1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Hendrik Bartko, 09/2004 <mailto:hbartko@mppmu.mpg.de>
|
---|
19 | ! Author(s): Markus Gaug, 05/2004 <mailto:markus@ifae.es>
|
---|
20 | ! Author(s): Diego Tescaro, 05/2004 <mailto:tescaro@pd.infn.it>
|
---|
21 | !
|
---|
22 | ! Copyright: MAGIC Software Development, 2000-2004
|
---|
23 | !
|
---|
24 | !
|
---|
25 | \* ======================================================================== */
|
---|
26 | //////////////////////////////////////////////////////////////////////////////
|
---|
27 | //
|
---|
28 | // MExtractTimeAndChargeDigitalFilter
|
---|
29 | //
|
---|
30 | // Hendrik has promised to write more documentation
|
---|
31 | //
|
---|
32 | //
|
---|
33 | // The following variables have to be set by the derived class and
|
---|
34 | // do not have defaults:
|
---|
35 | // - fNumHiGainSamples
|
---|
36 | // - fNumLoGainSamples
|
---|
37 | // - fSqrtHiGainSamples
|
---|
38 | // - fSqrtLoGainSamples
|
---|
39 | //
|
---|
40 | // Input Containers:
|
---|
41 | // MRawEvtData
|
---|
42 | // MRawRunHeader
|
---|
43 | // MPedestalCam
|
---|
44 | //
|
---|
45 | // Output Containers:
|
---|
46 | // MArrivalTimeCam
|
---|
47 | // MExtractedSignalCam
|
---|
48 | //
|
---|
49 | //////////////////////////////////////////////////////////////////////////////
|
---|
50 | #include "MExtractTimeAndChargeDigitalFilter.h"
|
---|
51 |
|
---|
52 | #include <errno.h>
|
---|
53 | #include <fstream>
|
---|
54 |
|
---|
55 | #include <TFile.h>
|
---|
56 | #include <TH1F.h>
|
---|
57 | #include <TH2F.h>
|
---|
58 | #include <TString.h>
|
---|
59 | #include <TMatrix.h>
|
---|
60 |
|
---|
61 | #include "MLog.h"
|
---|
62 | #include "MLogManip.h"
|
---|
63 |
|
---|
64 | #include "MPedestalPix.h"
|
---|
65 |
|
---|
66 | ClassImp(MExtractTimeAndChargeDigitalFilter);
|
---|
67 |
|
---|
68 | using namespace std;
|
---|
69 |
|
---|
70 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgHiGainFirst = 0;
|
---|
71 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgHiGainLast = 15;
|
---|
72 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgLoGainFirst = 3;
|
---|
73 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgLoGainLast = 14;
|
---|
74 | const Int_t MExtractTimeAndChargeDigitalFilter::fgWindowSizeHiGain = 6;
|
---|
75 | const Int_t MExtractTimeAndChargeDigitalFilter::fgWindowSizeLoGain = 6;
|
---|
76 | const Int_t MExtractTimeAndChargeDigitalFilter::fgBinningResolutionHiGain = 10;
|
---|
77 | const Int_t MExtractTimeAndChargeDigitalFilter::fgBinningResolutionLoGain = 10;
|
---|
78 | const Int_t MExtractTimeAndChargeDigitalFilter::fgSignalStartBinHiGain = 4;
|
---|
79 | const Int_t MExtractTimeAndChargeDigitalFilter::fgSignalStartBinLoGain = 4;
|
---|
80 | const TString MExtractTimeAndChargeDigitalFilter::fgNameWeightsFile = "msignal/cosmics_weights.dat";
|
---|
81 | const Float_t MExtractTimeAndChargeDigitalFilter::fgOffsetLoGain = 1.8; // 5 ns
|
---|
82 | // --------------------------------------------------------------------------
|
---|
83 | //
|
---|
84 | // Default constructor.
|
---|
85 | //
|
---|
86 | // Calls:
|
---|
87 | // - SetWindowSize();
|
---|
88 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast)
|
---|
89 | // - SetBinningResolution();
|
---|
90 | //
|
---|
91 | // Sets all weights to 1.
|
---|
92 | //
|
---|
93 | MExtractTimeAndChargeDigitalFilter::MExtractTimeAndChargeDigitalFilter(const char *name, const char *title)
|
---|
94 | : fTimeShiftHiGain(0.), fTimeShiftLoGain(0.), fWeightsSet(kFALSE), fRandomIter(0)
|
---|
95 | {
|
---|
96 | fName = name ? name : "MExtractTimeAndChargeDigitalFilter";
|
---|
97 | fTitle = title ? title : "Digital Filter";
|
---|
98 |
|
---|
99 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast);
|
---|
100 | SetWindowSize();
|
---|
101 | SetBinningResolution();
|
---|
102 | SetSignalStartBin();
|
---|
103 |
|
---|
104 | SetNameWeightsFile();
|
---|
105 | SetOffsetLoGain(fgOffsetLoGain);
|
---|
106 | }
|
---|
107 |
|
---|
108 | // ---------------------------------------------------------------------------------------
|
---|
109 | //
|
---|
110 | // Checks:
|
---|
111 | // - if a window is bigger than the one defined by the ranges, set it to the available range
|
---|
112 | //
|
---|
113 | // Sets:
|
---|
114 | // - fNumHiGainSamples to: (Float_t)fWindowSizeHiGain
|
---|
115 | // - fNumLoGainSamples to: (Float_t)fWindowSizeLoGain
|
---|
116 | //
|
---|
117 | void MExtractTimeAndChargeDigitalFilter::SetWindowSize(Int_t windowh, Int_t windowl)
|
---|
118 | {
|
---|
119 |
|
---|
120 | if (windowh != fgWindowSizeHiGain)
|
---|
121 | *fLog << warn << GetDescriptor()
|
---|
122 | << ": ATTENTION!!! If you are not Hendrik Bartko, do NOT use a different window size than the default." << endl;
|
---|
123 | if (windowl != fgWindowSizeLoGain)
|
---|
124 | *fLog << warn << GetDescriptor()
|
---|
125 | << ": ATTENTION!!! If you are not Hendrik Bartko, do NOT use a different window size than the default" << endl;
|
---|
126 |
|
---|
127 | fWindowSizeHiGain = windowh;
|
---|
128 | fWindowSizeLoGain = windowl;
|
---|
129 |
|
---|
130 | const Int_t availhirange = (Int_t)(fHiGainLast-fHiGainFirst+1);
|
---|
131 |
|
---|
132 | if (fWindowSizeHiGain > availhirange)
|
---|
133 | {
|
---|
134 | // Please simplify this!
|
---|
135 | *fLog << warn << GetDescriptor()
|
---|
136 | << Form("%s%2i%s%2i%s%2i%s",": Hi Gain window size: ",fWindowSizeHiGain,
|
---|
137 | " is bigger than available range: [",(int)fHiGainFirst,",",(int)fHiGainLast,"]") << endl;
|
---|
138 | fHiGainLast = fHiGainFirst + fWindowSizeHiGain;
|
---|
139 | *fLog << warn << GetDescriptor()
|
---|
140 | << ": Will set the upper range to: " << (int)fHiGainLast << endl;
|
---|
141 | }
|
---|
142 |
|
---|
143 | if (fWindowSizeHiGain < 2)
|
---|
144 | {
|
---|
145 | fWindowSizeHiGain = 2;
|
---|
146 | *fLog << warn << GetDescriptor() << ": High Gain window size set to two samples" << endl;
|
---|
147 | }
|
---|
148 |
|
---|
149 | if (fLoGainLast != 0 && fWindowSizeLoGain != 0)
|
---|
150 | {
|
---|
151 | const Int_t availlorange = (Int_t)(fLoGainLast-fLoGainFirst+1);
|
---|
152 |
|
---|
153 | if (fWindowSizeLoGain > availlorange)
|
---|
154 | {
|
---|
155 | // Please simplify this!
|
---|
156 | *fLog << warn << GetDescriptor()
|
---|
157 | << Form("%s%2i%s%2i%s%2i%s",": Lo Gain window size: ",fWindowSizeLoGain,
|
---|
158 | " is bigger than available range: [",(int)fLoGainFirst,",",(int)fLoGainLast,"]") << endl;
|
---|
159 | fLoGainLast = fLoGainFirst + fWindowSizeLoGain;
|
---|
160 | *fLog << warn << GetDescriptor()
|
---|
161 | << ": Will set the upper range to: " << (int)fLoGainLast << endl;
|
---|
162 | }
|
---|
163 |
|
---|
164 | if (fWindowSizeLoGain<2)
|
---|
165 | {
|
---|
166 | fWindowSizeLoGain = 2;
|
---|
167 | *fLog << warn << GetDescriptor() << ": Low Gain window size set to two samples" << endl;
|
---|
168 | }
|
---|
169 | }
|
---|
170 | //
|
---|
171 | // We need here the effective number of samples which is about 2.5 in the case of a window
|
---|
172 | // size of 6. The exact numbers have to be found still.
|
---|
173 | //
|
---|
174 | fNumHiGainSamples = (Float_t)fWindowSizeHiGain/2.4;
|
---|
175 | fNumLoGainSamples = (Float_t)fWindowSizeLoGain/2.4;
|
---|
176 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
---|
177 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
---|
178 |
|
---|
179 | }
|
---|
180 |
|
---|
181 | // --------------------------------------------------------------------------
|
---|
182 | //
|
---|
183 | // InitArrays
|
---|
184 | //
|
---|
185 | // Gets called in the ReInit() and initialized the arrays
|
---|
186 | //
|
---|
187 | Bool_t MExtractTimeAndChargeDigitalFilter::InitArrays()
|
---|
188 | {
|
---|
189 |
|
---|
190 | Int_t range = (Int_t)(fHiGainLast - fHiGainFirst + 1 + fHiLoLast);
|
---|
191 |
|
---|
192 | fHiGainSignal.Set(range);
|
---|
193 |
|
---|
194 | range = (Int_t)(fLoGainLast - fLoGainFirst + 1);
|
---|
195 |
|
---|
196 | fLoGainSignal.Set(range);
|
---|
197 |
|
---|
198 | if (!fWeightsSet)
|
---|
199 | if (!ReadWeightsFile(fNameWeightsFile))
|
---|
200 | return kFALSE;
|
---|
201 |
|
---|
202 | fTimeShiftHiGain = (Float_t)fHiGainFirst + 0.5 + 1./fBinningResolutionHiGain;
|
---|
203 | fTimeShiftLoGain = 0.5 + 1./fBinningResolutionLoGain;
|
---|
204 | //
|
---|
205 | // We need here the effective number of samples which is about 2.5 in the case of a window
|
---|
206 | // size of 6. The exact numbers have to be found still.
|
---|
207 | //
|
---|
208 | fNumHiGainSamples = (Float_t)fWindowSizeHiGain/2.4;
|
---|
209 | fNumLoGainSamples = (Float_t)fWindowSizeLoGain/2.4;
|
---|
210 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
---|
211 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
---|
212 |
|
---|
213 | return kTRUE;
|
---|
214 | }
|
---|
215 |
|
---|
216 | void MExtractTimeAndChargeDigitalFilter::CalcBinningResArrays()
|
---|
217 | {
|
---|
218 |
|
---|
219 | fArrBinningResHiGain.Set(fWindowSizeHiGain);
|
---|
220 | fArrBinningResHalfHiGain.Set(fWindowSizeHiGain);
|
---|
221 |
|
---|
222 | for (int i=0; i<fWindowSizeHiGain; i++)
|
---|
223 | {
|
---|
224 | fArrBinningResHiGain[i] = fBinningResolutionHiGain*i;
|
---|
225 | fArrBinningResHalfHiGain[i] = fArrBinningResHiGain[i] + fBinningResolutionHalfHiGain;
|
---|
226 | }
|
---|
227 |
|
---|
228 | fArrBinningResLoGain.Set(fWindowSizeLoGain);
|
---|
229 | fArrBinningResHalfLoGain.Set(fWindowSizeLoGain);
|
---|
230 |
|
---|
231 | for (int i=0; i<fWindowSizeLoGain; i++)
|
---|
232 | {
|
---|
233 | fArrBinningResLoGain[i] = fBinningResolutionLoGain*i;
|
---|
234 | fArrBinningResHalfLoGain[i] = fArrBinningResLoGain[i] + fBinningResolutionHalfLoGain;
|
---|
235 | }
|
---|
236 | }
|
---|
237 |
|
---|
238 | // --------------------------------------------------------------------------
|
---|
239 | //
|
---|
240 | // Apply the digital filter algorithm to the high-gain slices.
|
---|
241 | //
|
---|
242 | void MExtractTimeAndChargeDigitalFilter::FindTimeAndChargeHiGain(Byte_t *ptr, Byte_t *logain, Float_t &sum, Float_t &dsum,
|
---|
243 | Float_t &time, Float_t &dtime,
|
---|
244 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
---|
245 | {
|
---|
246 |
|
---|
247 | Int_t range = fHiGainLast - fHiGainFirst + 1;
|
---|
248 |
|
---|
249 | const Byte_t *end = ptr + range;
|
---|
250 | Byte_t *p = ptr;
|
---|
251 | Byte_t maxpos = 0;
|
---|
252 |
|
---|
253 | //
|
---|
254 | // Preparations for the pedestal subtraction (with AB-noise correction)
|
---|
255 | //
|
---|
256 | const Float_t pedes = ped.GetPedestal();
|
---|
257 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
---|
258 |
|
---|
259 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
---|
260 |
|
---|
261 | range += fHiLoLast;
|
---|
262 | fMaxBinContent = 0;
|
---|
263 | //
|
---|
264 | // Check for saturation in all other slices
|
---|
265 | //
|
---|
266 | Int_t ids = fHiGainFirst;
|
---|
267 | Float_t *sample = fHiGainSignal.GetArray();
|
---|
268 | while (p<end)
|
---|
269 | {
|
---|
270 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
---|
271 |
|
---|
272 | if (*p > fMaxBinContent)
|
---|
273 | {
|
---|
274 | maxpos = p-ptr;
|
---|
275 | if (maxpos > 1 && maxpos < (range - fWindowSizeHiGain + 1))
|
---|
276 | fMaxBinContent = *p;
|
---|
277 | }
|
---|
278 |
|
---|
279 | if (*p++ >= fSaturationLimit)
|
---|
280 | if (!sat)
|
---|
281 | sat = ids-4;
|
---|
282 | }
|
---|
283 |
|
---|
284 | //
|
---|
285 | // Slide with a window of size fWindowSizeHiGain over the sample
|
---|
286 | // and multiply the entries with the corresponding weights
|
---|
287 | //
|
---|
288 | if (IsNoiseCalculation())
|
---|
289 | {
|
---|
290 | if (fRandomIter == fBinningResolutionHiGain)
|
---|
291 | fRandomIter = 0;
|
---|
292 | for (Int_t ids=0; ids < fWindowSizeHiGain; ids++)
|
---|
293 | {
|
---|
294 | const Int_t idx = fArrBinningResHiGain[ids] + fRandomIter;
|
---|
295 | sum += fAmpWeightsHiGain [idx]*fHiGainSignal[ids];
|
---|
296 | }
|
---|
297 | fRandomIter++;
|
---|
298 | return;
|
---|
299 | }
|
---|
300 |
|
---|
301 | if (fHiLoLast != 0)
|
---|
302 | {
|
---|
303 |
|
---|
304 | end = logain + fHiLoLast;
|
---|
305 |
|
---|
306 | while (logain<end)
|
---|
307 | {
|
---|
308 |
|
---|
309 | *sample++ = (Float_t)*logain - pedmean[(ids++ + abflag) & 0x1];
|
---|
310 |
|
---|
311 | if (*logain++ >= fSaturationLimit)
|
---|
312 | if (!sat)
|
---|
313 | sat = ids-4;
|
---|
314 | }
|
---|
315 | }
|
---|
316 |
|
---|
317 | //
|
---|
318 | // allow no saturated slice
|
---|
319 | //
|
---|
320 | // if (sat > 0)
|
---|
321 | // return;
|
---|
322 |
|
---|
323 | Float_t time_sum = 0.;
|
---|
324 | Float_t fmax = -9999.;
|
---|
325 | Float_t ftime_max = 0.;
|
---|
326 | Int_t max_p = 0;
|
---|
327 |
|
---|
328 | //
|
---|
329 | // Calculate the sum of the first fWindowSize slices
|
---|
330 | //
|
---|
331 | for (Int_t i=0;i<range-fWindowSizeHiGain+1;i++)
|
---|
332 | {
|
---|
333 | sum = 0.;
|
---|
334 | time_sum = 0.;
|
---|
335 |
|
---|
336 | //
|
---|
337 | // Slide with a window of size fWindowSizeHiGain over the sample
|
---|
338 | // and multiply the entries with the corresponding weights
|
---|
339 | //
|
---|
340 | for (Int_t sample=0; sample < fWindowSizeHiGain; sample++)
|
---|
341 | {
|
---|
342 | const Int_t idx = fBinningResolutionHiGain*sample+fBinningResolutionHalfHiGain;
|
---|
343 | const Float_t pex = fHiGainSignal[sample+i];
|
---|
344 | sum += fAmpWeightsHiGain [idx]*pex;
|
---|
345 | time_sum += fTimeWeightsHiGain[idx]*pex;
|
---|
346 | }
|
---|
347 |
|
---|
348 | if (sum>fmax)
|
---|
349 | {
|
---|
350 | fmax = sum;
|
---|
351 | ftime_max = time_sum;
|
---|
352 | max_p = i;
|
---|
353 | }
|
---|
354 | } /* for (Int_t i=0;i<range-fWindowSizeHiGain+1;i++) */
|
---|
355 |
|
---|
356 | if (fmax==0)
|
---|
357 | return;
|
---|
358 |
|
---|
359 | ftime_max /= fmax;
|
---|
360 | Int_t t_iter = Int_t(ftime_max*fBinningResolutionHiGain);
|
---|
361 | Int_t sample_iter = 0;
|
---|
362 |
|
---|
363 | while ( t_iter > fBinningResolutionHalfHiGain-1 || t_iter < -fBinningResolutionHalfHiGain )
|
---|
364 | {
|
---|
365 | if (t_iter > fBinningResolutionHalfHiGain-1)
|
---|
366 | {
|
---|
367 | t_iter -= fBinningResolutionHiGain;
|
---|
368 | max_p--;
|
---|
369 | sample_iter--;
|
---|
370 | }
|
---|
371 | if (t_iter < -fBinningResolutionHalfHiGain)
|
---|
372 | {
|
---|
373 | t_iter += fBinningResolutionHiGain;
|
---|
374 | max_p++;
|
---|
375 | sample_iter++;
|
---|
376 | }
|
---|
377 | }
|
---|
378 |
|
---|
379 | sum = 0.;
|
---|
380 | time_sum = 0.;
|
---|
381 | if (max_p < 0)
|
---|
382 | max_p = 0;
|
---|
383 | if (max_p+fWindowSizeHiGain > range)
|
---|
384 | max_p = range-fWindowSizeHiGain;
|
---|
385 | //
|
---|
386 | // Slide with a window of size fWindowSizeHiGain over the sample
|
---|
387 | // and multiply the entries with the corresponding weights
|
---|
388 | //
|
---|
389 | for (Int_t sample=0; sample < fWindowSizeHiGain; sample++)
|
---|
390 | {
|
---|
391 | const Int_t idx = fArrBinningResHalfHiGain[sample] + t_iter;
|
---|
392 | const Int_t ids = max_p + sample;
|
---|
393 | const Float_t pex = fHiGainSignal[ids];
|
---|
394 | sum += fAmpWeightsHiGain [idx]*pex;
|
---|
395 | time_sum += fTimeWeightsHiGain[idx]*pex;
|
---|
396 | }
|
---|
397 |
|
---|
398 | if (sum == 0)
|
---|
399 | return;
|
---|
400 |
|
---|
401 | time = max_p + fTimeShiftHiGain + (Float_t)fHiGainFirst /* this shifts the time to the start of the rising edge */
|
---|
402 | - ((Float_t)t_iter)/fBinningResolutionHiGain;
|
---|
403 |
|
---|
404 | const Float_t timefineadjust = time_sum/sum;
|
---|
405 |
|
---|
406 | if (timefineadjust < 2./fBinningResolutionHiGain)
|
---|
407 | time -= timefineadjust;
|
---|
408 |
|
---|
409 | }
|
---|
410 |
|
---|
411 | // --------------------------------------------------------------------------
|
---|
412 | //
|
---|
413 | // Apply the digital filter algorithm to the low-gain slices.
|
---|
414 | //
|
---|
415 | void MExtractTimeAndChargeDigitalFilter::FindTimeAndChargeLoGain(Byte_t *ptr, Float_t &sum, Float_t &dsum,
|
---|
416 | Float_t &time, Float_t &dtime,
|
---|
417 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
---|
418 | {
|
---|
419 |
|
---|
420 | const Int_t range = fLoGainLast - fLoGainFirst + 1;
|
---|
421 |
|
---|
422 | const Byte_t *end = ptr + range;
|
---|
423 | Byte_t *p = ptr;
|
---|
424 | //
|
---|
425 | // Prepare the low-gain pedestal
|
---|
426 | //
|
---|
427 | const Float_t pedes = ped.GetPedestal();
|
---|
428 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
---|
429 |
|
---|
430 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
---|
431 |
|
---|
432 | //
|
---|
433 | // Check for saturation in all other slices
|
---|
434 | //
|
---|
435 | Float_t *sample = fLoGainSignal.GetArray();
|
---|
436 | Int_t ids = fLoGainFirst;
|
---|
437 | while (p<end)
|
---|
438 | {
|
---|
439 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
---|
440 |
|
---|
441 | if (*p++ >= fSaturationLimit)
|
---|
442 | sat++;
|
---|
443 | }
|
---|
444 |
|
---|
445 | //
|
---|
446 | // Slide with a window of size fWindowSizeLoGain over the sample
|
---|
447 | // and multiply the entries with the corresponding weights
|
---|
448 | //
|
---|
449 | if (IsNoiseCalculation())
|
---|
450 | {
|
---|
451 | if (fRandomIter == fBinningResolutionLoGain)
|
---|
452 | fRandomIter = 0;
|
---|
453 | for (Int_t ids=0; ids < fWindowSizeLoGain; ids++)
|
---|
454 | {
|
---|
455 | const Int_t idx = fArrBinningResLoGain[ids] + fRandomIter;
|
---|
456 | sum += fAmpWeightsLoGain [idx]*fLoGainSignal[ids];
|
---|
457 | }
|
---|
458 | return;
|
---|
459 | }
|
---|
460 |
|
---|
461 | Float_t time_sum = 0.;
|
---|
462 | Float_t fmax = 0.;
|
---|
463 | Float_t ftime_max = 0.;
|
---|
464 | Int_t max_p = 0;
|
---|
465 |
|
---|
466 | //
|
---|
467 | // Calculate the sum of the first fWindowSize slices
|
---|
468 | //
|
---|
469 | for (Int_t i=0;i<range-fWindowSizeLoGain+1;i++)
|
---|
470 | {
|
---|
471 | sum = 0.;
|
---|
472 | time_sum = 0.;
|
---|
473 |
|
---|
474 | //
|
---|
475 | // Slide with a window of size fWindowSizeLoGain over the sample
|
---|
476 | // and multiply the entries with the corresponding weights
|
---|
477 | //
|
---|
478 | for (Int_t sample=0; sample < fWindowSizeLoGain; sample++)
|
---|
479 | {
|
---|
480 | const Int_t idx = fArrBinningResHalfLoGain[sample];
|
---|
481 | const Float_t pex = fLoGainSignal[sample+i];
|
---|
482 | sum += fAmpWeightsLoGain [idx]*pex;
|
---|
483 | time_sum += fTimeWeightsLoGain[idx]*pex;
|
---|
484 | }
|
---|
485 |
|
---|
486 | if (sum>fmax)
|
---|
487 | {
|
---|
488 | fmax = sum;
|
---|
489 | ftime_max = time_sum;
|
---|
490 | max_p = i;
|
---|
491 | }
|
---|
492 | } /* for (Int_t i=0;i<range-fWindowSizeLoGain+1;i++) */
|
---|
493 |
|
---|
494 | time = 0;
|
---|
495 | if (fmax==0)
|
---|
496 | return;
|
---|
497 |
|
---|
498 | ftime_max /= fmax;
|
---|
499 | Int_t t_iter = Int_t(ftime_max*fBinningResolutionLoGain);
|
---|
500 | Int_t sample_iter = 0;
|
---|
501 |
|
---|
502 | while ( t_iter > fBinningResolutionHalfLoGain-1 || t_iter < -fBinningResolutionHalfLoGain )
|
---|
503 | {
|
---|
504 | if (t_iter > fBinningResolutionHalfLoGain-1)
|
---|
505 | {
|
---|
506 | t_iter -= fBinningResolutionLoGain;
|
---|
507 | max_p--;
|
---|
508 | sample_iter--;
|
---|
509 | }
|
---|
510 | if (t_iter < -fBinningResolutionHalfLoGain)
|
---|
511 | {
|
---|
512 | t_iter += fBinningResolutionLoGain;
|
---|
513 | max_p++;
|
---|
514 | sample_iter++;
|
---|
515 | }
|
---|
516 | }
|
---|
517 |
|
---|
518 | sum = 0.;
|
---|
519 | time_sum = 0.;
|
---|
520 |
|
---|
521 | //
|
---|
522 | // Slide with a window of size fWindowSizeLoGain over the sample
|
---|
523 | // and multiply the entries with the corresponding weights
|
---|
524 | //
|
---|
525 | for (Int_t sample=0; sample < fWindowSizeLoGain; sample++)
|
---|
526 | {
|
---|
527 | const Int_t idx = fArrBinningResHalfLoGain[sample] + t_iter;
|
---|
528 | const Int_t ids = max_p + sample;
|
---|
529 | const Float_t pex = ids < 0 ? 0. : ( ids >= range ? 0. : fLoGainSignal[ids]);
|
---|
530 | sum += fAmpWeightsLoGain [idx]*pex;
|
---|
531 | time_sum += fTimeWeightsLoGain[idx]*pex;
|
---|
532 | }
|
---|
533 |
|
---|
534 | if (sum == 0)
|
---|
535 | return;
|
---|
536 |
|
---|
537 | time = max_p + fTimeShiftLoGain + (Float_t)fLoGainFirst /* this shifts the time to the start of the rising edge */
|
---|
538 | - ((Float_t)t_iter)/fBinningResolutionLoGain;
|
---|
539 |
|
---|
540 | const Float_t timefineadjust = time_sum/sum;
|
---|
541 |
|
---|
542 | if (timefineadjust < 2./fBinningResolutionLoGain)
|
---|
543 | time -= timefineadjust;
|
---|
544 |
|
---|
545 | }
|
---|
546 |
|
---|
547 | // --------------------------------------------------------------------------
|
---|
548 | //
|
---|
549 | // Read the setup from a TEnv, eg:
|
---|
550 | // MJPedestal.MExtractor.WindowSizeHiGain: 6
|
---|
551 | // MJPedestal.MExtractor.WindowSizeLoGain: 6
|
---|
552 | // MJPedestal.MExtractor.BinningResolutionHiGain: 10
|
---|
553 | // MJPedestal.MExtractor.BinningResolutionLoGain: 10
|
---|
554 | // MJPedestal.MExtractor.WeightsFile: filename
|
---|
555 | //
|
---|
556 | Int_t MExtractTimeAndChargeDigitalFilter::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
557 | {
|
---|
558 |
|
---|
559 | Byte_t hw = fWindowSizeHiGain;
|
---|
560 | Byte_t lw = fWindowSizeLoGain;
|
---|
561 | Bool_t rc = kFALSE;
|
---|
562 |
|
---|
563 | if (IsEnvDefined(env, prefix, "WindowSizeHiGain", print))
|
---|
564 | {
|
---|
565 | hw = GetEnvValue(env, prefix, "WindowSizeHiGain", hw);
|
---|
566 | rc = kTRUE;
|
---|
567 | }
|
---|
568 | if (IsEnvDefined(env, prefix, "WindowSizeLoGain", print))
|
---|
569 | {
|
---|
570 | lw = GetEnvValue(env, prefix, "WindowSizeLoGain", lw);
|
---|
571 | rc = kTRUE;
|
---|
572 | }
|
---|
573 |
|
---|
574 | if (rc)
|
---|
575 | SetWindowSize(hw, lw);
|
---|
576 |
|
---|
577 | Bool_t rc2 = kFALSE;
|
---|
578 | Int_t brh = fBinningResolutionHiGain;
|
---|
579 | Int_t brl = fBinningResolutionLoGain;
|
---|
580 |
|
---|
581 | if (IsEnvDefined(env, prefix, "BinningResolutionHiGain", print))
|
---|
582 | {
|
---|
583 | brh = GetEnvValue(env, prefix, brh);
|
---|
584 | rc2 = kTRUE;
|
---|
585 | }
|
---|
586 | if (IsEnvDefined(env, prefix, "BinningResolutionLoGain", print))
|
---|
587 | {
|
---|
588 | brl = GetEnvValue(env, prefix, brl);
|
---|
589 | rc2 = kTRUE;
|
---|
590 | }
|
---|
591 |
|
---|
592 | if (rc2)
|
---|
593 | {
|
---|
594 | SetBinningResolution(brh, brl);
|
---|
595 | rc = kTRUE;
|
---|
596 | }
|
---|
597 |
|
---|
598 | if (IsEnvDefined(env, prefix, "WeightsFile", print))
|
---|
599 | {
|
---|
600 | if (!ReadWeightsFile(GetEnvValue(env, prefix, "WeightsFile", "")))
|
---|
601 | return kERROR;
|
---|
602 | rc = kTRUE;
|
---|
603 | }
|
---|
604 |
|
---|
605 | return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc;
|
---|
606 | }
|
---|
607 |
|
---|
608 | //----------------------------------------------------------------------------
|
---|
609 | //
|
---|
610 | // Read a pre-defined weights file into the class.
|
---|
611 | // This is mandatory for the extraction
|
---|
612 | //
|
---|
613 | // If filenname is empty, then all weights will be set to 1.
|
---|
614 | //
|
---|
615 | Bool_t MExtractTimeAndChargeDigitalFilter::ReadWeightsFile(TString filename)
|
---|
616 | {
|
---|
617 |
|
---|
618 | // This is a fix for TEnv files edited with windows editors
|
---|
619 | filename.ReplaceAll("\015", "");
|
---|
620 |
|
---|
621 | SetNameWeightsFile(filename);
|
---|
622 |
|
---|
623 | fAmpWeightsHiGain .Set(fBinningResolutionHiGain*fWindowSizeHiGain);
|
---|
624 | fAmpWeightsLoGain .Set(fBinningResolutionLoGain*fWindowSizeLoGain);
|
---|
625 | fTimeWeightsHiGain.Set(fBinningResolutionHiGain*fWindowSizeHiGain);
|
---|
626 | fTimeWeightsLoGain.Set(fBinningResolutionLoGain*fWindowSizeLoGain);
|
---|
627 |
|
---|
628 | if (fNameWeightsFile.IsNull())
|
---|
629 | {
|
---|
630 | fAmpWeightsHiGain.Reset(1);
|
---|
631 | fTimeWeightsHiGain.Reset(1);
|
---|
632 | fAmpWeightsLoGain.Reset(1);
|
---|
633 | fTimeWeightsLoGain.Reset(1);
|
---|
634 | return kTRUE;
|
---|
635 | }
|
---|
636 |
|
---|
637 | ifstream fin(filename.Data());
|
---|
638 | if (!fin)
|
---|
639 | {
|
---|
640 | *fLog << err << GetDescriptor() << ": ERROR - Cannot open file " << filename << ": ";
|
---|
641 | *fLog << strerror(errno) << endl;
|
---|
642 | return kFALSE;
|
---|
643 | }
|
---|
644 |
|
---|
645 | *fLog << inf << "Reading weights file " << filename << "..." << flush;
|
---|
646 |
|
---|
647 | Int_t len = 0;
|
---|
648 | Int_t cnt = 0;
|
---|
649 | Int_t line = 0;
|
---|
650 | Bool_t hi = kFALSE;
|
---|
651 | Bool_t lo = kFALSE;
|
---|
652 |
|
---|
653 | TString str;
|
---|
654 |
|
---|
655 | while (1)
|
---|
656 | {
|
---|
657 | str.ReadLine(fin);
|
---|
658 | if (!fin)
|
---|
659 | break;
|
---|
660 |
|
---|
661 | line++;
|
---|
662 |
|
---|
663 | if (str.Contains("# High Gain Weights:"))
|
---|
664 | {
|
---|
665 | if (hi)
|
---|
666 | {
|
---|
667 | *fLog << err << "ERROR - 'High Gain Weights' found twice in line #" << line << "." << endl;
|
---|
668 | return kFALSE;
|
---|
669 | }
|
---|
670 |
|
---|
671 | if (2!=sscanf(str.Data(), "# High Gain Weights:%2i %2i", &fWindowSizeHiGain, &fBinningResolutionHiGain))
|
---|
672 | {
|
---|
673 | *fLog << err << "ERROR - Wrong number of arguments in line #" << line << ":" << endl;
|
---|
674 | *fLog << str << endl;
|
---|
675 | return kFALSE;
|
---|
676 | }
|
---|
677 |
|
---|
678 | len = fBinningResolutionHiGain*fWindowSizeHiGain;
|
---|
679 | fAmpWeightsHiGain .Set(len);
|
---|
680 | fTimeWeightsHiGain.Set(len);
|
---|
681 | hi = kTRUE;
|
---|
682 | continue;
|
---|
683 | }
|
---|
684 |
|
---|
685 | if (str.Contains("# Low Gain Weights:"))
|
---|
686 | {
|
---|
687 | if (lo)
|
---|
688 | {
|
---|
689 | *fLog << err << "ERROR - 'Lo Gain Weights' found twice in line #" << line << "." << endl;
|
---|
690 | return kFALSE;
|
---|
691 | }
|
---|
692 |
|
---|
693 | if (2!=sscanf(str.Data(),"# Low Gain Weights:%2i %2i", &fWindowSizeLoGain, &fBinningResolutionLoGain))
|
---|
694 | {
|
---|
695 | *fLog << err << "ERROR - Wrong number of arguments in line #" << line << ":" << endl;
|
---|
696 | *fLog << str << endl;
|
---|
697 | return kFALSE;
|
---|
698 | }
|
---|
699 |
|
---|
700 | len = fBinningResolutionLoGain*fWindowSizeLoGain;
|
---|
701 | fAmpWeightsLoGain .Set(len);
|
---|
702 | fTimeWeightsLoGain.Set(len);
|
---|
703 | lo = kTRUE;
|
---|
704 | continue;
|
---|
705 | }
|
---|
706 |
|
---|
707 | // Handle lines with comments
|
---|
708 | if (str.Contains("#"))
|
---|
709 | continue;
|
---|
710 |
|
---|
711 | // Nothing found so far
|
---|
712 | if (len == 0)
|
---|
713 | continue;
|
---|
714 |
|
---|
715 | if (2!=sscanf(str.Data(), "%f %f",
|
---|
716 | lo ? &fAmpWeightsLoGain [cnt] : &fAmpWeightsHiGain [cnt],
|
---|
717 | lo ? &fTimeWeightsLoGain[cnt] : &fTimeWeightsHiGain[cnt]))
|
---|
718 | {
|
---|
719 | *fLog << err << "ERROR - Wrong number of arguments in line #" << line << ":" << endl;
|
---|
720 | *fLog << str << endl;
|
---|
721 | return kFALSE;
|
---|
722 | }
|
---|
723 |
|
---|
724 | if (++cnt == len)
|
---|
725 | {
|
---|
726 | len = 0;
|
---|
727 | cnt = 0;
|
---|
728 | }
|
---|
729 | }
|
---|
730 |
|
---|
731 | if (cnt != len)
|
---|
732 | {
|
---|
733 | *fLog << err << "Size mismatch in weights file " << filename << endl;
|
---|
734 | return kFALSE;
|
---|
735 | }
|
---|
736 |
|
---|
737 | if (!hi)
|
---|
738 | {
|
---|
739 | *fLog << err << "No correct header found in weights file " << filename << endl;
|
---|
740 | return kFALSE;
|
---|
741 | }
|
---|
742 |
|
---|
743 | *fLog << "done." << endl;
|
---|
744 |
|
---|
745 | *fLog << inf << " File contains " << fWindowSizeHiGain << " hi-gain slices ";
|
---|
746 | *fLog << "with a resolution of " << fBinningResolutionHiGain << endl;
|
---|
747 |
|
---|
748 | *fLog << inf << " File contains " << fWindowSizeLoGain << " lo-gain slices ";
|
---|
749 | *fLog << "with a resolution of " << fBinningResolutionLoGain << endl;
|
---|
750 |
|
---|
751 | CalcBinningResArrays();
|
---|
752 |
|
---|
753 | fWeightsSet = kTRUE;
|
---|
754 |
|
---|
755 | return kTRUE;
|
---|
756 | }
|
---|
757 |
|
---|
758 | //----------------------------------------------------------------------------
|
---|
759 | //
|
---|
760 | // Create the weights file
|
---|
761 | // Beware that the shape-histogram has to contain the pulse starting at bin 1
|
---|
762 | //
|
---|
763 | Bool_t MExtractTimeAndChargeDigitalFilter::WriteWeightsFile(TString filename, TH1F *shapehi, TH2F *autocorrhi,
|
---|
764 | TH1F *shapelo, TH2F *autocorrlo )
|
---|
765 | {
|
---|
766 |
|
---|
767 | const Int_t nbinshi = shapehi->GetNbinsX();
|
---|
768 | Float_t binwidth = shapehi->GetBinWidth(1);
|
---|
769 |
|
---|
770 | TH1F *derivativehi = new TH1F(Form("%s%s",shapehi->GetName(),"_der"),
|
---|
771 | Form("%s%s",shapehi->GetTitle()," derivative"),
|
---|
772 | nbinshi,
|
---|
773 | shapehi->GetBinLowEdge(1),
|
---|
774 | shapehi->GetBinLowEdge(nbinshi)+binwidth);
|
---|
775 |
|
---|
776 | //
|
---|
777 | // Calculate the derivative of shapehi
|
---|
778 | //
|
---|
779 | for (Int_t i = 1; i<nbinshi+1;i++)
|
---|
780 | {
|
---|
781 | derivativehi->SetBinContent(i,
|
---|
782 | ((shapehi->GetBinContent(i+1)-shapehi->GetBinContent(i-1))/2./binwidth));
|
---|
783 | derivativehi->SetBinError(i,
|
---|
784 | (sqrt(shapehi->GetBinError(i+1)*shapehi->GetBinError(i+1)
|
---|
785 | +shapehi->GetBinError(i-1)*shapehi->GetBinError(i-1))/2./binwidth));
|
---|
786 | }
|
---|
787 |
|
---|
788 | //
|
---|
789 | // normalize the shapehi, such that the integral for fWindowSize slices is one!
|
---|
790 | //
|
---|
791 | Float_t sum = 0;
|
---|
792 | Int_t lasttemp = fBinningResolutionHiGain * (fSignalStartBinHiGain + fWindowSizeHiGain);
|
---|
793 | lasttemp = lasttemp > nbinshi ? nbinshi : lasttemp;
|
---|
794 |
|
---|
795 | for (Int_t i=fBinningResolutionHiGain*fSignalStartBinHiGain; i<lasttemp; i++) {
|
---|
796 | sum += shapehi->GetBinContent(i);
|
---|
797 | }
|
---|
798 | sum /= fBinningResolutionHiGain;
|
---|
799 |
|
---|
800 | shapehi->Scale(1./sum);
|
---|
801 | derivativehi->Scale(1./sum);
|
---|
802 |
|
---|
803 | //
|
---|
804 | // read in the noise auto-correlation function:
|
---|
805 | //
|
---|
806 | TMatrix Bhi(fWindowSizeHiGain,fWindowSizeHiGain);
|
---|
807 |
|
---|
808 | for (Int_t i=0; i<fWindowSizeHiGain; i++){
|
---|
809 | for (Int_t j=0; j<fWindowSizeHiGain; j++){
|
---|
810 | Bhi[i][j]=autocorrhi->GetBinContent(i+1,j+1); //+fSignalStartBinHiGain +fSignalStartBinHiGain
|
---|
811 | }
|
---|
812 | }
|
---|
813 | Bhi.Invert();
|
---|
814 |
|
---|
815 | const Int_t nsizehi = fWindowSizeHiGain*fBinningResolutionHiGain;
|
---|
816 | fAmpWeightsHiGain.Set(nsizehi);
|
---|
817 | fTimeWeightsHiGain.Set(nsizehi);
|
---|
818 |
|
---|
819 | //
|
---|
820 | // Loop over relative time in one BinningResolution interval
|
---|
821 | //
|
---|
822 | Int_t start = fBinningResolutionHiGain*(fSignalStartBinHiGain + 1);
|
---|
823 |
|
---|
824 | for (Int_t i = -fBinningResolutionHalfHiGain+1; i<=fBinningResolutionHalfHiGain; i++)
|
---|
825 | {
|
---|
826 |
|
---|
827 | TMatrix g(fWindowSizeHiGain,1);
|
---|
828 | TMatrix gT(1,fWindowSizeHiGain);
|
---|
829 | TMatrix d(fWindowSizeHiGain,1);
|
---|
830 | TMatrix dT(1,fWindowSizeHiGain);
|
---|
831 |
|
---|
832 | for (Int_t count=0; count < fWindowSizeHiGain; count++){
|
---|
833 |
|
---|
834 | g[count][0]=shapehi->GetBinContent(start
|
---|
835 | +fBinningResolutionHiGain*count+i);
|
---|
836 | gT[0][count]=shapehi->GetBinContent(start
|
---|
837 | +fBinningResolutionHiGain*count+i);
|
---|
838 | d[count][0]=derivativehi->GetBinContent(start
|
---|
839 | +fBinningResolutionHiGain*count+i);
|
---|
840 | dT[0][count]=derivativehi->GetBinContent(start
|
---|
841 | +fBinningResolutionHiGain*count+i);
|
---|
842 | }
|
---|
843 |
|
---|
844 | TMatrix m_denom = (gT*(Bhi*g))*(dT*(Bhi*d)) - (dT*(Bhi*g))*(dT*(Bhi*g));
|
---|
845 | Float_t denom = m_denom[0][0]; // ROOT thinks, m_denom is still a matrix
|
---|
846 |
|
---|
847 | TMatrix m_first = dT*(Bhi*d); // ROOT thinks, m_first is still a matrix
|
---|
848 | Float_t first = m_first[0][0]/denom;
|
---|
849 |
|
---|
850 | TMatrix m_last = gT*(Bhi*d); // ROOT thinks, m_last is still a matrix
|
---|
851 | Float_t last = m_last[0][0]/denom;
|
---|
852 |
|
---|
853 | TMatrix m1 = gT*Bhi;
|
---|
854 | m1 *= first;
|
---|
855 |
|
---|
856 | TMatrix m2 = dT*Bhi;
|
---|
857 | m2 *=last;
|
---|
858 |
|
---|
859 | TMatrix w_amp = m1 - m2;
|
---|
860 |
|
---|
861 | TMatrix m_first1 = gT*(Bhi*g);
|
---|
862 | Float_t first1 = m_first1[0][0]/denom;
|
---|
863 |
|
---|
864 | TMatrix m_last1 = gT*(Bhi*d);
|
---|
865 | Float_t last1 = m_last1 [0][0]/denom;
|
---|
866 |
|
---|
867 | TMatrix m11 = dT*Bhi;
|
---|
868 | m11 *=first1;
|
---|
869 |
|
---|
870 | TMatrix m21 = gT*Bhi;
|
---|
871 | m21 *=last1;
|
---|
872 |
|
---|
873 | TMatrix w_time= m11 - m21;
|
---|
874 |
|
---|
875 | for (Int_t count=0; count < fWindowSizeHiGain; count++)
|
---|
876 | {
|
---|
877 | const Int_t idx = i+fBinningResolutionHalfHiGain+fBinningResolutionHiGain*count-1;
|
---|
878 | fAmpWeightsHiGain [idx] = w_amp [0][count];
|
---|
879 | fTimeWeightsHiGain[idx] = w_time[0][count];
|
---|
880 | }
|
---|
881 |
|
---|
882 | } // end loop over i
|
---|
883 |
|
---|
884 | //
|
---|
885 | // Low Gain histograms
|
---|
886 | //
|
---|
887 | TH1F *derivativelo = NULL;
|
---|
888 | if (shapelo)
|
---|
889 | {
|
---|
890 | const Int_t nbinslo = shapelo->GetNbinsX();
|
---|
891 | binwidth = shapelo->GetBinWidth(1);
|
---|
892 |
|
---|
893 | derivativelo = new TH1F(Form("%s%s",shapelo->GetName(),"_der"),
|
---|
894 | Form("%s%s",shapelo->GetTitle()," derivative"),
|
---|
895 | nbinslo,
|
---|
896 | shapelo->GetBinLowEdge(1),
|
---|
897 | shapelo->GetBinLowEdge(nbinslo)+binwidth);
|
---|
898 |
|
---|
899 | //
|
---|
900 | // Calculate the derivative of shapelo
|
---|
901 | //
|
---|
902 | for (Int_t i = 1; i<nbinslo+1;i++)
|
---|
903 | {
|
---|
904 | derivativelo->SetBinContent(i,
|
---|
905 | ((shapelo->GetBinContent(i+1)-shapelo->GetBinContent(i-1))/2./binwidth));
|
---|
906 | derivativelo->SetBinError(i,
|
---|
907 | (sqrt(shapelo->GetBinError(i+1)*shapelo->GetBinError(i+1)
|
---|
908 | +shapelo->GetBinError(i-1)*shapelo->GetBinError(i-1))/2./binwidth));
|
---|
909 | }
|
---|
910 |
|
---|
911 | //
|
---|
912 | // normalize the shapelo, such that the integral for fWindowSize slices is one!
|
---|
913 | //
|
---|
914 | sum = 0;
|
---|
915 | lasttemp = fBinningResolutionLoGain * (fSignalStartBinLoGain + fWindowSizeLoGain);
|
---|
916 | lasttemp = lasttemp > nbinslo ? nbinslo : lasttemp;
|
---|
917 |
|
---|
918 | for (Int_t i=fBinningResolutionLoGain*fSignalStartBinLoGain; i<lasttemp; i++)
|
---|
919 | sum += shapelo->GetBinContent(i);
|
---|
920 |
|
---|
921 | sum /= fBinningResolutionLoGain;
|
---|
922 |
|
---|
923 | shapelo->Scale(1./sum);
|
---|
924 | derivativelo->Scale(1./sum);
|
---|
925 |
|
---|
926 | //
|
---|
927 | // read in the noise auto-correlation function:
|
---|
928 | //
|
---|
929 | TMatrix Blo(fWindowSizeLoGain,fWindowSizeLoGain);
|
---|
930 |
|
---|
931 | for (Int_t i=0; i<fWindowSizeLoGain; i++){
|
---|
932 | for (Int_t j=0; j<fWindowSizeLoGain; j++){
|
---|
933 | Blo[i][j]=autocorrlo->GetBinContent(i+1+fSignalStartBinLoGain,j+1+fSignalStartBinLoGain);
|
---|
934 | }
|
---|
935 | }
|
---|
936 | Blo.Invert();
|
---|
937 |
|
---|
938 | const Int_t nsizelo = fWindowSizeLoGain*fBinningResolutionLoGain;
|
---|
939 | fAmpWeightsLoGain.Set(nsizelo);
|
---|
940 | fTimeWeightsLoGain.Set(nsizelo);
|
---|
941 |
|
---|
942 | //
|
---|
943 | // Loop over relative time in one BinningResolution interval
|
---|
944 | //
|
---|
945 | Int_t start = fBinningResolutionLoGain*fSignalStartBinLoGain + fBinningResolutionHalfLoGain;
|
---|
946 |
|
---|
947 | for (Int_t i = -fBinningResolutionHalfLoGain+1; i<=fBinningResolutionHalfLoGain; i++)
|
---|
948 | {
|
---|
949 |
|
---|
950 | TMatrix g(fWindowSizeLoGain,1);
|
---|
951 | TMatrix gT(1,fWindowSizeLoGain);
|
---|
952 | TMatrix d(fWindowSizeLoGain,1);
|
---|
953 | TMatrix dT(1,fWindowSizeLoGain);
|
---|
954 |
|
---|
955 | for (Int_t count=0; count < fWindowSizeLoGain; count++){
|
---|
956 |
|
---|
957 | g[count][0] = shapelo->GetBinContent(start
|
---|
958 | +fBinningResolutionLoGain*count+i);
|
---|
959 | gT[0][count]= shapelo->GetBinContent(start
|
---|
960 | +fBinningResolutionLoGain*count+i);
|
---|
961 | d[count][0] = derivativelo->GetBinContent(start
|
---|
962 | +fBinningResolutionLoGain*count+i);
|
---|
963 | dT[0][count]= derivativelo->GetBinContent(start
|
---|
964 | +fBinningResolutionLoGain*count+i);
|
---|
965 | }
|
---|
966 |
|
---|
967 | TMatrix m_denom = (gT*(Blo*g))*(dT*(Blo*d)) - (dT*(Blo*g))*(dT*(Blo*g));
|
---|
968 | Float_t denom = m_denom[0][0]; // ROOT thinks, m_denom is still a matrix
|
---|
969 |
|
---|
970 | TMatrix m_first = dT*(Blo*d); // ROOT thinks, m_first is still a matrix
|
---|
971 | Float_t first = m_first[0][0]/denom;
|
---|
972 |
|
---|
973 | TMatrix m_last = gT*(Blo*d); // ROOT thinks, m_last is still a matrix
|
---|
974 | Float_t last = m_last[0][0]/denom;
|
---|
975 |
|
---|
976 | TMatrix m1 = gT*Blo;
|
---|
977 | m1 *= first;
|
---|
978 |
|
---|
979 | TMatrix m2 = dT*Blo;
|
---|
980 | m2 *=last;
|
---|
981 |
|
---|
982 | TMatrix w_amp = m1 - m2;
|
---|
983 |
|
---|
984 | TMatrix m_first1 = gT*(Blo*g);
|
---|
985 | Float_t first1 = m_first1[0][0]/denom;
|
---|
986 |
|
---|
987 | TMatrix m_last1 = gT*(Blo*d);
|
---|
988 | Float_t last1 = m_last1 [0][0]/denom;
|
---|
989 |
|
---|
990 | TMatrix m11 = dT*Blo;
|
---|
991 | m11 *=first1;
|
---|
992 |
|
---|
993 | TMatrix m21 = gT*Blo;
|
---|
994 | m21 *=last1;
|
---|
995 |
|
---|
996 | TMatrix w_time= m11 - m21;
|
---|
997 |
|
---|
998 | for (Int_t count=0; count < fWindowSizeLoGain; count++)
|
---|
999 | {
|
---|
1000 | const Int_t idx = i+fBinningResolutionHalfLoGain+fBinningResolutionLoGain*count-1;
|
---|
1001 | fAmpWeightsLoGain [idx] = w_amp [0][count];
|
---|
1002 | fTimeWeightsLoGain[idx] = w_time[0][count];
|
---|
1003 | }
|
---|
1004 |
|
---|
1005 | } // end loop over i
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 | ofstream fn(filename.Data());
|
---|
1009 |
|
---|
1010 | fn << "# High Gain Weights: " << fWindowSizeHiGain << " " << fBinningResolutionHiGain << endl;
|
---|
1011 | fn << "# (Amplitude) (Time) " << endl;
|
---|
1012 |
|
---|
1013 | for (Int_t i=0; i<nsizehi; i++)
|
---|
1014 | fn << "\t" << fAmpWeightsHiGain[i] << "\t" << fTimeWeightsHiGain[i] << endl;
|
---|
1015 |
|
---|
1016 | fn << "# Low Gain Weights: " << fWindowSizeLoGain << " " << fBinningResolutionLoGain << endl;
|
---|
1017 | fn << "# (Amplitude) (Time) " << endl;
|
---|
1018 |
|
---|
1019 | for (Int_t i=0; i<nsizehi; i++)
|
---|
1020 | fn << "\t" << fAmpWeightsLoGain[i] << "\t" << fTimeWeightsLoGain[i] << endl;
|
---|
1021 |
|
---|
1022 | delete derivativehi;
|
---|
1023 | if (derivativelo)
|
---|
1024 | delete derivativelo;
|
---|
1025 |
|
---|
1026 | return kTRUE;
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | void MExtractTimeAndChargeDigitalFilter::Print(Option_t *o) const
|
---|
1030 | {
|
---|
1031 | if (IsA()==Class())
|
---|
1032 | *fLog << GetDescriptor() << ":" << endl;
|
---|
1033 |
|
---|
1034 | MExtractTimeAndCharge::Print(o);
|
---|
1035 | *fLog << " Time Shift HiGain: " << fTimeShiftHiGain << " LoGain: " << fTimeShiftLoGain << endl;
|
---|
1036 | *fLog << " Window Size HiGain: " << fWindowSizeHiGain << " LoGain: " << fWindowSizeLoGain << endl;
|
---|
1037 | *fLog << " Binning Res HiGain: " << fBinningResolutionHiGain << " LoGain: " << fBinningResolutionHiGain << endl;
|
---|
1038 | *fLog << " Weights File: " << fNameWeightsFile << endl;
|
---|
1039 |
|
---|
1040 | TString opt(o);
|
---|
1041 | if (!opt.Contains("weights"))
|
---|
1042 | return;
|
---|
1043 |
|
---|
1044 | *fLog << endl;
|
---|
1045 | *fLog << inf << "Using the following weights: " << endl;
|
---|
1046 | *fLog << "Hi-Gain:" << endl;
|
---|
1047 | for (Int_t i=0; i<fBinningResolutionHiGain*fWindowSizeHiGain; i++)
|
---|
1048 | *fLog << " " << fAmpWeightsHiGain[i] << " \t " << fTimeWeightsHiGain[i] << endl;
|
---|
1049 |
|
---|
1050 | *fLog << "Lo-Gain:" << endl;
|
---|
1051 | for (Int_t i=0; i<fBinningResolutionLoGain*fWindowSizeLoGain; i++)
|
---|
1052 | *fLog << " " << fAmpWeightsLoGain[i] << " \t " << fTimeWeightsLoGain[i] << endl;
|
---|
1053 | }
|
---|