
| 185 | // Gets called in the ReInit() and initialized the arrays
|
|---|
| 186 | //
|
|---|
| 187 | Bool_t MExtractTimeAndChargeDigitalFilter::InitArrays()
|
|---|
| 188 | {
|
|---|
| 189 |
|
|---|
| 190 | Int_t range = (Int_t)(fHiGainLast - fHiGainFirst + 1 + fHiLoLast);
|
|---|
| 191 |
|
|---|
| 192 | fHiGainSignal.Set(range);
|
|---|
| 193 |
|
|---|
| 194 | range = (Int_t)(fLoGainLast - fLoGainFirst + 1);
|
|---|
| 195 |
|
|---|
| 196 | fLoGainSignal.Set(range);
|
|---|
| 197 |
|
|---|
| 198 | if (!fWeightsSet)
|
|---|
| 199 | if (!ReadWeightsFile(fNameWeightsFile))
|
|---|
| 200 | return kFALSE;
|
|---|
| 201 |
|
|---|
| 202 | fTimeShiftHiGain = (Float_t)fHiGainFirst + 0.5 + 1./fBinningResolutionHiGain;
|
|---|
| 203 | fTimeShiftLoGain = 0.5 + 1./fBinningResolutionLoGain;
|
|---|
| 204 | //
|
|---|
| 205 | // We need here the effective number of samples which is about 2.5 in the case of a window
|
|---|
| 206 | // size of 6. The exact numbers have to be found still.
|
|---|
| 207 | //
|
|---|
| 208 | fNumHiGainSamples = (Float_t)fWindowSizeHiGain/2.4;
|
|---|
| 209 | fNumLoGainSamples = (Float_t)fWindowSizeLoGain/2.4;
|
|---|
| 210 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
|---|
| 211 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
|---|
| 212 |
|
|---|
| 213 | return kTRUE;
|
|---|
| 214 | }
|
|---|
| 215 |
|
|---|
| 216 | void MExtractTimeAndChargeDigitalFilter::CalcBinningResArrays()
|
|---|
| 217 | {
|
|---|
| 218 |
|
|---|
| 219 | fArrBinningResHiGain.Set(fWindowSizeHiGain);
|
|---|
| 220 | fArrBinningResHalfHiGain.Set(fWindowSizeHiGain);
|
|---|
| 221 |
|
|---|
| 222 | for (int i=0; i<fWindowSizeHiGain; i++)
|
|---|
| 223 | {
|
|---|
| 224 | fArrBinningResHiGain[i] = fBinningResolutionHiGain*i;
|
|---|
| 225 | fArrBinningResHalfHiGain[i] = fArrBinningResHiGain[i] + fBinningResolutionHalfHiGain;
|
|---|
| 226 | }
|
|---|
| 227 |
|
|---|
| 228 | fArrBinningResLoGain.Set(fWindowSizeLoGain);
|
|---|
| 229 | fArrBinningResHalfLoGain.Set(fWindowSizeLoGain);
|
|---|
| 230 |
|
|---|
| 231 | for (int i=0; i<fWindowSizeLoGain; i++)
|
|---|
| 232 | {
|
|---|
| 233 | fArrBinningResLoGain[i] = fBinningResolutionLoGain*i;
|
|---|
| 234 | fArrBinningResHalfLoGain[i] = fArrBinningResLoGain[i] + fBinningResolutionHalfLoGain;
|
|---|
| 235 | }
|
|---|
| 236 | }
|
|---|
| 237 |
|
|---|
| 238 | // --------------------------------------------------------------------------
|
|---|
| 239 | //
|
|---|
| 240 | // Apply the digital filter algorithm to the high-gain slices.
|
|---|
| 241 | //
|
|---|
| 242 | void MExtractTimeAndChargeDigitalFilter::FindTimeAndChargeHiGain(Byte_t *ptr, Byte_t *logain, Float_t &sum, Float_t &dsum,
|
|---|
| 243 | Float_t &time, Float_t &dtime,
|
|---|
| 244 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
|---|
| 245 | {
|
|---|
| 246 |
|
|---|
| 247 | Int_t range = fHiGainLast - fHiGainFirst + 1;
|
|---|
| 248 | Int_t maxpos = 0;
|
|---|
| 249 |
|
|---|
| 250 | const Byte_t *end = ptr + range;
|
|---|
| 251 | Byte_t *p = ptr;
|
|---|
| 252 | Byte_t max = 0;
|
|---|
| 253 |
|
|---|
| 254 | //
|
|---|
| 255 | // Preparations for the pedestal subtraction (with AB-noise correction)
|
|---|
| 256 | //
|
|---|
| 257 | const Float_t pedes = ped.GetPedestal();
|
|---|
| 258 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
|---|
| 259 |
|
|---|
| 260 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
|---|
| 261 |
|
|---|
| 262 | //
|
|---|
| 263 | // Check for saturation in all other slices
|
|---|
| 264 | //
|
|---|
| 265 | Int_t ids = fHiGainFirst;
|
|---|
| 266 | Float_t *sample = fHiGainSignal.GetArray();
|
|---|
| 267 | while (p<end)
|
|---|
| 268 | {
|
|---|
| 269 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
|---|
| 270 |
|
|---|
| 271 | if (*p > max)
|
|---|
| 272 | {
|
|---|
| 273 | max = *p;
|
|---|
| 274 | maxpos = p-ptr;
|
|---|
| 275 | }
|
|---|
| 276 |
|
|---|
| 277 | if (*p++ >= fSaturationLimit)
|
|---|
| 278 | if (!sat)
|
|---|
| 279 | sat = ids-4;
|
|---|
| 280 | }
|
|---|
| 281 |
|
|---|
| 282 | if (fHiLoLast != 0)
|
|---|
| 283 | {
|
|---|
| 284 |
|
|---|
| 285 | end = logain + fHiLoLast;
|
|---|
| 286 |
|
|---|
| 287 | while (logain<end)
|
|---|
| 288 | {
|
|---|
| 289 |
|
|---|
| 290 | *sample++ = (Float_t)*logain - pedmean[(ids++ + abflag) & 0x1];
|
|---|
| 291 |
|
|---|
| 292 | if (*logain > max)
|
|---|
| 293 | {
|
|---|
| 294 | max = *logain;
|
|---|
| 295 | maxpos = range;
|
|---|
| 296 | }
|
|---|
| 297 |
|
|---|
| 298 | if (*logain++ >= fSaturationLimit)
|
|---|
| 299 | if (!sat)
|
|---|
| 300 | sat = ids-4;
|
|---|
| 301 |
|
|---|
| 302 | range++;
|
|---|
| 303 | }
|
|---|
| 304 | }
|
|---|
| 305 |
|
|---|
| 306 | //
|
|---|
| 307 | // allow no saturated slice
|
|---|
| 308 | //
|
|---|
| 309 | if (sat > 0)
|
|---|
| 310 | return;
|
|---|
| 311 |
|
|---|
| 312 | //
|
|---|
| 313 | // Slide with a window of size fWindowSizeHiGain over the sample
|
|---|
| 314 | // and multiply the entries with the corresponding weights
|
|---|
| 315 | //
|
|---|
| 316 | if (IsNoiseCalculation())
|
|---|
| 317 | {
|
|---|
| 318 | if (fRandomIter == fBinningResolutionHiGain)
|
|---|
| 319 | fRandomIter = 0;
|
|---|
| 320 | for (Int_t ids=0; ids < fWindowSizeHiGain; ids++)
|
|---|
| 321 | {
|
|---|
| 322 | const Int_t idx = fArrBinningResHiGain[ids] + fRandomIter;
|
|---|
| 323 | sum += fAmpWeightsHiGain [idx]*fHiGainSignal[ids];
|
|---|
| 324 | }
|
|---|
| 325 | fRandomIter++;
|
|---|
| 326 | return;
|
|---|
| 327 | }
|
|---|
| 328 |
|
|---|
| 329 | dtime = 1.0;
|
|---|
| 330 | const Int_t uplim = range-fWindowSizeHiGain+1;
|
|---|
| 331 |
|
|---|
| 332 | if (maxpos > uplim)
|
|---|
| 333 | {
|
|---|
| 334 | time = uplim+1;
|
|---|
| 335 | return;
|
|---|
| 336 | }
|
|---|
| 337 |
|
|---|
| 338 | maxpos -= 3;
|
|---|
| 339 |
|
|---|
| 340 | if (maxpos < 0)
|
|---|
| 341 | {
|
|---|
| 342 | time = 0.;
|
|---|
| 343 | return;
|
|---|
| 344 | }
|
|---|
| 345 |
|
|---|
| 346 | Float_t time_sum = 0.;
|
|---|
| 347 | Float_t fmax = 0.;
|
|---|
| 348 | Float_t ftime_max = 0.;
|
|---|
| 349 | Int_t max_p = 0;
|
|---|
| 350 |
|
|---|
| 351 | //
|
|---|
| 352 | // Perform first only 3 temptative calculations around the maximum!
|
|---|
| 353 | //
|
|---|
| 354 | for (Int_t i=maxpos; i<maxpos+fWindowSizeHiGain+3;i++)
|
|---|
| 355 | {
|
|---|
| 356 | sum = 0.;
|
|---|
| 357 | time_sum = 0.;
|
|---|
| 358 |
|
|---|
| 359 | //
|
|---|
| 360 | // Slide with a window of size fWindowSizeHiGain over the sample
|
|---|
| 361 | // and multiply the entries with the corresponding weights
|
|---|
| 362 | //
|
|---|
| 363 | for (Int_t sample=0; sample < fWindowSizeHiGain; sample++)
|
|---|
| 364 | {
|
|---|
| 365 | const Int_t idx = fArrBinningResHalfHiGain[sample];
|
|---|
| 366 | const Float_t pex = fHiGainSignal[sample+i];
|
|---|
| 367 | sum += fAmpWeightsHiGain [idx]*pex;
|
|---|
| 368 | time_sum += fTimeWeightsHiGain[idx]*pex;
|
|---|
| 369 | }
|
|---|
| 370 |
|
|---|
| 371 | if (sum>fmax)
|
|---|
| 372 | {
|
|---|
| 373 | fmax = sum;
|
|---|
| 374 | ftime_max = time_sum;
|
|---|
| 375 | max_p = i;
|
|---|
| 376 | }
|
|---|
| 377 | } /* for (Int_t i=maxpos;i<maxpos+fWindowSizeHiGain+3;i++) */
|
|---|
| 378 |
|
|---|
| 379 | time = 0;
|
|---|
| 380 | if (fmax==0)
|
|---|
| 381 | return;
|
|---|
| 382 |
|
|---|
| 383 | ftime_max /= fmax;
|
|---|
| 384 | Int_t t_iter = Int_t(ftime_max*fBinningResolutionHiGain);
|
|---|
| 385 | Int_t sample_iter = 0;
|
|---|
| 386 |
|
|---|
| 387 | while ( t_iter > fBinningResolutionHalfHiGain-1 || t_iter < -fBinningResolutionHalfHiGain )
|
|---|
| 388 | {
|
|---|
| 389 | if (t_iter > fBinningResolutionHalfHiGain-1)
|
|---|
| 390 | {
|
|---|
| 391 | t_iter -= fBinningResolutionHiGain;
|
|---|
| 392 | max_p--;
|
|---|
| 393 | sample_iter--;
|
|---|
| 394 | }
|
|---|
| 395 | if (t_iter < -fBinningResolutionHalfHiGain)
|
|---|
| 396 | {
|
|---|
| 397 | t_iter += fBinningResolutionHiGain;
|
|---|
| 398 | max_p++;
|
|---|
| 399 | sample_iter++;
|
|---|
| 400 | }
|
|---|
| 401 | }
|
|---|
| 402 |
|
|---|
| 403 | sum = 0.;
|
|---|
| 404 | time_sum = 0.;
|
|---|
| 405 | //
|
|---|
| 406 | // Slide with a window of size fWindowSizeHiGain over the sample
|
|---|
| 407 | // and multiply the entries with the corresponding weights
|
|---|
| 408 | //
|
|---|
| 409 | for (Int_t sample=0; sample < fWindowSizeHiGain; sample++)
|
|---|
| 410 | {
|
|---|
| 411 | const Int_t idx = fArrBinningResHalfHiGain[sample] + t_iter;
|
|---|
| 412 | const Int_t ids = max_p + sample;
|
|---|
| 413 | const Float_t pex = ids < 0 ? 0. : ( ids >= range ? 0. : fHiGainSignal[ids]);
|
|---|
| 414 | sum += fAmpWeightsHiGain [idx]*pex;
|
|---|
| 415 | time_sum += fTimeWeightsHiGain[idx]*pex;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | if (sum == 0)
|
|---|
| 419 | return;
|
|---|
| 420 |
|
|---|
| 421 | time = max_p + fTimeShiftHiGain /* this shifts the time to the start of the rising edge */
|
|---|
| 422 | - ((Float_t)t_iter)/fBinningResolutionHiGain - time_sum/sum;
|
|---|
| 423 | }
|
|---|
| 424 |
|
|---|
| 425 | // --------------------------------------------------------------------------
|
|---|
| 426 | //
|
|---|
| 427 | // Apply the digital filter algorithm to the low-gain slices.
|
|---|
| 428 | //
|
|---|
| 429 | void MExtractTimeAndChargeDigitalFilter::FindTimeAndChargeLoGain(Byte_t *ptr, Float_t &sum, Float_t &dsum,
|
|---|
| 430 | Float_t &time, Float_t &dtime,
|
|---|
| 431 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
|---|
| 432 | {
|
|---|
| 433 |
|
|---|
| 434 | const Int_t range = fLoGainLast - fLoGainFirst + 1;
|
|---|
| 435 |
|
|---|
| 436 | const Byte_t *end = ptr + range;
|
|---|
| 437 | Byte_t *p = ptr;
|
|---|
| 438 | //
|
|---|
| 439 | // Prepare the low-gain pedestal
|
|---|
| 440 | //
|
|---|
| 441 | const Float_t pedes = ped.GetPedestal();
|
|---|
| 442 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
|---|
| 443 |
|
|---|
| 444 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
|---|
| 445 |
|
|---|
| 446 | //
|
|---|
| 447 | // Check for saturation in all other slices
|
|---|
| 448 | //
|
|---|
| 449 | Float_t *sample = fLoGainSignal.GetArray();
|
|---|
| 450 | Int_t ids = fLoGainFirst;
|
|---|
| 451 | while (p<end)
|
|---|
| 452 | {
|
|---|
| 453 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
|---|
| 454 |
|
|---|
| 455 | if (*p++ >= fSaturationLimit)
|
|---|
| 456 | sat++;
|
|---|
| 457 | }
|
|---|
| 458 |
|
|---|
| 459 | //
|
|---|
| 460 | // Slide with a window of size fWindowSizeLoGain over the sample
|
|---|
| 461 | // and multiply the entries with the corresponding weights
|
|---|
| 462 | //
|
|---|
| 463 | if (IsNoiseCalculation())
|
|---|
| 464 | {
|
|---|
| 465 | if (fRandomIter == fBinningResolutionLoGain)
|
|---|
| 466 | fRandomIter = 0;
|
|---|
| 467 | for (Int_t ids=0; ids < fWindowSizeLoGain; ids++)
|
|---|
| 468 | {
|
|---|
| 469 | const Int_t idx = fArrBinningResLoGain[ids] + fRandomIter;
|
|---|
| 470 | sum += fAmpWeightsLoGain [idx]*fLoGainSignal[ids];
|
|---|
| 471 | }
|
|---|
| 472 | return;
|
|---|
| 473 | }
|
|---|
| 474 |
|
|---|
| 475 | Float_t time_sum = 0.;
|
|---|
| 476 | Float_t fmax = 0.;
|
|---|
| 477 | Float_t ftime_max = 0.;
|
|---|
| 478 | Int_t max_p = 0;
|
|---|
| 479 |
|
|---|
| 480 | //
|
|---|
| 481 | // Calculate the sum of the first fWindowSize slices
|
|---|
| 482 | //
|
|---|
| 483 | for (Int_t i=0;i<range-fWindowSizeLoGain+1;i++)
|
|---|
| 484 | {
|
|---|
| 485 | sum = 0.;
|
|---|
| 486 | time_sum = 0.;
|
|---|
| 487 |
|
|---|
| 488 | //
|
|---|
| 489 | // Slide with a window of size fWindowSizeLoGain over the sample
|
|---|
| 490 | // and multiply the entries with the corresponding weights
|
|---|
| 491 | //
|
|---|
| 492 | for (Int_t sample=0; sample < fWindowSizeLoGain; sample++)
|
|---|
| 493 | {
|
|---|
| 494 | const Int_t idx = fArrBinningResHalfLoGain[sample];
|
|---|
| 495 | const Float_t pex = fLoGainSignal[sample+i];
|
|---|
| 496 | sum += fAmpWeightsLoGain [idx]*pex;
|
|---|
| 497 | time_sum += fTimeWeightsLoGain[idx]*pex;
|
|---|
| 498 | }
|
|---|
| 499 |
|
|---|
| 500 | if (sum>fmax)
|
|---|
| 501 | {
|
|---|
| 502 | fmax = sum;
|
|---|
| 503 | ftime_max = time_sum;
|
|---|
| 504 | max_p = i;
|
|---|
| 505 | }
|
|---|
| 506 | } /* for (Int_t i=0;i<range-fWindowSizeLoGain+1;i++) */
|
|---|
| 507 |
|
|---|
| 508 | time = 0;
|
|---|
| 509 | if (fmax==0)
|
|---|
| 510 | return;
|
|---|
| 511 |
|
|---|
| 512 | ftime_max /= fmax;
|
|---|
| 513 | Int_t t_iter = Int_t(ftime_max*fBinningResolutionLoGain);
|
|---|
| 514 | Int_t sample_iter = 0;
|
|---|
| 515 |
|
|---|
| 516 | while ( t_iter > fBinningResolutionHalfLoGain-1 || t_iter < -fBinningResolutionHalfLoGain )
|
|---|
| 517 | {
|
|---|
| 518 | if (t_iter > fBinningResolutionHalfLoGain-1)
|
|---|
| 519 | {
|
|---|
| 520 | t_iter -= fBinningResolutionLoGain;
|
|---|
| 521 | max_p--;
|
|---|
| 522 | sample_iter--;
|
|---|
| 523 | }
|
|---|
| 524 | if (t_iter < -fBinningResolutionHalfLoGain)
|
|---|
| 525 | {
|
|---|
| 526 | t_iter += fBinningResolutionLoGain;
|
|---|
| 527 | max_p++;
|
|---|
| 528 | sample_iter++;
|
|---|
| 529 | }
|
|---|
| 530 | }
|
|---|
| 531 |
|
|---|
| 532 | sum = 0.;
|
|---|
| 533 | time_sum = 0.;
|
|---|
| 534 |
|
|---|
| 535 | //
|
|---|
| 536 | // Slide with a window of size fWindowSizeLoGain over the sample
|
|---|
| 537 | // and multiply the entries with the corresponding weights
|
|---|
| 538 | //
|
|---|
| 539 | for (Int_t sample=0; sample < fWindowSizeLoGain; sample++)
|
|---|
| 540 | {
|
|---|
| 541 | const Int_t idx = fArrBinningResHalfLoGain[sample] + t_iter;
|
|---|
| 542 | const Int_t ids = max_p + sample;
|
|---|
| 543 | const Float_t pex = ids < 0 ? 0. : ( ids >= range ? 0. : fLoGainSignal[ids]);
|
|---|
| 544 | sum += fAmpWeightsLoGain [idx]*pex;
|
|---|
| 545 | time_sum += fTimeWeightsLoGain[idx]*pex;
|
|---|
| 546 | }
|
|---|
| 547 |
|
|---|
| 548 | if (sum == 0)
|
|---|
| 549 | return;
|
|---|
| 550 |
|
|---|
| 551 | time = max_p + fTimeShiftLoGain + (Float_t)fLoGainFirst /* this shifts the time to the start of the rising edge */
|
|---|
| 552 | - ((Float_t)t_iter)/fBinningResolutionLoGain - time_sum/sum;
|
|---|
| 553 | }
|
|---|
| 554 |
|
|---|
| 555 | // --------------------------------------------------------------------------
|
|---|
| 556 | //
|
|---|
| 557 | // Read the setup from a TEnv, eg:
|
|---|
| 558 | // MJPedestal.MExtractor.WindowSizeHiGain: 6
|
|---|
| 559 | // MJPedestal.MExtractor.WindowSizeLoGain: 6
|
|---|
| 560 | // MJPedestal.MExtractor.BinningResolutionHiGain: 10
|
|---|
| 561 | // MJPedestal.MExtractor.BinningResolutionLoGain: 10
|
|---|
| 562 | // MJPedestal.MExtractor.WeightsFile: filename
|
|---|
| 563 | //
|
|---|
| 564 | Int_t MExtractTimeAndChargeDigitalFilter::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
|---|
| 565 | {
|
|---|
| 566 |
|
|---|
| 567 | Byte_t hw = fWindowSizeHiGain;
|
|---|
| 568 | Byte_t lw = fWindowSizeLoGain;
|
|---|
| 569 | Bool_t rc = kFALSE;
|
|---|
| 570 |
|
|---|
| 571 | if (IsEnvDefined(env, prefix, "WindowSizeHiGain", print))
|
|---|
| 572 | {
|
|---|
| 573 | hw = GetEnvValue(env, prefix, "WindowSizeHiGain", hw);
|
|---|
| 574 | rc = kTRUE;
|
|---|
| 575 | }
|
|---|
| 576 | if (IsEnvDefined(env, prefix, "WindowSizeLoGain", print))
|
|---|
| 577 | {
|
|---|
| 578 | lw = GetEnvValue(env, prefix, "WindowSizeLoGain", lw);
|
|---|
| 579 | rc = kTRUE;
|
|---|
| 580 | }
|
|---|
| 581 |
|
|---|
| 582 | if (rc)
|
|---|
| 583 | SetWindowSize(hw, lw);
|
|---|
| 584 |
|
|---|
| 585 | Bool_t rc2 = kFALSE;
|
|---|
| 586 | Int_t brh = fBinningResolutionHiGain;
|
|---|
| 587 | Int_t brl = fBinningResolutionLoGain;
|
|---|
| 588 |
|
|---|
| 589 | if (IsEnvDefined(env, prefix, "BinningResolutionHiGain", print))
|
|---|
| 590 | {
|
|---|
| 591 | brh = GetEnvValue(env, prefix, brh);
|
|---|
| 592 | rc2 = kTRUE;
|
|---|
| 593 | }
|
|---|
| 594 | if (IsEnvDefined(env, prefix, "BinningResolutionLoGain", print))
|
|---|
| 595 | {
|
|---|
| 596 | brl = GetEnvValue(env, prefix, brl);
|
|---|
| 597 | rc2 = kTRUE;
|
|---|
| 598 | }
|
|---|
| 599 |
|
|---|
| 600 | if (rc2)
|
|---|
| 601 | {
|
|---|
| 602 | SetBinningResolution(brh, brl);
|
|---|
| 603 | rc = kTRUE;
|
|---|
| 604 | }
|
|---|
| 605 |
|
|---|
| 606 | if (IsEnvDefined(env, prefix, "WeightsFile", print))
|
|---|
| 607 | {
|
|---|
| 608 | if (!ReadWeightsFile(GetEnvValue(env, prefix, "WeightsFile", "")))
|
|---|
| 609 | return kERROR;
|
|---|
| 610 | rc = kTRUE;
|
|---|
| 611 | }
|
|---|
| 612 |
|
|---|
| 613 | return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc;
|
|---|
| 614 | }
|
|---|
| 615 |
|
|---|
| 616 | //----------------------------------------------------------------------------
|
|---|
| 617 | //
|
|---|
| 618 | // Read a pre-defined weights file into the class.
|
|---|
| 619 | // This is mandatory for the extraction
|
|---|
| 620 | //
|
|---|
| 621 | // If filenname is empty, then all weights will be set to 1.
|
|---|
| 622 | //
|
|---|
| 623 | Bool_t MExtractTimeAndChargeDigitalFilter::ReadWeightsFile(TString filename)
|
|---|
| 624 | {
|
|---|
| 625 |
|
|---|
| 626 | // This is a fix for TEnv files edited with windows editors
|
|---|
| 627 | filename.ReplaceAll("\015", "");
|
|---|
| 628 |
|
|---|
| 629 | SetNameWeightsFile(filename);
|
|---|
| 630 |
|
|---|
| 631 | fAmpWeightsHiGain .Set(fBinningResolutionHiGain*fWindowSizeHiGain);
|
|---|
| 632 | fAmpWeightsLoGain .Set(fBinningResolutionLoGain*fWindowSizeLoGain);
|
|---|
| 633 | fTimeWeightsHiGain.Set(fBinningResolutionHiGain*fWindowSizeHiGain);
|
|---|
| 634 | fTimeWeightsLoGain.Set(fBinningResolutionLoGain*fWindowSizeLoGain);
|
|---|
| 635 |
|
|---|
| 636 | if (fNameWeightsFile.IsNull())
|
|---|
| 637 | {
|
|---|
| 638 | fAmpWeightsHiGain.Reset(1);
|
|---|
| 639 | fTimeWeightsHiGain.Reset(1);
|
|---|
| 640 | fAmpWeightsLoGain.Reset(1);
|
|---|
| 641 | fTimeWeightsLoGain.Reset(1);
|
|---|
| 642 | return kTRUE;
|
|---|
| 643 | }
|
|---|
| 644 |
|
|---|
| 645 | ifstream fin(filename.Data());
|
|---|
| 646 | if (!fin)
|
|---|
| 647 | {
|
|---|
| 648 | *fLog << err << GetDescriptor() << ": ERROR - Cannot open file " << filename << ": ";
|
|---|
| 649 | *fLog << strerror(errno) << endl;
|
|---|
| 650 | return kFALSE;
|
|---|
| 651 | }
|
|---|
| 652 |
|
|---|
| 653 | *fLog << inf << "Reading weights file " << filename << "..." << flush;
|
|---|
| 654 |
|
|---|
| 655 | Int_t len = 0;
|
|---|
| 656 | Int_t cnt = 0;
|
|---|
| 657 | Int_t line = 0;
|
|---|
| 658 | Bool_t hi = kFALSE;
|
|---|
| 659 | Bool_t lo = kFALSE;
|
|---|
| 660 |
|
|---|
| 661 | TString str;
|
|---|
| 662 |
|
|---|
| 663 | while (1)
|
|---|
| 664 | {
|
|---|
| 665 | str.ReadLine(fin);
|
|---|
| 666 | if (!fin)
|
|---|
| 667 | break;
|
|---|
| 668 |
|
|---|
| 669 | line++;
|
|---|
| 670 |
|
|---|
| 671 | if (str.Contains("# High Gain Weights:"))
|
|---|
| 672 | {
|
|---|
| 673 | if (hi)
|
|---|
| 674 | {
|
|---|
| 675 | *fLog << err << "ERROR - 'High Gain Weights' found twice in line #" << line << "." << endl;
|
|---|
| 676 | return kFALSE;
|
|---|
| 677 | }
|
|---|
| 678 |
|
|---|
| 679 | if (2!=sscanf(str.Data(), "# High Gain Weights:%2i %2i", &fWindowSizeHiGain, &fBinningResolutionHiGain))
|
|---|
| 680 | {
|
|---|
| 681 | *fLog << err << "ERROR - Wrong number of arguments in line #" << line << ":" << endl;
|
|---|
| 682 | *fLog << str << endl;
|
|---|
| 683 | return kFALSE;
|
|---|
| 684 | }
|
|---|
| 685 |
|
|---|
| 686 | len = fBinningResolutionHiGain*fWindowSizeHiGain;
|
|---|
| 687 | fAmpWeightsHiGain .Set(len);
|
|---|
| 688 | fTimeWeightsHiGain.Set(len);
|
|---|
| 689 | hi = kTRUE;
|
|---|
| 690 | continue;
|
|---|
| 691 | }
|
|---|
| 692 |
|
|---|
| 693 | if (str.Contains("# Low Gain Weights:"))
|
|---|
| 694 | {
|
|---|
| 695 | if (lo)
|
|---|
| 696 | {
|
|---|
| 697 | *fLog << err << "ERROR - 'Lo Gain Weights' found twice in line #" << line << "." << endl;
|
|---|
| 698 | return kFALSE;
|
|---|
| 699 | }
|
|---|
| 700 |
|
|---|
| 701 | if (2!=sscanf(str.Data(),"# Low Gain Weights:%2i %2i", &fWindowSizeLoGain, &fBinningResolutionLoGain))
|
|---|
| 702 | {
|
|---|
| 703 | *fLog << err << "ERROR - Wrong number of arguments in line #" << line << ":" << endl;
|
|---|
| 704 | *fLog << str << endl;
|
|---|
| 705 | return kFALSE;
|
|---|
| 706 | }
|
|---|
| 707 |
|
|---|
| 708 | len = fBinningResolutionLoGain*fWindowSizeLoGain;
|
|---|
| 709 | fAmpWeightsLoGain .Set(len);
|
|---|
| 710 | fTimeWeightsLoGain.Set(len);
|
|---|
| 711 | lo = kTRUE;
|
|---|
| 712 | continue;
|
|---|
| 713 | }
|
|---|
| 714 |
|
|---|
| 715 | // Handle lines with comments
|
|---|
| 716 | if (str.Contains("#"))
|
|---|
| 717 | continue;
|
|---|
| 718 |
|
|---|
| 719 | // Nothing found so far
|
|---|
| 720 | if (len == 0)
|
|---|
| 721 | continue;
|
|---|
| 722 |
|
|---|
| 723 | if (2!=sscanf(str.Data(), "%f %f",
|
|---|
| 724 | lo ? &fAmpWeightsLoGain [cnt] : &fAmpWeightsHiGain [cnt],
|
|---|
| 725 | lo ? &fTimeWeightsLoGain[cnt] : &fTimeWeightsHiGain[cnt]))
|
|---|
| 726 | {
|
|---|
| 727 | *fLog << err << "ERROR - Wrong number of arguments in line #" << line << ":" << endl;
|
|---|
| 728 | *fLog << str << endl;
|
|---|
| 729 | return kFALSE;
|
|---|
| 730 | }
|
|---|
| 731 |
|
|---|
| 732 | if (++cnt == len)
|
|---|
| 733 | {
|
|---|
| 734 | len = 0;
|
|---|
| 735 | cnt = 0;
|
|---|
| 736 | }
|
|---|
| 737 | }
|
|---|
| 738 |
|
|---|
| 739 | if (cnt != len)
|
|---|
| 740 | {
|
|---|
| 741 | *fLog << err << "Size mismatch in weights file " << filename << endl;
|
|---|
| 742 | return kFALSE;
|
|---|
| 743 | }
|
|---|
| 744 |
|
|---|
| 745 | if (!hi)
|
|---|
| 746 | {
|
|---|
| 747 | *fLog << err << "No correct header found in weights file " << filename << endl;
|
|---|
| 748 | return kFALSE;
|
|---|
| 749 | }
|
|---|
| 750 |
|
|---|
| 751 | *fLog << "done." << endl;
|
|---|
| 752 |
|
|---|
| 753 | *fLog << inf << " File contains " << fWindowSizeHiGain << " hi-gain slices ";
|
|---|
| 754 | *fLog << "with a resolution of " << fBinningResolutionHiGain << endl;
|
|---|
| 755 |
|
|---|
| 756 | *fLog << inf << " File contains " << fWindowSizeLoGain << " lo-gain slices ";
|
|---|
| 757 | *fLog << "with a resolution of " << fBinningResolutionLoGain << endl;
|
|---|
| 758 |
|
|---|
| 759 | CalcBinningResArrays();
|
|---|
| 760 |
|
|---|
| 761 | fWeightsSet = kTRUE;
|
|---|
| 762 |
|
|---|
| 763 | return kTRUE;
|
|---|
| 764 | }
|
|---|
| 765 |
|
|---|
| 766 | //----------------------------------------------------------------------------
|
|---|
| 767 | //
|
|---|
| 768 | // Create the weights file
|
|---|
| 769 | // Beware that the shape-histogram has to contain the pulse starting at bin 1
|
|---|
| 770 | //
|
|---|
| 771 | Bool_t MExtractTimeAndChargeDigitalFilter::WriteWeightsFile(TString filename, TH1F *shapehi, TH2F *autocorrhi,
|
|---|
| 772 | TH1F *shapelo, TH2F *autocorrlo )
|
|---|
| 773 | {
|
|---|
| 774 |
|
|---|
| 775 | const Int_t nbinshi = shapehi->GetNbinsX();
|
|---|
| 776 | Float_t binwidth = shapehi->GetBinWidth(1);
|
|---|
| 777 |
|
|---|
| 778 | TH1F *derivativehi = new TH1F(Form("%s%s",shapehi->GetName(),"_der"),
|
|---|
| 779 | Form("%s%s",shapehi->GetTitle()," derivative"),
|
|---|
| 780 | nbinshi,
|
|---|
| 781 | shapehi->GetBinLowEdge(1),
|
|---|
| 782 | shapehi->GetBinLowEdge(nbinshi)+binwidth);
|
|---|
| 783 |
|
|---|
| 784 | //
|
|---|
| 785 | // Calculate the derivative of shapehi
|
|---|
| 786 | //
|
|---|
| 787 | for (Int_t i = 1; i<nbinshi+1;i++)
|
|---|
| 788 | {
|
|---|
| 789 | derivativehi->SetBinContent(i,
|
|---|
| 790 | ((shapehi->GetBinContent(i+1)-shapehi->GetBinContent(i-1))/2./binwidth));
|
|---|
| 791 | derivativehi->SetBinError(i,
|
|---|
| 792 | (sqrt(shapehi->GetBinError(i+1)*shapehi->GetBinError(i+1)
|
|---|
| 793 | +shapehi->GetBinError(i-1)*shapehi->GetBinError(i-1))/2./binwidth));
|
|---|
| 794 | }
|
|---|
| 795 |
|
|---|
| 796 | //
|
|---|
| 797 | // normalize the shapehi, such that the integral for fWindowSize slices is one!
|
|---|
| 798 | //
|
|---|
| 799 | Float_t sum = 0;
|
|---|
| 800 | Int_t lasttemp = fBinningResolutionHiGain * (fSignalStartBinHiGain + fWindowSizeHiGain);
|
|---|
| 801 | lasttemp = lasttemp > nbinshi ? nbinshi : lasttemp;
|
|---|
| 802 |
|
|---|
| 803 | for (Int_t i=fBinningResolutionHiGain*fSignalStartBinHiGain; i<lasttemp; i++) {
|
|---|
| 804 | sum += shapehi->GetBinContent(i);
|
|---|
| 805 | }
|
|---|
| 806 | sum /= fBinningResolutionHiGain;
|
|---|
| 807 |
|
|---|
| 808 | shapehi->Scale(1./sum);
|
|---|
| 809 | derivativehi->Scale(1./sum);
|
|---|
| 810 |
|
|---|
| 811 | //
|
|---|
| 812 | // read in the noise auto-correlation function:
|
|---|
| 813 | //
|
|---|
| 814 | TMatrix Bhi(fWindowSizeHiGain,fWindowSizeHiGain);
|
|---|
| 815 |
|
|---|
| 816 | for (Int_t i=0; i<fWindowSizeHiGain; i++){
|
|---|
| 817 | for (Int_t j=0; j<fWindowSizeHiGain; j++){
|
|---|
| 818 | Bhi[i][j]=autocorrhi->GetBinContent(i+1,j+1); //+fSignalStartBinHiGain +fSignalStartBinHiGain
|
|---|
| 819 | }
|
|---|
| 820 | }
|
|---|
| 821 | Bhi.Invert();
|
|---|
| 822 |
|
|---|
| 823 | const Int_t nsizehi = fWindowSizeHiGain*fBinningResolutionHiGain;
|
|---|
| 824 | fAmpWeightsHiGain.Set(nsizehi);
|
|---|
| 825 | fTimeWeightsHiGain.Set(nsizehi);
|
|---|
| 826 |
|
|---|
| 827 | //
|
|---|
| 828 | // Loop over relative time in one BinningResolution interval
|
|---|
| 829 | //
|
|---|
| 830 | Int_t start = fBinningResolutionHiGain*(fSignalStartBinHiGain + 1);
|
|---|
| 831 |
|
|---|
| 832 | for (Int_t i = -fBinningResolutionHalfHiGain+1; i<=fBinningResolutionHalfHiGain; i++)
|
|---|
| 833 | {
|
|---|
| 834 |
|
|---|
| 835 | TMatrix g(fWindowSizeHiGain,1);
|
|---|
| 836 | TMatrix gT(1,fWindowSizeHiGain);
|
|---|
| 837 | TMatrix d(fWindowSizeHiGain,1);
|
|---|
| 838 | TMatrix dT(1,fWindowSizeHiGain);
|
|---|
| 839 |
|
|---|
| 840 | for (Int_t count=0; count < fWindowSizeHiGain; count++){
|
|---|
| 841 |
|
|---|
| 842 | g[count][0]=shapehi->GetBinContent(start
|
|---|
| 843 | +fBinningResolutionHiGain*count+i);
|
|---|
| 844 | gT[0][count]=shapehi->GetBinContent(start
|
|---|
| 845 | +fBinningResolutionHiGain*count+i);
|
|---|
| 846 | d[count][0]=derivativehi->GetBinContent(start
|
|---|
| 847 | +fBinningResolutionHiGain*count+i);
|
|---|
| 848 | dT[0][count]=derivativehi->GetBinContent(start
|
|---|
| 849 | +fBinningResolutionHiGain*count+i);
|
|---|
| 850 | }
|
|---|
| 851 |
|
|---|
| 852 | TMatrix m_denom = (gT*(Bhi*g))*(dT*(Bhi*d)) - (dT*(Bhi*g))*(dT*(Bhi*g));
|
|---|
| 853 | Float_t denom = m_denom[0][0]; // ROOT thinks, m_denom is still a matrix
|
|---|
| 854 |
|
|---|
| 855 | TMatrix m_first = dT*(Bhi*d); // ROOT thinks, m_first is still a matrix
|
|---|
| 856 | Float_t first = m_first[0][0]/denom;
|
|---|
| 857 |
|
|---|
| 858 | TMatrix m_last = gT*(Bhi*d); // ROOT thinks, m_last is still a matrix
|
|---|
| 859 | Float_t last = m_last[0][0]/denom;
|
|---|
| 860 |
|
|---|
| 861 | TMatrix m1 = gT*Bhi;
|
|---|
| 862 | m1 *= first;
|
|---|
| 863 |
|
|---|
| 864 | TMatrix m2 = dT*Bhi;
|
|---|
| 865 | m2 *=last;
|
|---|
| 866 |
|
|---|
| 867 | TMatrix w_amp = m1 - m2;
|
|---|
| 868 |
|
|---|
| 869 | TMatrix m_first1 = gT*(Bhi*g);
|
|---|
| 870 | Float_t first1 = m_first1[0][0]/denom;
|
|---|
| 871 |
|
|---|
| 872 | TMatrix m_last1 = gT*(Bhi*d);
|
|---|
| 873 | Float_t last1 = m_last1 [0][0]/denom;
|
|---|
| 874 |
|
|---|
| 875 | TMatrix m11 = dT*Bhi;
|
|---|
| 876 | m11 *=first1;
|
|---|
| 877 |
|
|---|
| 878 | TMatrix m21 = gT*Bhi;
|
|---|
| 879 | m21 *=last1;
|
|---|
| 880 |
|
|---|
| 881 | TMatrix w_time= m11 - m21;
|
|---|
| 882 |
|
|---|
| 883 | for (Int_t count=0; count < fWindowSizeHiGain; count++)
|
|---|
| 884 | {
|
|---|
| 885 | const Int_t idx = i+fBinningResolutionHalfHiGain+fBinningResolutionHiGain*count-1;
|
|---|
| 886 | fAmpWeightsHiGain [idx] = w_amp [0][count];
|
|---|
| 887 | fTimeWeightsHiGain[idx] = w_time[0][count];
|
|---|
| 888 | }
|
|---|
| 889 |
|
|---|
| 890 | } // end loop over i
|
|---|
| 891 |
|
|---|
| 892 | //
|
|---|
| 893 | // Low Gain histograms
|
|---|
| 894 | //
|
|---|
| 895 | TH1F *derivativelo = NULL;
|
|---|
| 896 | if (shapelo)
|
|---|
| 897 | {
|
|---|
| 898 | const Int_t nbinslo = shapelo->GetNbinsX();
|
|---|
| 899 | binwidth = shapelo->GetBinWidth(1);
|
|---|
| 900 |
|
|---|
| 901 | derivativelo = new TH1F(Form("%s%s",shapelo->GetName(),"_der"),
|
|---|
| 902 | Form("%s%s",shapelo->GetTitle()," derivative"),
|
|---|
| 903 | nbinslo,
|
|---|
| 904 | shapelo->GetBinLowEdge(1),
|
|---|
| 905 | shapelo->GetBinLowEdge(nbinslo)+binwidth);
|
|---|
| 906 |
|
|---|
| 907 | //
|
|---|
| 908 | // Calculate the derivative of shapelo
|
|---|
| 909 | //
|
|---|
| 910 | for (Int_t i = 1; i<nbinslo+1;i++)
|
|---|
| 911 | {
|
|---|
| 912 | derivativelo->SetBinContent(i,
|
|---|
| 913 | ((shapelo->GetBinContent(i+1)-shapelo->GetBinContent(i-1))/2./binwidth));
|
|---|
| 914 | derivativelo->SetBinError(i,
|
|---|
| 915 | (sqrt(shapelo->GetBinError(i+1)*shapelo->GetBinError(i+1)
|
|---|
| 916 | +shapelo->GetBinError(i-1)*shapelo->GetBinError(i-1))/2./binwidth));
|
|---|
| 917 | }
|
|---|
| 918 |
|
|---|
| 919 | //
|
|---|
| 920 | // normalize the shapelo, such that the integral for fWindowSize slices is one!
|
|---|
| 921 | //
|
|---|
| 922 | sum = 0;
|
|---|
| 923 | lasttemp = fBinningResolutionLoGain * (fSignalStartBinLoGain + fWindowSizeLoGain);
|
|---|
| 924 | lasttemp = lasttemp > nbinslo ? nbinslo : lasttemp;
|
|---|
| 925 |
|
|---|
| 926 | for (Int_t i=fBinningResolutionLoGain*fSignalStartBinLoGain; i<lasttemp; i++)
|
|---|
| 927 | sum += shapelo->GetBinContent(i);
|
|---|
| 928 |
|
|---|
| 929 | sum /= fBinningResolutionLoGain;
|
|---|
| 930 |
|
|---|
| 931 | shapelo->Scale(1./sum);
|
|---|
| 932 | derivativelo->Scale(1./sum);
|
|---|
| 933 |
|
|---|
| 934 | //
|
|---|
| 935 | // read in the noise auto-correlation function:
|
|---|
| 936 | //
|
|---|
| 937 | TMatrix Blo(fWindowSizeLoGain,fWindowSizeLoGain);
|
|---|
| 938 |
|
|---|
| 939 | for (Int_t i=0; i<fWindowSizeLoGain; i++){
|
|---|
| 940 | for (Int_t j=0; j<fWindowSizeLoGain; j++){
|
|---|
| 941 | Blo[i][j]=autocorrlo->GetBinContent(i+1+fSignalStartBinLoGain,j+1+fSignalStartBinLoGain);
|
|---|
| 942 | }
|
|---|
| 943 | }
|
|---|
| 944 | Blo.Invert();
|
|---|
| 945 |
|
|---|
| 946 | const Int_t nsizelo = fWindowSizeLoGain*fBinningResolutionLoGain;
|
|---|
| 947 | fAmpWeightsLoGain.Set(nsizelo);
|
|---|
| 948 | fTimeWeightsLoGain.Set(nsizelo);
|
|---|
| 949 |
|
|---|
| 950 | //
|
|---|
| 951 | // Loop over relative time in one BinningResolution interval
|
|---|
| 952 | //
|
|---|
| 953 | Int_t start = fBinningResolutionLoGain*fSignalStartBinLoGain + fBinningResolutionHalfLoGain;
|
|---|
| 954 |
|
|---|
| 955 | for (Int_t i = -fBinningResolutionHalfLoGain+1; i<=fBinningResolutionHalfLoGain; i++)
|
|---|
| 956 | {
|
|---|
| 957 |
|
|---|
| 958 | TMatrix g(fWindowSizeLoGain,1);
|
|---|
| 959 | TMatrix gT(1,fWindowSizeLoGain);
|
|---|
| 960 | TMatrix d(fWindowSizeLoGain,1);
|
|---|
| 961 | TMatrix dT(1,fWindowSizeLoGain);
|
|---|
| 962 |
|
|---|
| 963 | for (Int_t count=0; count < fWindowSizeLoGain; count++){
|
|---|
| 964 |
|
|---|
| 965 | g[count][0] = shapelo->GetBinContent(start
|
|---|
| 966 | +fBinningResolutionLoGain*count+i);
|
|---|
| 967 | gT[0][count]= shapelo->GetBinContent(start
|
|---|
| 968 | +fBinningResolutionLoGain*count+i);
|
|---|
| 969 | d[count][0] = derivativelo->GetBinContent(start
|
|---|
| 970 | +fBinningResolutionLoGain*count+i);
|
|---|
| 971 | dT[0][count]= derivativelo->GetBinContent(start
|
|---|
| 972 | +fBinningResolutionLoGain*count+i);
|
|---|
| 973 | }
|
|---|
| 974 |
|
|---|
| 975 | TMatrix m_denom = (gT*(Blo*g))*(dT*(Blo*d)) - (dT*(Blo*g))*(dT*(Blo*g));
|
|---|
| 976 | Float_t denom = m_denom[0][0]; // ROOT thinks, m_denom is still a matrix
|
|---|
| 977 |
|
|---|
| 978 | TMatrix m_first = dT*(Blo*d); // ROOT thinks, m_first is still a matrix
|
|---|
| 979 | Float_t first = m_first[0][0]/denom;
|
|---|
| 980 |
|
|---|
| 981 | TMatrix m_last = gT*(Blo*d); // ROOT thinks, m_last is still a matrix
|
|---|
| 982 | Float_t last = m_last[0][0]/denom;
|
|---|
| 983 |
|
|---|
| 984 | TMatrix m1 = gT*Blo;
|
|---|
| 985 | m1 *= first;
|
|---|
| 986 |
|
|---|
| 987 | TMatrix m2 = dT*Blo;
|
|---|
| 988 | m2 *=last;
|
|---|
| 989 |
|
|---|
| 990 | TMatrix w_amp = m1 - m2;
|
|---|
| 991 |
|
|---|
| 992 | TMatrix m_first1 = gT*(Blo*g);
|
|---|
| 993 | Float_t first1 = m_first1[0][0]/denom;
|
|---|
| 994 |
|
|---|
| 995 | TMatrix m_last1 = gT*(Blo*d);
|
|---|
| 996 | Float_t last1 = m_last1 [0][0]/denom;
|
|---|
| 997 |
|
|---|
| 998 | TMatrix m11 = dT*Blo;
|
|---|
| 999 | m11 *=first1;
|
|---|
| 1000 |
|
|---|
| 1001 | TMatrix m21 = gT*Blo;
|
|---|
| 1002 | m21 *=last1;
|
|---|
| 1003 |
|
|---|
| 1004 | TMatrix w_time= m11 - m21;
|
|---|
| 1005 |
|
|---|
| 1006 | for (Int_t count=0; count < fWindowSizeLoGain; count++)
|
|---|
| 1007 | {
|
|---|
| 1008 | const Int_t idx = i+fBinningResolutionHalfLoGain+fBinningResolutionLoGain*count-1;
|
|---|
| 1009 | fAmpWeightsLoGain [idx] = w_amp [0][count];
|
|---|
| 1010 | fTimeWeightsLoGain[idx] = w_time[0][count];
|
|---|
| 1011 | }
|
|---|
| 1012 |
|
|---|
| 1013 | } // end loop over i
|
|---|
| 1014 | }
|
|---|
| 1015 |
|
|---|
| 1016 | ofstream fn(filename.Data());
|
|---|
| 1017 |
|
|---|
| 1018 | fn << "# High Gain Weights: " << fWindowSizeHiGain << " " << fBinningResolutionHiGain << endl;
|
|---|
| 1019 | fn << "# (Amplitude) (Time) " << endl;
|
|---|
| 1020 |
|
|---|
| 1021 | for (Int_t i=0; i<nsizehi; i++)
|
|---|
| 1022 | fn << "\t" << fAmpWeightsHiGain[i] << "\t" << fTimeWeightsHiGain[i] << endl;
|
|---|
| 1023 |
|
|---|
| 1024 | fn << "# Low Gain Weights: " << fWindowSizeLoGain << " " << fBinningResolutionLoGain << endl;
|
|---|
| 1025 | fn << "# (Amplitude) (Time) " << endl;
|
|---|
| 1026 |
|
|---|
| 1027 | for (Int_t i=0; i<nsizehi; i++)
|
|---|
| 1028 | fn << "\t" << fAmpWeightsLoGain[i] << "\t" << fTimeWeightsLoGain[i] << endl;
|
|---|
| 1029 |
|
|---|
| 1030 | delete derivativehi;
|
|---|
| 1031 | if (derivativelo)
|
|---|
| 1032 | delete derivativelo;
|
|---|
| 1033 |
|
|---|
| 1034 | return kTRUE;
|
|---|
| 1035 | }
|
|---|
| 1036 |
|
|---|
| 1037 | void MExtractTimeAndChargeDigitalFilter::Print(Option_t *o) const
|
|---|
| 1038 | {
|
|---|
| 1039 | if (IsA()==Class())
|
|---|
| 1040 | *fLog << GetDescriptor() << ":" << endl;
|
|---|
| 1041 |
|
|---|
| 1042 | MExtractTimeAndCharge::Print(o);
|
|---|
| 1043 | *fLog << " Time Shift HiGain: " << fTimeShiftHiGain << " LoGain: " << fTimeShiftLoGain << endl;
|
|---|
| 1044 | *fLog << " Window Size HiGain: " << fWindowSizeHiGain << " LoGain: " << fWindowSizeLoGain << endl;
|
|---|
| 1045 | *fLog << " Binning Res HiGain: " << fBinningResolutionHiGain << " LoGain: " << fBinningResolutionHiGain << endl;
|
|---|
| 1046 | *fLog << " Weights File: " << fNameWeightsFile << endl;
|
|---|
| 1047 |
|
|---|
| 1048 | TString opt(o);
|
|---|
| 1049 | if (!opt.Contains("weights"))
|
|---|
| 1050 | return;
|
|---|
| 1051 |
|
|---|
| 1052 | *fLog << endl;
|
|---|
| 1053 | *fLog << inf << "Using the following weights: " << endl;
|
|---|
| 1054 | *fLog << "Hi-Gain:" << endl;
|
|---|
| 1055 | for (Int_t i=0; i<fBinningResolutionHiGain*fWindowSizeHiGain; i++)
|
|---|
| 1056 | *fLog << " " << fAmpWeightsHiGain[i] << " \t " << fTimeWeightsHiGain[i] << endl;
|
|---|
| 1057 |
|
|---|
| 1058 | *fLog << "Lo-Gain:" << endl;
|
|---|
| 1059 | for (Int_t i=0; i<fBinningResolutionLoGain*fWindowSizeLoGain; i++)
|
|---|
| 1060 | *fLog << " " << fAmpWeightsLoGain[i] << " \t " << fTimeWeightsLoGain[i] << endl;
|
|---|
| 1061 | }
|
|---|