1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Hendrik Bartko, 09/2004 <mailto:hbartko@mppmu.mpg.de>
|
---|
19 | ! Author(s): Markus Gaug, 05/2004 <mailto:markus@ifae.es>
|
---|
20 | ! Author(s): Diego Tescaro, 05/2004 <mailto:tescaro@pd.infn.it>
|
---|
21 | !
|
---|
22 | ! Copyright: MAGIC Software Development, 2000-2004
|
---|
23 | !
|
---|
24 | !
|
---|
25 | \* ======================================================================== */
|
---|
26 | //////////////////////////////////////////////////////////////////////////////
|
---|
27 | //
|
---|
28 | // MExtractTimeAndChargeDigitalFilter
|
---|
29 | //
|
---|
30 | // Hendrik has promised to write more documentation
|
---|
31 | //
|
---|
32 | // The following variables have to be set by the derived class and
|
---|
33 | // do not have defaults:
|
---|
34 | // - fNumHiGainSamples
|
---|
35 | // - fNumLoGainSamples
|
---|
36 | // - fSqrtHiGainSamples
|
---|
37 | // - fSqrtLoGainSamples
|
---|
38 | //
|
---|
39 | // The reading of automatic weights files (color, type) can be switched
|
---|
40 | // off using EnableAutomaticWeights(kFALSE).
|
---|
41 | //
|
---|
42 | // An empty name or "-" as the weights file name is a synonym for
|
---|
43 | // setting all weights to 1
|
---|
44 | //
|
---|
45 | // Input Containers:
|
---|
46 | // MRawEvtData
|
---|
47 | // MRawRunHeader
|
---|
48 | // MPedestalCam
|
---|
49 | // [MCalibrationPattern]
|
---|
50 | //
|
---|
51 | // Output Containers:
|
---|
52 | // MArrivalTimeCam
|
---|
53 | // MExtractedSignalCam
|
---|
54 | //
|
---|
55 | //////////////////////////////////////////////////////////////////////////////
|
---|
56 | #include "MExtractTimeAndChargeDigitalFilter.h"
|
---|
57 |
|
---|
58 | #include <errno.h>
|
---|
59 | #include <fstream>
|
---|
60 |
|
---|
61 | #include <TH1.h>
|
---|
62 | #include <TH2.h>
|
---|
63 | #include <TMatrix.h>
|
---|
64 |
|
---|
65 | #include "MLog.h"
|
---|
66 | #include "MLogManip.h"
|
---|
67 |
|
---|
68 | #include "MParList.h"
|
---|
69 |
|
---|
70 | #include "MRawRunHeader.h"
|
---|
71 | #include "MCalibrationPattern.h"
|
---|
72 |
|
---|
73 | #include "MPedestalPix.h"
|
---|
74 |
|
---|
75 | ClassImp(MExtractTimeAndChargeDigitalFilter);
|
---|
76 |
|
---|
77 | using namespace std;
|
---|
78 |
|
---|
79 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgHiGainFirst = 0;
|
---|
80 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgHiGainLast = 15;
|
---|
81 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgLoGainFirst = 1;
|
---|
82 | const Byte_t MExtractTimeAndChargeDigitalFilter::fgLoGainLast = 14;
|
---|
83 | const Int_t MExtractTimeAndChargeDigitalFilter::fgWindowSizeHiGain = 4;
|
---|
84 | const Int_t MExtractTimeAndChargeDigitalFilter::fgWindowSizeLoGain = 6;
|
---|
85 | const Int_t MExtractTimeAndChargeDigitalFilter::fgBinningResolutionHiGain = 10;
|
---|
86 | const Int_t MExtractTimeAndChargeDigitalFilter::fgBinningResolutionLoGain = 10;
|
---|
87 | const Int_t MExtractTimeAndChargeDigitalFilter::fgSignalStartBinHiGain = 4;
|
---|
88 | const Int_t MExtractTimeAndChargeDigitalFilter::fgSignalStartBinLoGain = 4;
|
---|
89 | const Float_t MExtractTimeAndChargeDigitalFilter::fgOffsetLoGain = 1.7; // 5 ns
|
---|
90 | const Float_t MExtractTimeAndChargeDigitalFilter::fgLoGainStartShift = -1.8;
|
---|
91 |
|
---|
92 | // --------------------------------------------------------------------------
|
---|
93 | //
|
---|
94 | // Default constructor.
|
---|
95 | //
|
---|
96 | // Calls:
|
---|
97 | // - SetWindowSize();
|
---|
98 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast)
|
---|
99 | // - SetBinningResolution();
|
---|
100 | //
|
---|
101 | // Sets all weights to 1.
|
---|
102 | //
|
---|
103 | MExtractTimeAndChargeDigitalFilter::MExtractTimeAndChargeDigitalFilter(const char *name, const char *title)
|
---|
104 | : fTimeShiftHiGain(0.), fTimeShiftLoGain(0.), fAutomaticWeights(kTRUE), fRandomIter(0)
|
---|
105 | {
|
---|
106 | fName = name ? name : "MExtractTimeAndChargeDigitalFilter";
|
---|
107 | fTitle = title ? title : "Digital Filter";
|
---|
108 |
|
---|
109 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast);
|
---|
110 | SetWindowSize();
|
---|
111 | SetBinningResolution();
|
---|
112 | SetSignalStartBin();
|
---|
113 |
|
---|
114 | SetOffsetLoGain(fgOffsetLoGain);
|
---|
115 | SetLoGainStartShift(fgLoGainStartShift);
|
---|
116 | }
|
---|
117 |
|
---|
118 | // ---------------------------------------------------------------------------------------
|
---|
119 | //
|
---|
120 | // Checks:
|
---|
121 | // - if a window is bigger than the one defined by the ranges, set it to the available range
|
---|
122 | //
|
---|
123 | // Sets:
|
---|
124 | // - fNumHiGainSamples to: (Float_t)fWindowSizeHiGain
|
---|
125 | // - fNumLoGainSamples to: (Float_t)fWindowSizeLoGain
|
---|
126 | //
|
---|
127 | void MExtractTimeAndChargeDigitalFilter::SetWindowSize(Int_t windowh, Int_t windowl)
|
---|
128 | {
|
---|
129 |
|
---|
130 | if (windowh != fgWindowSizeHiGain)
|
---|
131 | *fLog << warn << GetDescriptor()
|
---|
132 | << ": ATTENTION!!! If you are not Hendrik Bartko, do NOT use a different window size than the default." << endl;
|
---|
133 | if (windowl != fgWindowSizeLoGain)
|
---|
134 | *fLog << warn << GetDescriptor()
|
---|
135 | << ": ATTENTION!!! If you are not Hendrik Bartko, do NOT use a different window size than the default" << endl;
|
---|
136 |
|
---|
137 | fWindowSizeHiGain = windowh;
|
---|
138 | fWindowSizeLoGain = windowl;
|
---|
139 |
|
---|
140 | const Int_t availhirange = (Int_t)(fHiGainLast-fHiGainFirst+1);
|
---|
141 |
|
---|
142 | if (fWindowSizeHiGain > availhirange)
|
---|
143 | {
|
---|
144 | // Please simplify this!
|
---|
145 | *fLog << warn << GetDescriptor()
|
---|
146 | << Form("%s%2i%s%2i%s%2i%s",": Hi Gain window size: ",fWindowSizeHiGain,
|
---|
147 | " is bigger than available range: [",(int)fHiGainFirst,",",(int)fHiGainLast,"]") << endl;
|
---|
148 | fHiGainLast = fHiGainFirst + fWindowSizeHiGain;
|
---|
149 | *fLog << warn << GetDescriptor()
|
---|
150 | << ": Will set the upper range to: " << (int)fHiGainLast << endl;
|
---|
151 | }
|
---|
152 |
|
---|
153 | if (fWindowSizeHiGain < 2)
|
---|
154 | {
|
---|
155 | fWindowSizeHiGain = 2;
|
---|
156 | *fLog << warn << GetDescriptor() << ": High Gain window size set to two samples" << endl;
|
---|
157 | }
|
---|
158 |
|
---|
159 | if (fLoGainLast != 0 && fWindowSizeLoGain != 0)
|
---|
160 | {
|
---|
161 | const Int_t availlorange = (Int_t)(fLoGainLast-fLoGainFirst+1);
|
---|
162 |
|
---|
163 | if (fWindowSizeLoGain > availlorange)
|
---|
164 | {
|
---|
165 | // Please simplify this!
|
---|
166 | *fLog << warn << GetDescriptor()
|
---|
167 | << Form("%s%2i%s%2i%s%2i%s",": Lo Gain window size: ",fWindowSizeLoGain,
|
---|
168 | " is bigger than available range: [",(int)fLoGainFirst,",",(int)fLoGainLast,"]") << endl;
|
---|
169 | fLoGainLast = fLoGainFirst + fWindowSizeLoGain;
|
---|
170 | *fLog << warn << GetDescriptor()
|
---|
171 | << ": Will set the upper range to: " << (int)fLoGainLast << endl;
|
---|
172 | }
|
---|
173 |
|
---|
174 | if (fWindowSizeLoGain<2)
|
---|
175 | {
|
---|
176 | fWindowSizeLoGain = 2;
|
---|
177 | *fLog << warn << GetDescriptor() << ": Low Gain window size set to two samples" << endl;
|
---|
178 | }
|
---|
179 | }
|
---|
180 | //
|
---|
181 | // We need here the effective number of samples which is about 2.5 in the case of a window
|
---|
182 | // size of 6. The exact numbers have to be found still.
|
---|
183 | //
|
---|
184 | fNumHiGainSamples = (Float_t)fWindowSizeHiGain/2.4;
|
---|
185 | fNumLoGainSamples = (Float_t)fWindowSizeLoGain/2.4;
|
---|
186 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
---|
187 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
---|
188 |
|
---|
189 | }
|
---|
190 |
|
---|
191 | // --------------------------------------------------------------------------
|
---|
192 | //
|
---|
193 | // Executing MExtractTimeAndCharge::PreProcess and searching for
|
---|
194 | // MCalibrationPattern
|
---|
195 | //
|
---|
196 | Int_t MExtractTimeAndChargeDigitalFilter::PreProcess(MParList *pList)
|
---|
197 | {
|
---|
198 | if (!MExtractTimeAndCharge::PreProcess(pList))
|
---|
199 | return kFALSE;
|
---|
200 |
|
---|
201 | fCalibPattern = (MCalibrationPattern*)pList->FindObject("MCalibrationPattern");
|
---|
202 | return kTRUE;
|
---|
203 | }
|
---|
204 |
|
---|
205 | // --------------------------------------------------------------------------
|
---|
206 | //
|
---|
207 | // InitArrays
|
---|
208 | //
|
---|
209 | // Gets called in the ReInit() and initialized the arrays
|
---|
210 | //
|
---|
211 | Bool_t MExtractTimeAndChargeDigitalFilter::InitArrays()
|
---|
212 | {
|
---|
213 | if (!fRunHeader)
|
---|
214 | return kFALSE;
|
---|
215 |
|
---|
216 | const Int_t rangehi = (Int_t)(fHiGainLast - fHiGainFirst + 1 + fHiLoLast);
|
---|
217 | const Int_t rangelo = (Int_t)(fLoGainLast - fLoGainFirst + 1);
|
---|
218 |
|
---|
219 | fHiGainSignal.Set(rangehi);
|
---|
220 | fLoGainSignal.Set(rangelo);
|
---|
221 |
|
---|
222 | // Try to get automatic weights
|
---|
223 | if (!ReadAutomaticWeightsFile())
|
---|
224 | return kFALSE;
|
---|
225 |
|
---|
226 | // If still no weights set try conservative way
|
---|
227 | if (fNameWeightsFileSet.IsNull())
|
---|
228 | if (!ReadWeightsFile(fNameWeightsFile))
|
---|
229 | return kFALSE;
|
---|
230 |
|
---|
231 | fTimeShiftHiGain = (Float_t)fHiGainFirst + 0.5 + 1./fBinningResolutionHiGain;
|
---|
232 | fTimeShiftLoGain = 0.5 + 1./fBinningResolutionLoGain;
|
---|
233 | //
|
---|
234 | // We need here the effective number of samples which is about 2.5 in the case of a window
|
---|
235 | // size of 6. The exact numbers have to be found still.
|
---|
236 | //
|
---|
237 | fNumHiGainSamples = (Float_t)fWindowSizeHiGain/2.4;
|
---|
238 | fNumLoGainSamples = (Float_t)fWindowSizeLoGain/2.4;
|
---|
239 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
---|
240 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
---|
241 |
|
---|
242 | return kTRUE;
|
---|
243 | }
|
---|
244 |
|
---|
245 | void MExtractTimeAndChargeDigitalFilter::CalcBinningResArrays()
|
---|
246 | {
|
---|
247 |
|
---|
248 | fArrBinningResHiGain.Set(fWindowSizeHiGain);
|
---|
249 | fArrBinningResHalfHiGain.Set(fWindowSizeHiGain);
|
---|
250 |
|
---|
251 | for (int i=0; i<fWindowSizeHiGain; i++)
|
---|
252 | {
|
---|
253 | fArrBinningResHiGain[i] = fBinningResolutionHiGain*i;
|
---|
254 | fArrBinningResHalfHiGain[i] = fArrBinningResHiGain[i] + fBinningResolutionHalfHiGain;
|
---|
255 | }
|
---|
256 |
|
---|
257 | fArrBinningResLoGain.Set(fWindowSizeLoGain);
|
---|
258 | fArrBinningResHalfLoGain.Set(fWindowSizeLoGain);
|
---|
259 |
|
---|
260 | for (int i=0; i<fWindowSizeLoGain; i++)
|
---|
261 | {
|
---|
262 | fArrBinningResLoGain[i] = fBinningResolutionLoGain*i;
|
---|
263 | fArrBinningResHalfLoGain[i] = fArrBinningResLoGain[i] + fBinningResolutionHalfLoGain;
|
---|
264 | }
|
---|
265 | }
|
---|
266 |
|
---|
267 | // --------------------------------------------------------------------------
|
---|
268 | //
|
---|
269 | // Apply the digital filter algorithm to the high-gain slices.
|
---|
270 | //
|
---|
271 | void MExtractTimeAndChargeDigitalFilter::FindTimeAndChargeHiGain(Byte_t *ptr, Byte_t *logain, Float_t &sum, Float_t &dsum,
|
---|
272 | Float_t &time, Float_t &dtime,
|
---|
273 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
---|
274 | {
|
---|
275 |
|
---|
276 | Int_t range = fHiGainLast - fHiGainFirst + 1;
|
---|
277 |
|
---|
278 | const Byte_t *end = ptr + range;
|
---|
279 | Byte_t *p = ptr;
|
---|
280 | Byte_t maxpos = 0;
|
---|
281 |
|
---|
282 | //
|
---|
283 | // Preparations for the pedestal subtraction (with AB-noise correction)
|
---|
284 | //
|
---|
285 | const Float_t pedes = ped.GetPedestal();
|
---|
286 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
---|
287 |
|
---|
288 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
---|
289 |
|
---|
290 | range += fHiLoLast;
|
---|
291 | fMaxBinContent = 0;
|
---|
292 | //
|
---|
293 | // Check for saturation in all other slices
|
---|
294 | //
|
---|
295 | Int_t ids = fHiGainFirst;
|
---|
296 | Float_t *sample = fHiGainSignal.GetArray();
|
---|
297 | while (p<end)
|
---|
298 | {
|
---|
299 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
---|
300 |
|
---|
301 | if (*p > fMaxBinContent)
|
---|
302 | {
|
---|
303 | maxpos = p-ptr;
|
---|
304 | if (maxpos > 1 && maxpos < (range - fWindowSizeHiGain + 1))
|
---|
305 | fMaxBinContent = *p;
|
---|
306 | }
|
---|
307 |
|
---|
308 | if (*p++ >= fSaturationLimit)
|
---|
309 | if (!sat)
|
---|
310 | sat = ids-3;
|
---|
311 | }
|
---|
312 |
|
---|
313 | //
|
---|
314 | // Slide with a window of size fWindowSizeHiGain over the sample
|
---|
315 | // and multiply the entries with the corresponding weights
|
---|
316 | //
|
---|
317 | if (IsNoiseCalculation())
|
---|
318 | {
|
---|
319 | if (fRandomIter == fBinningResolutionHiGain)
|
---|
320 | fRandomIter = 0;
|
---|
321 | for (Int_t ids=0; ids < fWindowSizeHiGain; ids++)
|
---|
322 | {
|
---|
323 | const Int_t idx = fArrBinningResHiGain[ids] + fRandomIter;
|
---|
324 | sum += fAmpWeightsHiGain [idx]*fHiGainSignal[ids];
|
---|
325 | }
|
---|
326 | fRandomIter++;
|
---|
327 | return;
|
---|
328 | }
|
---|
329 |
|
---|
330 | if (fHiLoLast != 0)
|
---|
331 | {
|
---|
332 |
|
---|
333 | end = logain + fHiLoLast;
|
---|
334 |
|
---|
335 | while (logain<end)
|
---|
336 | {
|
---|
337 |
|
---|
338 | *sample++ = (Float_t)*logain - pedmean[(ids++ + abflag) & 0x1];
|
---|
339 |
|
---|
340 | if (*logain++ >= fSaturationLimit)
|
---|
341 | if (!sat)
|
---|
342 | sat = ids-3;
|
---|
343 | }
|
---|
344 | }
|
---|
345 |
|
---|
346 | //
|
---|
347 | // allow no saturated slice
|
---|
348 | //
|
---|
349 | // if (sat > 0)
|
---|
350 | // return;
|
---|
351 |
|
---|
352 | Float_t time_sum = 0.;
|
---|
353 | Float_t fmax = -9999.;
|
---|
354 | Float_t ftime_max = 0.;
|
---|
355 | Int_t max_p = 0;
|
---|
356 |
|
---|
357 | //
|
---|
358 | // Calculate the sum of the first fWindowSize slices
|
---|
359 | //
|
---|
360 | for (Int_t i=0;i<range-fWindowSizeHiGain+1;i++)
|
---|
361 | {
|
---|
362 | sum = 0.;
|
---|
363 | time_sum = 0.;
|
---|
364 |
|
---|
365 | //
|
---|
366 | // Slide with a window of size fWindowSizeHiGain over the sample
|
---|
367 | // and multiply the entries with the corresponding weights
|
---|
368 | //
|
---|
369 | for (Int_t sample=0; sample < fWindowSizeHiGain; sample++)
|
---|
370 | {
|
---|
371 | const Int_t idx = fBinningResolutionHiGain*sample+fBinningResolutionHalfHiGain;
|
---|
372 | const Float_t pex = fHiGainSignal[sample+i];
|
---|
373 | sum += fAmpWeightsHiGain [idx]*pex;
|
---|
374 | time_sum += fTimeWeightsHiGain[idx]*pex;
|
---|
375 | }
|
---|
376 |
|
---|
377 | if (sum>fmax)
|
---|
378 | {
|
---|
379 | fmax = sum;
|
---|
380 | ftime_max = time_sum;
|
---|
381 | max_p = i;
|
---|
382 | }
|
---|
383 | } /* for (Int_t i=0;i<range-fWindowSizeHiGain+1;i++) */
|
---|
384 |
|
---|
385 | if (fmax==0)
|
---|
386 | return;
|
---|
387 |
|
---|
388 | ftime_max /= fmax;
|
---|
389 | Int_t t_iter = Int_t(ftime_max*fBinningResolutionHiGain);
|
---|
390 | Int_t sample_iter = 0;
|
---|
391 |
|
---|
392 | while ( t_iter > fBinningResolutionHalfHiGain-1 || t_iter < -fBinningResolutionHalfHiGain )
|
---|
393 | {
|
---|
394 | if (t_iter > fBinningResolutionHalfHiGain-1)
|
---|
395 | {
|
---|
396 | t_iter -= fBinningResolutionHiGain;
|
---|
397 | max_p--;
|
---|
398 | sample_iter--;
|
---|
399 | }
|
---|
400 | if (t_iter < -fBinningResolutionHalfHiGain)
|
---|
401 | {
|
---|
402 | t_iter += fBinningResolutionHiGain;
|
---|
403 | max_p++;
|
---|
404 | sample_iter++;
|
---|
405 | }
|
---|
406 | }
|
---|
407 |
|
---|
408 | sum = 0.;
|
---|
409 | time_sum = 0.;
|
---|
410 | if (max_p < 0)
|
---|
411 | max_p = 0;
|
---|
412 | if (max_p+fWindowSizeHiGain > range)
|
---|
413 | max_p = range-fWindowSizeHiGain;
|
---|
414 | //
|
---|
415 | // Slide with a window of size fWindowSizeHiGain over the sample
|
---|
416 | // and multiply the entries with the corresponding weights
|
---|
417 | //
|
---|
418 | for (Int_t sample=0; sample < fWindowSizeHiGain; sample++)
|
---|
419 | {
|
---|
420 | const Int_t idx = fArrBinningResHalfHiGain[sample] + t_iter;
|
---|
421 | const Int_t ids = max_p + sample;
|
---|
422 | const Float_t pex = fHiGainSignal[ids];
|
---|
423 | sum += fAmpWeightsHiGain [idx]*pex;
|
---|
424 | time_sum += fTimeWeightsHiGain[idx]*pex;
|
---|
425 | }
|
---|
426 |
|
---|
427 | if (sum == 0)
|
---|
428 | return;
|
---|
429 |
|
---|
430 | time = max_p + fTimeShiftHiGain + (Float_t)fHiGainFirst /* this shifts the time to the start of the rising edge */
|
---|
431 | - ((Float_t)t_iter)/fBinningResolutionHiGain;
|
---|
432 |
|
---|
433 | const Float_t timefineadjust = time_sum/sum;
|
---|
434 |
|
---|
435 | if (TMath::Abs(timefineadjust) < 4./fBinningResolutionHiGain)
|
---|
436 | time -= timefineadjust;
|
---|
437 |
|
---|
438 | }
|
---|
439 |
|
---|
440 | // --------------------------------------------------------------------------
|
---|
441 | //
|
---|
442 | // Apply the digital filter algorithm to the low-gain slices.
|
---|
443 | //
|
---|
444 | void MExtractTimeAndChargeDigitalFilter::FindTimeAndChargeLoGain(Byte_t *ptr, Float_t &sum, Float_t &dsum,
|
---|
445 | Float_t &time, Float_t &dtime,
|
---|
446 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
---|
447 | {
|
---|
448 |
|
---|
449 | const Int_t range = fLoGainLast - fLoGainFirst + 1;
|
---|
450 |
|
---|
451 | const Byte_t *end = ptr + range;
|
---|
452 | Byte_t *p = ptr;
|
---|
453 | //
|
---|
454 | // Prepare the low-gain pedestal
|
---|
455 | //
|
---|
456 | const Float_t pedes = ped.GetPedestal();
|
---|
457 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
---|
458 |
|
---|
459 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
---|
460 |
|
---|
461 | //
|
---|
462 | // Check for saturation in all other slices
|
---|
463 | //
|
---|
464 | Float_t *sample = fLoGainSignal.GetArray();
|
---|
465 | Int_t ids = fLoGainFirst;
|
---|
466 | while (p<end)
|
---|
467 | {
|
---|
468 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
---|
469 |
|
---|
470 | if (*p++ >= fSaturationLimit)
|
---|
471 | sat++;
|
---|
472 | }
|
---|
473 |
|
---|
474 | //
|
---|
475 | // Slide with a window of size fWindowSizeLoGain over the sample
|
---|
476 | // and multiply the entries with the corresponding weights
|
---|
477 | //
|
---|
478 | if (IsNoiseCalculation())
|
---|
479 | {
|
---|
480 | if (fRandomIter == fBinningResolutionLoGain)
|
---|
481 | fRandomIter = 0;
|
---|
482 | for (Int_t ids=0; ids < fWindowSizeLoGain; ids++)
|
---|
483 | {
|
---|
484 | const Int_t idx = fArrBinningResLoGain[ids] + fRandomIter;
|
---|
485 | sum += fAmpWeightsLoGain [idx]*fLoGainSignal[ids];
|
---|
486 | }
|
---|
487 | return;
|
---|
488 | }
|
---|
489 |
|
---|
490 | Float_t time_sum = 0.;
|
---|
491 | Float_t fmax = 0.;
|
---|
492 | Float_t ftime_max = 0.;
|
---|
493 | Int_t max_p = 0;
|
---|
494 |
|
---|
495 | //
|
---|
496 | // Calculate the sum of the first fWindowSize slices
|
---|
497 | //
|
---|
498 | for (Int_t i=0;i<range-fWindowSizeLoGain+1;i++)
|
---|
499 | {
|
---|
500 | sum = 0.;
|
---|
501 | time_sum = 0.;
|
---|
502 |
|
---|
503 | //
|
---|
504 | // Slide with a window of size fWindowSizeLoGain over the sample
|
---|
505 | // and multiply the entries with the corresponding weights
|
---|
506 | //
|
---|
507 | for (Int_t sample=0; sample < fWindowSizeLoGain; sample++)
|
---|
508 | {
|
---|
509 | const Int_t idx = fArrBinningResHalfLoGain[sample];
|
---|
510 | const Float_t pex = fLoGainSignal[sample+i];
|
---|
511 | sum += fAmpWeightsLoGain [idx]*pex;
|
---|
512 | time_sum += fTimeWeightsLoGain[idx]*pex;
|
---|
513 | }
|
---|
514 |
|
---|
515 | if (sum>fmax)
|
---|
516 | {
|
---|
517 | fmax = sum;
|
---|
518 | ftime_max = time_sum;
|
---|
519 | max_p = i;
|
---|
520 | }
|
---|
521 | } /* for (Int_t i=0;i<range-fWindowSizeLoGain+1;i++) */
|
---|
522 |
|
---|
523 | time = 0;
|
---|
524 | if (fmax==0)
|
---|
525 | return;
|
---|
526 |
|
---|
527 | ftime_max /= fmax;
|
---|
528 | Int_t t_iter = Int_t(ftime_max*fBinningResolutionLoGain);
|
---|
529 | Int_t sample_iter = 0;
|
---|
530 |
|
---|
531 | while ( t_iter > fBinningResolutionHalfLoGain-1 || t_iter < -fBinningResolutionHalfLoGain )
|
---|
532 | {
|
---|
533 | if (t_iter > fBinningResolutionHalfLoGain-1)
|
---|
534 | {
|
---|
535 | t_iter -= fBinningResolutionLoGain;
|
---|
536 | max_p--;
|
---|
537 | sample_iter--;
|
---|
538 | }
|
---|
539 | if (t_iter < -fBinningResolutionHalfLoGain)
|
---|
540 | {
|
---|
541 | t_iter += fBinningResolutionLoGain;
|
---|
542 | max_p++;
|
---|
543 | sample_iter++;
|
---|
544 | }
|
---|
545 | }
|
---|
546 |
|
---|
547 | sum = 0.;
|
---|
548 | time_sum = 0.;
|
---|
549 |
|
---|
550 | //
|
---|
551 | // Slide with a window of size fWindowSizeLoGain over the sample
|
---|
552 | // and multiply the entries with the corresponding weights
|
---|
553 | //
|
---|
554 | for (Int_t sample=0; sample < fWindowSizeLoGain; sample++)
|
---|
555 | {
|
---|
556 | const Int_t idx = fArrBinningResHalfLoGain[sample] + t_iter;
|
---|
557 | const Int_t ids = max_p + sample;
|
---|
558 | const Float_t pex = ids < 0 ? 0. : ( ids >= range ? 0. : fLoGainSignal[ids]);
|
---|
559 | sum += fAmpWeightsLoGain [idx]*pex;
|
---|
560 | time_sum += fTimeWeightsLoGain[idx]*pex;
|
---|
561 | }
|
---|
562 |
|
---|
563 | if (sum == 0)
|
---|
564 | return;
|
---|
565 |
|
---|
566 | time = max_p + fTimeShiftLoGain + (Float_t)fLoGainFirst /* this shifts the time to the start of the rising edge */
|
---|
567 | - ((Float_t)t_iter)/fBinningResolutionLoGain;
|
---|
568 |
|
---|
569 | const Float_t timefineadjust = time_sum/sum;
|
---|
570 |
|
---|
571 | if (TMath::Abs(timefineadjust) < 4./fBinningResolutionLoGain)
|
---|
572 | time -= timefineadjust;
|
---|
573 |
|
---|
574 | }
|
---|
575 |
|
---|
576 | // --------------------------------------------------------------------------
|
---|
577 | //
|
---|
578 | // Read the setup from a TEnv, eg:
|
---|
579 | // MJPedestal.MExtractor.WindowSizeHiGain: 6
|
---|
580 | // MJPedestal.MExtractor.WindowSizeLoGain: 6
|
---|
581 | // MJPedestal.MExtractor.BinningResolutionHiGain: 10
|
---|
582 | // MJPedestal.MExtractor.BinningResolutionLoGain: 10
|
---|
583 | // MJPedestal.MExtractor.WeightsFile: filename
|
---|
584 | // MJPedestal.MExtractor.AutomaticWeights: off
|
---|
585 | //
|
---|
586 | Int_t MExtractTimeAndChargeDigitalFilter::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
587 | {
|
---|
588 |
|
---|
589 | Byte_t hw = fWindowSizeHiGain;
|
---|
590 | Byte_t lw = fWindowSizeLoGain;
|
---|
591 | Bool_t rc = kFALSE;
|
---|
592 |
|
---|
593 | if (IsEnvDefined(env, prefix, "AutomaticWeights", print))
|
---|
594 | {
|
---|
595 | EnableAutomaticWeights(GetEnvValue(env, prefix, "AutomaticWeights", fAutomaticWeights));
|
---|
596 | rc = kTRUE;
|
---|
597 | }
|
---|
598 |
|
---|
599 | if (IsEnvDefined(env, prefix, "WindowSizeHiGain", print))
|
---|
600 | {
|
---|
601 | hw = GetEnvValue(env, prefix, "WindowSizeHiGain", hw);
|
---|
602 | rc = kTRUE;
|
---|
603 | }
|
---|
604 | if (IsEnvDefined(env, prefix, "WindowSizeLoGain", print))
|
---|
605 | {
|
---|
606 | lw = GetEnvValue(env, prefix, "WindowSizeLoGain", lw);
|
---|
607 | rc = kTRUE;
|
---|
608 | }
|
---|
609 |
|
---|
610 | if (rc)
|
---|
611 | SetWindowSize(hw, lw);
|
---|
612 |
|
---|
613 | Bool_t rc2 = kFALSE;
|
---|
614 | Int_t brh = fBinningResolutionHiGain;
|
---|
615 | Int_t brl = fBinningResolutionLoGain;
|
---|
616 |
|
---|
617 | if (IsEnvDefined(env, prefix, "BinningResolutionHiGain", print))
|
---|
618 | {
|
---|
619 | brh = GetEnvValue(env, prefix, brh);
|
---|
620 | rc2 = kTRUE;
|
---|
621 | }
|
---|
622 | if (IsEnvDefined(env, prefix, "BinningResolutionLoGain", print))
|
---|
623 | {
|
---|
624 | brl = GetEnvValue(env, prefix, brl);
|
---|
625 | rc2 = kTRUE;
|
---|
626 | }
|
---|
627 |
|
---|
628 | if (rc2)
|
---|
629 | {
|
---|
630 | SetBinningResolution(brh, brl);
|
---|
631 | rc = kTRUE;
|
---|
632 | }
|
---|
633 |
|
---|
634 | if (IsEnvDefined(env, prefix, "WeightsFile", print))
|
---|
635 | {
|
---|
636 | SetNameWeightsFile(GetEnvValue(env, prefix, "WeightsFile", ""));
|
---|
637 | rc = kTRUE;
|
---|
638 | }
|
---|
639 |
|
---|
640 | return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc;
|
---|
641 | }
|
---|
642 |
|
---|
643 | //----------------------------------------------------------------------------
|
---|
644 | //
|
---|
645 | // Read a pre-defined weights file into the class.
|
---|
646 | // This is mandatory for the extraction
|
---|
647 | //
|
---|
648 | // If filenname is empty, then all weights will be set to 1.
|
---|
649 | //
|
---|
650 | Bool_t MExtractTimeAndChargeDigitalFilter::ReadWeightsFile(TString filename)
|
---|
651 | {
|
---|
652 |
|
---|
653 | // This is a fix for TEnv files edited with windows editors
|
---|
654 | filename.ReplaceAll("\015", "");
|
---|
655 |
|
---|
656 | fAmpWeightsHiGain .Set(fBinningResolutionHiGain*fWindowSizeHiGain);
|
---|
657 | fAmpWeightsLoGain .Set(fBinningResolutionLoGain*fWindowSizeLoGain);
|
---|
658 | fTimeWeightsHiGain.Set(fBinningResolutionHiGain*fWindowSizeHiGain);
|
---|
659 | fTimeWeightsLoGain.Set(fBinningResolutionLoGain*fWindowSizeLoGain);
|
---|
660 |
|
---|
661 | if (fNameWeightsFile.IsNull() || fNameWeightsFile=="-")
|
---|
662 | {
|
---|
663 | fAmpWeightsHiGain.Reset(1);
|
---|
664 | fTimeWeightsHiGain.Reset(1);
|
---|
665 | fAmpWeightsLoGain.Reset(1);
|
---|
666 | fTimeWeightsLoGain.Reset(1);
|
---|
667 | fNameWeightsFileSet = "-";
|
---|
668 | return kTRUE;
|
---|
669 | }
|
---|
670 |
|
---|
671 | //filename = MJob::ExpandPath(filename);
|
---|
672 |
|
---|
673 | if (fNameWeightsFileSet==filename)
|
---|
674 | return kTRUE;
|
---|
675 |
|
---|
676 | ifstream fin(filename.Data());
|
---|
677 | if (!fin)
|
---|
678 | {
|
---|
679 | *fLog << err << GetDescriptor() << ": ERROR - Cannot open file " << filename << ": ";
|
---|
680 | *fLog << strerror(errno) << endl;
|
---|
681 | return kFALSE;
|
---|
682 | }
|
---|
683 |
|
---|
684 | *fLog << all << "DigitalFilter: Reading weights in " << filename << "..." << flush;
|
---|
685 |
|
---|
686 | Int_t len = 0;
|
---|
687 | Int_t cnt = 0;
|
---|
688 | Int_t line = 0;
|
---|
689 | Bool_t hi = kFALSE;
|
---|
690 | Bool_t lo = kFALSE;
|
---|
691 |
|
---|
692 | TString str;
|
---|
693 |
|
---|
694 | while (1)
|
---|
695 | {
|
---|
696 | str.ReadLine(fin);
|
---|
697 | if (!fin)
|
---|
698 | break;
|
---|
699 |
|
---|
700 | line++;
|
---|
701 |
|
---|
702 | if (str.Contains("# High Gain Weights:"))
|
---|
703 | {
|
---|
704 | if (hi)
|
---|
705 | {
|
---|
706 | *fLog << err << "ERROR - 'High Gain Weights' found twice in line #" << line << "." << endl;
|
---|
707 | return kFALSE;
|
---|
708 | }
|
---|
709 |
|
---|
710 | if (2!=sscanf(str.Data(), "# High Gain Weights:%2i %2i", &fWindowSizeHiGain, &fBinningResolutionHiGain))
|
---|
711 | {
|
---|
712 | *fLog << err << "ERROR - Wrong number of arguments in line #" << line << ":" << endl;
|
---|
713 | *fLog << str << endl;
|
---|
714 | return kFALSE;
|
---|
715 | }
|
---|
716 |
|
---|
717 | len = fBinningResolutionHiGain*fWindowSizeHiGain;
|
---|
718 | fAmpWeightsHiGain .Set(len);
|
---|
719 | fTimeWeightsHiGain.Set(len);
|
---|
720 | hi = kTRUE;
|
---|
721 | continue;
|
---|
722 | }
|
---|
723 |
|
---|
724 | if (str.Contains("# Low Gain Weights:"))
|
---|
725 | {
|
---|
726 | if (lo)
|
---|
727 | {
|
---|
728 | *fLog << err << "ERROR - 'Lo Gain Weights' found twice in line #" << line << "." << endl;
|
---|
729 | return kFALSE;
|
---|
730 | }
|
---|
731 |
|
---|
732 | if (2!=sscanf(str.Data(),"# Low Gain Weights:%2i %2i", &fWindowSizeLoGain, &fBinningResolutionLoGain))
|
---|
733 | {
|
---|
734 | *fLog << err << "ERROR - Wrong number of arguments in line #" << line << ":" << endl;
|
---|
735 | *fLog << str << endl;
|
---|
736 | return kFALSE;
|
---|
737 | }
|
---|
738 |
|
---|
739 | len = fBinningResolutionLoGain*fWindowSizeLoGain;
|
---|
740 | fAmpWeightsLoGain .Set(len);
|
---|
741 | fTimeWeightsLoGain.Set(len);
|
---|
742 | lo = kTRUE;
|
---|
743 | continue;
|
---|
744 | }
|
---|
745 |
|
---|
746 | // Handle lines with comments
|
---|
747 | if (str.Contains("#"))
|
---|
748 | continue;
|
---|
749 |
|
---|
750 | // Nothing found so far
|
---|
751 | if (len == 0)
|
---|
752 | continue;
|
---|
753 |
|
---|
754 | if (2!=sscanf(str.Data(), "%f %f",
|
---|
755 | lo ? &fAmpWeightsLoGain [cnt] : &fAmpWeightsHiGain [cnt],
|
---|
756 | lo ? &fTimeWeightsLoGain[cnt] : &fTimeWeightsHiGain[cnt]))
|
---|
757 | {
|
---|
758 | *fLog << err << "ERROR - Wrong number of arguments in line #" << line << ":" << endl;
|
---|
759 | *fLog << str << endl;
|
---|
760 | return kFALSE;
|
---|
761 | }
|
---|
762 |
|
---|
763 | if (++cnt == len)
|
---|
764 | {
|
---|
765 | len = 0;
|
---|
766 | cnt = 0;
|
---|
767 | }
|
---|
768 | }
|
---|
769 |
|
---|
770 | if (cnt != len)
|
---|
771 | {
|
---|
772 | *fLog << err << "Size mismatch in weights file " << filename << endl;
|
---|
773 | return kFALSE;
|
---|
774 | }
|
---|
775 |
|
---|
776 | if (!hi)
|
---|
777 | {
|
---|
778 | *fLog << err << "No correct header found in weights file " << filename << endl;
|
---|
779 | return kFALSE;
|
---|
780 | }
|
---|
781 |
|
---|
782 | *fLog << "done." << endl;
|
---|
783 |
|
---|
784 | *fLog << inf << " File contains " << fWindowSizeHiGain << " hi-gain slices ";
|
---|
785 | *fLog << "with a resolution of " << fBinningResolutionHiGain << endl;
|
---|
786 |
|
---|
787 | *fLog << inf << " File contains " << fWindowSizeLoGain << " lo-gain slices ";
|
---|
788 | *fLog << "with a resolution of " << fBinningResolutionLoGain << endl;
|
---|
789 |
|
---|
790 | CalcBinningResArrays();
|
---|
791 |
|
---|
792 | switch (fWindowSizeHiGain)
|
---|
793 | {
|
---|
794 | case 4:
|
---|
795 | SetResolutionPerPheHiGain(0.036);
|
---|
796 | break;
|
---|
797 | case 6:
|
---|
798 | SetResolutionPerPheHiGain(0.021);
|
---|
799 | break;
|
---|
800 | default:
|
---|
801 | *fLog << warn << "Could not set the high-gain extractor resolution per phe for window size "
|
---|
802 | << fWindowSizeHiGain << endl;
|
---|
803 | }
|
---|
804 |
|
---|
805 | switch (fWindowSizeLoGain)
|
---|
806 | {
|
---|
807 | case 4:
|
---|
808 | SetResolutionPerPheLoGain(0.005);
|
---|
809 | break;
|
---|
810 | case 6:
|
---|
811 | SetResolutionPerPheLoGain(0.004);
|
---|
812 | break;
|
---|
813 | default:
|
---|
814 | *fLog << warn << "Could not set the low-gain extractor resolution per phe for window size "
|
---|
815 | << fWindowSizeLoGain << endl;
|
---|
816 | }
|
---|
817 |
|
---|
818 | fNameWeightsFileSet = filename;
|
---|
819 |
|
---|
820 | return kTRUE;
|
---|
821 | }
|
---|
822 |
|
---|
823 |
|
---|
824 | //----------------------------------------------------------------------------
|
---|
825 | //
|
---|
826 | // If automatic weight disabled or run type is pedestal no action is taken
|
---|
827 | // and kTRUE is returned.
|
---|
828 | //
|
---|
829 | // Otherwise:
|
---|
830 | // - If runtype is kRTData and filename starts with "MC_weights" "MC" is
|
---|
831 | // replaced by "cosmics"
|
---|
832 | // - If runtype is kRTMonteCarlo and filename starts with "cosmics_weights"
|
---|
833 | // "cosmics" is replaced by "MC"
|
---|
834 | // - If name filename begins with "calibration_weights_" for blue and green
|
---|
835 | // "UV" is replaced by "blue"
|
---|
836 | // - If name filename begins with "calibration_weights_" for UV and CT1
|
---|
837 | // "blue" is replaced by "UV"
|
---|
838 | //
|
---|
839 | // The replacements are done in this order. If no match is found no
|
---|
840 | // replacement is done. Afterwards ReadWeightsFile for the resulting
|
---|
841 | // path-/filename is called.
|
---|
842 | //
|
---|
843 | Bool_t MExtractTimeAndChargeDigitalFilter::ReadAutomaticWeightsFile()
|
---|
844 | {
|
---|
845 | if (!fAutomaticWeights || fRunHeader->GetRunType()==MRawRunHeader::kRTPedestal)
|
---|
846 | return kTRUE;
|
---|
847 |
|
---|
848 | if (fNameWeightsFile.IsNull())
|
---|
849 | {
|
---|
850 | *fLog << err << "ERROR - Cannot get automatic weights without default filename." << endl;
|
---|
851 | return kFALSE;
|
---|
852 | }
|
---|
853 |
|
---|
854 | *fLog << dbg << endl;
|
---|
855 | *fLog << underline << GetDescriptor() << endl;
|
---|
856 | *fLog << " Trying to get automatic weight for " << fNameWeightsFile << endl;
|
---|
857 |
|
---|
858 | const Ssiz_t pos = fNameWeightsFile.Last('/')+1;
|
---|
859 | const Ssiz_t len = fNameWeightsFile.Length();
|
---|
860 |
|
---|
861 | TString path = fNameWeightsFile(0, pos>=0?pos:len);
|
---|
862 | TString name = fNameWeightsFile(pos>=0?pos:0, len);
|
---|
863 |
|
---|
864 | if (name.BeginsWith("cosmics_weights") && fRunHeader->GetRunType()==MRawRunHeader::kRTMonteCarlo)
|
---|
865 | {
|
---|
866 | name.Remove(0, 7);
|
---|
867 | name.Prepend("MC");
|
---|
868 | *fLog << "Run type: Monte Carlo data" << endl;
|
---|
869 | }
|
---|
870 | if (name.BeginsWith("MC_weights") && fRunHeader->GetRunType()==MRawRunHeader::kRTData)
|
---|
871 | {
|
---|
872 | name.Remove(0, 2);
|
---|
873 | name.Prepend("cosmics");
|
---|
874 | *fLog << "Run type: Cosmics data" << endl;
|
---|
875 | }
|
---|
876 |
|
---|
877 | if (name.BeginsWith("calibration_weights_") && fCalibPattern)
|
---|
878 | {
|
---|
879 | *fLog << " Run type: Calibration with color " << (int)fCalibPattern->GetPulserColor() << ", setting ";
|
---|
880 | switch (fCalibPattern->GetPulserColor())
|
---|
881 | {
|
---|
882 | case MCalibrationCam::kBLUE: // 2
|
---|
883 | case MCalibrationCam::kGREEN: // 1
|
---|
884 | *fLog << "blue/green" << endl;
|
---|
885 | name.ReplaceAll("UV", "blue");
|
---|
886 | break;
|
---|
887 |
|
---|
888 | case MCalibrationCam::kUV: // 3
|
---|
889 | case MCalibrationCam::kCT1: // 0
|
---|
890 | *fLog << "UV/CT1" << endl;
|
---|
891 | name.ReplaceAll("blue", "UV");
|
---|
892 | break;
|
---|
893 | case MCalibrationCam::kNONE:
|
---|
894 | *fLog << "None" << endl;
|
---|
895 | break;
|
---|
896 | default: // kNONE=4
|
---|
897 | *fLog << "???" << endl;
|
---|
898 | }
|
---|
899 | }
|
---|
900 |
|
---|
901 | path += name;
|
---|
902 |
|
---|
903 | return ReadWeightsFile(path);
|
---|
904 | }
|
---|
905 |
|
---|
906 | //----------------------------------------------------------------------------
|
---|
907 | //
|
---|
908 | // Create the weights file
|
---|
909 | // Beware that the shape-histogram has to contain the pulse starting at bin 1
|
---|
910 | //
|
---|
911 | Bool_t MExtractTimeAndChargeDigitalFilter::WriteWeightsFile(TString filename, TH1F *shapehi, TH2F *autocorrhi,
|
---|
912 | TH1F *shapelo, TH2F *autocorrlo )
|
---|
913 | {
|
---|
914 |
|
---|
915 | const Int_t nbinshi = shapehi->GetNbinsX();
|
---|
916 | Float_t binwidth = shapehi->GetBinWidth(1);
|
---|
917 |
|
---|
918 | TH1F *derivativehi = new TH1F(Form("%s%s",shapehi->GetName(),"_der"),
|
---|
919 | Form("%s%s",shapehi->GetTitle()," derivative"),
|
---|
920 | nbinshi,
|
---|
921 | shapehi->GetBinLowEdge(1),
|
---|
922 | shapehi->GetBinLowEdge(nbinshi)+binwidth);
|
---|
923 |
|
---|
924 | //
|
---|
925 | // Calculate the derivative of shapehi
|
---|
926 | //
|
---|
927 | for (Int_t i = 1; i<nbinshi+1;i++)
|
---|
928 | {
|
---|
929 | derivativehi->SetBinContent(i,
|
---|
930 | ((shapehi->GetBinContent(i+1)-shapehi->GetBinContent(i-1))/2./binwidth));
|
---|
931 | derivativehi->SetBinError(i,
|
---|
932 | (sqrt(shapehi->GetBinError(i+1)*shapehi->GetBinError(i+1)
|
---|
933 | +shapehi->GetBinError(i-1)*shapehi->GetBinError(i-1))/2./binwidth));
|
---|
934 | }
|
---|
935 |
|
---|
936 | //
|
---|
937 | // normalize the shapehi, such that the integral for fWindowSize slices is one!
|
---|
938 | //
|
---|
939 | Float_t sum = 0;
|
---|
940 | Int_t lasttemp = fBinningResolutionHiGain * (fSignalStartBinHiGain + fWindowSizeHiGain);
|
---|
941 | lasttemp = lasttemp > nbinshi ? nbinshi : lasttemp;
|
---|
942 |
|
---|
943 | for (Int_t i=fBinningResolutionHiGain*fSignalStartBinHiGain; i<lasttemp; i++) {
|
---|
944 | sum += shapehi->GetBinContent(i);
|
---|
945 | }
|
---|
946 | sum /= fBinningResolutionHiGain;
|
---|
947 |
|
---|
948 | shapehi->Scale(1./sum);
|
---|
949 | derivativehi->Scale(1./sum);
|
---|
950 |
|
---|
951 | //
|
---|
952 | // read in the noise auto-correlation function:
|
---|
953 | //
|
---|
954 | TMatrix Bhi(fWindowSizeHiGain,fWindowSizeHiGain);
|
---|
955 |
|
---|
956 | for (Int_t i=0; i<fWindowSizeHiGain; i++){
|
---|
957 | for (Int_t j=0; j<fWindowSizeHiGain; j++){
|
---|
958 | Bhi[i][j]=autocorrhi->GetBinContent(i+1,j+1); //+fSignalStartBinHiGain +fSignalStartBinHiGain
|
---|
959 | }
|
---|
960 | }
|
---|
961 | Bhi.Invert();
|
---|
962 |
|
---|
963 | const Int_t nsizehi = fWindowSizeHiGain*fBinningResolutionHiGain;
|
---|
964 | fAmpWeightsHiGain.Set(nsizehi);
|
---|
965 | fTimeWeightsHiGain.Set(nsizehi);
|
---|
966 |
|
---|
967 | //
|
---|
968 | // Loop over relative time in one BinningResolution interval
|
---|
969 | //
|
---|
970 | Int_t start = fBinningResolutionHiGain*(fSignalStartBinHiGain + 1);
|
---|
971 |
|
---|
972 | for (Int_t i = -fBinningResolutionHalfHiGain+1; i<=fBinningResolutionHalfHiGain; i++)
|
---|
973 | {
|
---|
974 |
|
---|
975 | TMatrix g(fWindowSizeHiGain,1);
|
---|
976 | TMatrix gT(1,fWindowSizeHiGain);
|
---|
977 | TMatrix d(fWindowSizeHiGain,1);
|
---|
978 | TMatrix dT(1,fWindowSizeHiGain);
|
---|
979 |
|
---|
980 | for (Int_t count=0; count < fWindowSizeHiGain; count++){
|
---|
981 |
|
---|
982 | g[count][0]=shapehi->GetBinContent(start
|
---|
983 | +fBinningResolutionHiGain*count+i);
|
---|
984 | gT[0][count]=shapehi->GetBinContent(start
|
---|
985 | +fBinningResolutionHiGain*count+i);
|
---|
986 | d[count][0]=derivativehi->GetBinContent(start
|
---|
987 | +fBinningResolutionHiGain*count+i);
|
---|
988 | dT[0][count]=derivativehi->GetBinContent(start
|
---|
989 | +fBinningResolutionHiGain*count+i);
|
---|
990 | }
|
---|
991 |
|
---|
992 | TMatrix m_denom = (gT*(Bhi*g))*(dT*(Bhi*d)) - (dT*(Bhi*g))*(dT*(Bhi*g));
|
---|
993 | Float_t denom = m_denom[0][0]; // ROOT thinks, m_denom is still a matrix
|
---|
994 |
|
---|
995 | TMatrix m_first = dT*(Bhi*d); // ROOT thinks, m_first is still a matrix
|
---|
996 | Float_t first = m_first[0][0]/denom;
|
---|
997 |
|
---|
998 | TMatrix m_last = gT*(Bhi*d); // ROOT thinks, m_last is still a matrix
|
---|
999 | Float_t last = m_last[0][0]/denom;
|
---|
1000 |
|
---|
1001 | TMatrix m1 = gT*Bhi;
|
---|
1002 | m1 *= first;
|
---|
1003 |
|
---|
1004 | TMatrix m2 = dT*Bhi;
|
---|
1005 | m2 *=last;
|
---|
1006 |
|
---|
1007 | TMatrix w_amp = m1 - m2;
|
---|
1008 |
|
---|
1009 | TMatrix m_first1 = gT*(Bhi*g);
|
---|
1010 | Float_t first1 = m_first1[0][0]/denom;
|
---|
1011 |
|
---|
1012 | TMatrix m_last1 = gT*(Bhi*d);
|
---|
1013 | Float_t last1 = m_last1 [0][0]/denom;
|
---|
1014 |
|
---|
1015 | TMatrix m11 = dT*Bhi;
|
---|
1016 | m11 *=first1;
|
---|
1017 |
|
---|
1018 | TMatrix m21 = gT*Bhi;
|
---|
1019 | m21 *=last1;
|
---|
1020 |
|
---|
1021 | TMatrix w_time= m11 - m21;
|
---|
1022 |
|
---|
1023 | for (Int_t count=0; count < fWindowSizeHiGain; count++)
|
---|
1024 | {
|
---|
1025 | const Int_t idx = i+fBinningResolutionHalfHiGain+fBinningResolutionHiGain*count-1;
|
---|
1026 | fAmpWeightsHiGain [idx] = w_amp [0][count];
|
---|
1027 | fTimeWeightsHiGain[idx] = w_time[0][count];
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 | } // end loop over i
|
---|
1031 |
|
---|
1032 | //
|
---|
1033 | // Low Gain histograms
|
---|
1034 | //
|
---|
1035 | TH1F *derivativelo = NULL;
|
---|
1036 | if (shapelo)
|
---|
1037 | {
|
---|
1038 | const Int_t nbinslo = shapelo->GetNbinsX();
|
---|
1039 | binwidth = shapelo->GetBinWidth(1);
|
---|
1040 |
|
---|
1041 | derivativelo = new TH1F(Form("%s%s",shapelo->GetName(),"_der"),
|
---|
1042 | Form("%s%s",shapelo->GetTitle()," derivative"),
|
---|
1043 | nbinslo,
|
---|
1044 | shapelo->GetBinLowEdge(1),
|
---|
1045 | shapelo->GetBinLowEdge(nbinslo)+binwidth);
|
---|
1046 |
|
---|
1047 | //
|
---|
1048 | // Calculate the derivative of shapelo
|
---|
1049 | //
|
---|
1050 | for (Int_t i = 1; i<nbinslo+1;i++)
|
---|
1051 | {
|
---|
1052 | derivativelo->SetBinContent(i,
|
---|
1053 | ((shapelo->GetBinContent(i+1)-shapelo->GetBinContent(i-1))/2./binwidth));
|
---|
1054 | derivativelo->SetBinError(i,
|
---|
1055 | (sqrt(shapelo->GetBinError(i+1)*shapelo->GetBinError(i+1)
|
---|
1056 | +shapelo->GetBinError(i-1)*shapelo->GetBinError(i-1))/2./binwidth));
|
---|
1057 | }
|
---|
1058 |
|
---|
1059 | //
|
---|
1060 | // normalize the shapelo, such that the integral for fWindowSize slices is one!
|
---|
1061 | //
|
---|
1062 | sum = 0;
|
---|
1063 | lasttemp = fBinningResolutionLoGain * (fSignalStartBinLoGain + fWindowSizeLoGain);
|
---|
1064 | lasttemp = lasttemp > nbinslo ? nbinslo : lasttemp;
|
---|
1065 |
|
---|
1066 | for (Int_t i=fBinningResolutionLoGain*fSignalStartBinLoGain; i<lasttemp; i++)
|
---|
1067 | sum += shapelo->GetBinContent(i);
|
---|
1068 |
|
---|
1069 | sum /= fBinningResolutionLoGain;
|
---|
1070 |
|
---|
1071 | shapelo->Scale(1./sum);
|
---|
1072 | derivativelo->Scale(1./sum);
|
---|
1073 |
|
---|
1074 | //
|
---|
1075 | // read in the noise auto-correlation function:
|
---|
1076 | //
|
---|
1077 | TMatrix Blo(fWindowSizeLoGain,fWindowSizeLoGain);
|
---|
1078 |
|
---|
1079 | for (Int_t i=0; i<fWindowSizeLoGain; i++){
|
---|
1080 | for (Int_t j=0; j<fWindowSizeLoGain; j++){
|
---|
1081 | Blo[i][j]=autocorrlo->GetBinContent(i+1+fSignalStartBinLoGain,j+1+fSignalStartBinLoGain);
|
---|
1082 | }
|
---|
1083 | }
|
---|
1084 | Blo.Invert();
|
---|
1085 |
|
---|
1086 | const Int_t nsizelo = fWindowSizeLoGain*fBinningResolutionLoGain;
|
---|
1087 | fAmpWeightsLoGain.Set(nsizelo);
|
---|
1088 | fTimeWeightsLoGain.Set(nsizelo);
|
---|
1089 |
|
---|
1090 | //
|
---|
1091 | // Loop over relative time in one BinningResolution interval
|
---|
1092 | //
|
---|
1093 | Int_t start = fBinningResolutionLoGain*fSignalStartBinLoGain + fBinningResolutionHalfLoGain;
|
---|
1094 |
|
---|
1095 | for (Int_t i = -fBinningResolutionHalfLoGain+1; i<=fBinningResolutionHalfLoGain; i++)
|
---|
1096 | {
|
---|
1097 |
|
---|
1098 | TMatrix g(fWindowSizeLoGain,1);
|
---|
1099 | TMatrix gT(1,fWindowSizeLoGain);
|
---|
1100 | TMatrix d(fWindowSizeLoGain,1);
|
---|
1101 | TMatrix dT(1,fWindowSizeLoGain);
|
---|
1102 |
|
---|
1103 | for (Int_t count=0; count < fWindowSizeLoGain; count++){
|
---|
1104 |
|
---|
1105 | g[count][0] = shapelo->GetBinContent(start
|
---|
1106 | +fBinningResolutionLoGain*count+i);
|
---|
1107 | gT[0][count]= shapelo->GetBinContent(start
|
---|
1108 | +fBinningResolutionLoGain*count+i);
|
---|
1109 | d[count][0] = derivativelo->GetBinContent(start
|
---|
1110 | +fBinningResolutionLoGain*count+i);
|
---|
1111 | dT[0][count]= derivativelo->GetBinContent(start
|
---|
1112 | +fBinningResolutionLoGain*count+i);
|
---|
1113 | }
|
---|
1114 |
|
---|
1115 | TMatrix m_denom = (gT*(Blo*g))*(dT*(Blo*d)) - (dT*(Blo*g))*(dT*(Blo*g));
|
---|
1116 | Float_t denom = m_denom[0][0]; // ROOT thinks, m_denom is still a matrix
|
---|
1117 |
|
---|
1118 | TMatrix m_first = dT*(Blo*d); // ROOT thinks, m_first is still a matrix
|
---|
1119 | Float_t first = m_first[0][0]/denom;
|
---|
1120 |
|
---|
1121 | TMatrix m_last = gT*(Blo*d); // ROOT thinks, m_last is still a matrix
|
---|
1122 | Float_t last = m_last[0][0]/denom;
|
---|
1123 |
|
---|
1124 | TMatrix m1 = gT*Blo;
|
---|
1125 | m1 *= first;
|
---|
1126 |
|
---|
1127 | TMatrix m2 = dT*Blo;
|
---|
1128 | m2 *=last;
|
---|
1129 |
|
---|
1130 | TMatrix w_amp = m1 - m2;
|
---|
1131 |
|
---|
1132 | TMatrix m_first1 = gT*(Blo*g);
|
---|
1133 | Float_t first1 = m_first1[0][0]/denom;
|
---|
1134 |
|
---|
1135 | TMatrix m_last1 = gT*(Blo*d);
|
---|
1136 | Float_t last1 = m_last1 [0][0]/denom;
|
---|
1137 |
|
---|
1138 | TMatrix m11 = dT*Blo;
|
---|
1139 | m11 *=first1;
|
---|
1140 |
|
---|
1141 | TMatrix m21 = gT*Blo;
|
---|
1142 | m21 *=last1;
|
---|
1143 |
|
---|
1144 | TMatrix w_time= m11 - m21;
|
---|
1145 |
|
---|
1146 | for (Int_t count=0; count < fWindowSizeLoGain; count++)
|
---|
1147 | {
|
---|
1148 | const Int_t idx = i+fBinningResolutionHalfLoGain+fBinningResolutionLoGain*count-1;
|
---|
1149 | fAmpWeightsLoGain [idx] = w_amp [0][count];
|
---|
1150 | fTimeWeightsLoGain[idx] = w_time[0][count];
|
---|
1151 | }
|
---|
1152 |
|
---|
1153 | } // end loop over i
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 | ofstream fn(filename.Data());
|
---|
1157 |
|
---|
1158 | fn << "# High Gain Weights: " << fWindowSizeHiGain << " " << fBinningResolutionHiGain << endl;
|
---|
1159 | fn << "# (Amplitude) (Time) " << endl;
|
---|
1160 |
|
---|
1161 | for (Int_t i=0; i<nsizehi; i++)
|
---|
1162 | fn << "\t" << fAmpWeightsHiGain[i] << "\t" << fTimeWeightsHiGain[i] << endl;
|
---|
1163 |
|
---|
1164 | fn << "# Low Gain Weights: " << fWindowSizeLoGain << " " << fBinningResolutionLoGain << endl;
|
---|
1165 | fn << "# (Amplitude) (Time) " << endl;
|
---|
1166 |
|
---|
1167 | for (Int_t i=0; i<nsizehi; i++)
|
---|
1168 | fn << "\t" << fAmpWeightsLoGain[i] << "\t" << fTimeWeightsLoGain[i] << endl;
|
---|
1169 |
|
---|
1170 | delete derivativehi;
|
---|
1171 | if (derivativelo)
|
---|
1172 | delete derivativelo;
|
---|
1173 |
|
---|
1174 | return kTRUE;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | void MExtractTimeAndChargeDigitalFilter::Print(Option_t *o) const
|
---|
1178 | {
|
---|
1179 | if (IsA()==Class())
|
---|
1180 | *fLog << GetDescriptor() << ":" << endl;
|
---|
1181 |
|
---|
1182 | MExtractTimeAndCharge::Print(o);
|
---|
1183 | *fLog << " Time Shift HiGain: " << fTimeShiftHiGain << " LoGain: " << fTimeShiftLoGain << endl;
|
---|
1184 | *fLog << " Window Size HiGain: " << fWindowSizeHiGain << " LoGain: " << fWindowSizeLoGain << endl;
|
---|
1185 | *fLog << " Binning Res HiGain: " << fBinningResolutionHiGain << " LoGain: " << fBinningResolutionHiGain << endl;
|
---|
1186 | *fLog << " Weights File desired: " << (fNameWeightsFile.IsNull()?"-":fNameWeightsFile) << endl;
|
---|
1187 | if (!fNameWeightsFileSet.IsNull())
|
---|
1188 | *fLog << " Weights File set: " << fNameWeightsFileSet << endl;
|
---|
1189 |
|
---|
1190 | TString opt(o);
|
---|
1191 | if (!opt.Contains("weights"))
|
---|
1192 | return;
|
---|
1193 |
|
---|
1194 | *fLog << endl;
|
---|
1195 | *fLog << inf << "Using the following weights: " << endl;
|
---|
1196 | *fLog << "Hi-Gain:" << endl;
|
---|
1197 | for (Int_t i=0; i<fBinningResolutionHiGain*fWindowSizeHiGain; i++)
|
---|
1198 | *fLog << " " << fAmpWeightsHiGain[i] << " \t " << fTimeWeightsHiGain[i] << endl;
|
---|
1199 |
|
---|
1200 | *fLog << "Lo-Gain:" << endl;
|
---|
1201 | for (Int_t i=0; i<fBinningResolutionLoGain*fWindowSizeLoGain; i++)
|
---|
1202 | *fLog << " " << fAmpWeightsLoGain[i] << " \t " << fTimeWeightsLoGain[i] << endl;
|
---|
1203 | }
|
---|