/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! Author(s): Thomas Bretz, 02/2004 ! Author(s): Hendrik Bartko, 01/2004 ! Author(s): Markus Gaug, 09/2004 ! ! Copyright: MAGIC Software Development, 2002-2004 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MExtractSlidingWindow // // Extracts the signal from a sliding window of size fHiGainWindowSize and // fLoGainWindowSize, respectively. The signal is the one which maximizes // the clock-noise and pedestal-corrected integral contents. // // The amplitude-weighted arrival time is calculated from the window with // the highest integral using the following formula: // // t = sum(s(i) * i) / sum(i) // // where i denotes the FADC slice index and s(i) the clock-noise and /// pedestal-corrected FADC value at slice index i. The sum runs over the // extraction window size. // // Call: SetRange(higainfirst, higainlast, logainfirst, logainlast) // to modify the ranges in which the window is allowed to move. // // Defaults are: // // fHiGainFirst = fgHiGainFirst = 0 // fHiGainLast = fgHiGainLast = 14 // fLoGainFirst = fgLoGainFirst = 2 // fLoGainLast = fgLoGainLast = 14 // // Call: SetWindowSize(windowhigain, windowlogain) // to modify the sliding window widths. Windows have to be an even number. // Odd numbers are possible since the clock-noise is corrected for. // // Defaults are: // // fHiGainWindowSize = 6 // fLoGainWindowSize = 6 // ////////////////////////////////////////////////////////////////////////////// #include "MExtractTimeAndChargeSlidingWindow.h" #include "MPedestalPix.h" #include "MLog.h" #include "MLogManip.h" ClassImp(MExtractTimeAndChargeSlidingWindow); using namespace std; const Byte_t MExtractTimeAndChargeSlidingWindow::fgHiGainFirst = 2; const Byte_t MExtractTimeAndChargeSlidingWindow::fgHiGainLast = 16; const Byte_t MExtractTimeAndChargeSlidingWindow::fgLoGainFirst = 2; const Byte_t MExtractTimeAndChargeSlidingWindow::fgLoGainLast = 14; const Byte_t MExtractTimeAndChargeSlidingWindow::fgHiGainWindowSize = 6; const Byte_t MExtractTimeAndChargeSlidingWindow::fgLoGainWindowSize = 6; // -------------------------------------------------------------------------- // // Default constructor. // // Calls: // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast) // // Initializes: // - fWindowSizeHiGain to fgHiGainWindowSize // - fWindowSizeLoGain to fgLoGainWindowSize // MExtractTimeAndChargeSlidingWindow::MExtractTimeAndChargeSlidingWindow(const char *name, const char *title) : fWindowSizeHiGain(fgHiGainWindowSize), fWindowSizeLoGain(fgLoGainWindowSize), fHiGainSignal(NULL), fLoGainSignal(NULL) { fName = name ? name : "MExtractTimeAndChargeSlidingWindow"; fTitle = title ? title : "Calculate arrival times and charges using a sliding window"; SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast); } // -------------------------------------------------------------------------- // // Destructor: Deletes the arrays // MExtractTimeAndChargeSlidingWindow::~MExtractTimeAndChargeSlidingWindow() { if (fHiGainSignal) delete [] fHiGainSignal; if (fLoGainSignal) delete [] fLoGainSignal; } //------------------------------------------------------------------- // // Set the ranges // // Calls: // - MExtractor::SetRange(hifirst,hilast,lofirst,lolast); // - SetWindowSize(fWindowSizeHiGain,fWindowSizeLoGain); // void MExtractTimeAndChargeSlidingWindow::SetRange(Byte_t hifirst, Byte_t hilast, Byte_t lofirst, Byte_t lolast) { MExtractor::SetRange(hifirst, hilast, lofirst, lolast); // // Redo the checks if the window is still inside the ranges // SetWindowSize(fWindowSizeHiGain,fWindowSizeLoGain); } // ----------------------------------------------------------------------------------------- // // Checks: // - if a window is bigger than the one defined by the ranges, set it to the available range // - if a window is smaller than 2, set it to 2 // // Sets: // - fNumHiGainSamples to: (Float_t)fWindowSizeHiGain // - fNumLoGainSamples to: (Float_t)fWindowSizeLoGain // - fSqrtHiGainSamples to: TMath::Sqrt(fNumHiGainSamples) // - fSqrtLoGainSamples to: TMath::Sqrt(fNumLoGainSamples) // void MExtractTimeAndChargeSlidingWindow::SetWindowSize(Byte_t windowh, Byte_t windowl) { fWindowSizeHiGain = windowh; fWindowSizeLoGain = windowl; const Byte_t availhirange = fHiGainLast-fHiGainFirst+1; if (fWindowSizeHiGain > availhirange) { *fLog << warn << GetDescriptor() << Form("%s%2i%s%2i%s%2i%s",": Hi Gain window size: ",(int)fWindowSizeHiGain, " is bigger than available range: [",(int)fHiGainFirst,",",(int)fHiGainLast,"]") << endl; *fLog << warn << GetDescriptor() << ": Will set window size to: " << (int)availhirange << endl; fWindowSizeHiGain = availhirange; } if (fWindowSizeHiGain<1) { fWindowSizeHiGain = 1; *fLog << warn << GetDescriptor() << ": High Gain window size too small, set to one sample" << endl; } if (fLoGainLast != 0 && fWindowSizeLoGain != 0) { const Byte_t availlorange = fLoGainLast-fLoGainFirst+1; if (fWindowSizeLoGain > availlorange) { *fLog << warn << GetDescriptor() << Form("%s%2i%s%2i%s%2i%s",": Lo Gain window size: ",(int)fWindowSizeLoGain, " is bigger than available range: [",(int)fLoGainFirst,",",(int)fLoGainLast,"]") << endl; *fLog << warn << GetDescriptor() << ": Will set window size to: " << (int)availlorange << endl; fWindowSizeLoGain = availlorange; } } fNumHiGainSamples = (Float_t)fWindowSizeHiGain; fNumLoGainSamples = fLoGainLast ? (Float_t)fWindowSizeLoGain : 0.; fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); } // -------------------------------------------------------------------------- // // ReInit // // Calls: // - MExtractTimeAndCharge::ReInit(pList); // - Deletes all arrays, if not NULL // - Creates new arrays according to the extraction range // Bool_t MExtractTimeAndChargeSlidingWindow::ReInit(MParList *pList) { if (!MExtractTimeAndCharge::ReInit(pList)) return kFALSE; if (fHiGainSignal) delete [] fHiGainSignal; if (fLoGainSignal) delete [] fLoGainSignal; Int_t range = fHiGainLast - fHiGainFirst + 1 + fHiLoLast; fHiGainSignal = new Float_t[range]; memset(fHiGainSignal,0,range*sizeof(Float_t)); range = fLoGainLast - fLoGainFirst + 1; fLoGainSignal = new Float_t[range]; memset(fLoGainSignal,0,range*sizeof(Float_t)); return kTRUE; } // -------------------------------------------------------------------------- // // Calculates the arrival time for each pixel // void MExtractTimeAndChargeSlidingWindow::FindTimeAndChargeHiGain(Byte_t *first, Byte_t *logain, Float_t &sum, Float_t &dsum, Float_t &time, Float_t &dtime, Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag) { Int_t range = fHiGainLast - fHiGainFirst + 1; const Byte_t *end = first + range; Byte_t *p = first; Float_t max = 0; // highest integral content of all windows Int_t count = 0; // counter to recognize the AB-flag const Float_t pedes = ped.GetPedestal(); const Float_t ABoffs = ped.GetPedestalABoffset(); Float_t PedMean[2]; PedMean[0] = pedes + ABoffs; PedMean[1] = pedes - ABoffs; // // Check for saturation in all other slices // while (p= fSaturationLimit) sat++; count++; } // // Check for saturation in all other slices // while (p= fSaturationLimit) sat++; if (IsNoiseCalculation()) return; // // Calculate the i-th sum as // sum_i+1 = sum_i + slice[i+8] - slice[i] // This is fast and accurate (because we are using int's) // count = 0; max = sum; Int_t idx = 0; // idx of the first slice of the maximum window for (p=first; p+fWindowSizeHiGainmax) { max = sum; idx = count+1; } count++; } if (fHiLoLast != 0) { // // overlap bins // Byte_t *l = logain; while (p < end && l < logain+fHiLoLast) { const Int_t ids = fHiGainFirst + count + fWindowSizeHiGain; const Float_t signal = (Float_t)*l - PedMean[(ids+abflag) & 0x1]; sum += signal - fHiGainSignal[count]; fHiGainSignal[count + fWindowSizeHiGain] = signal; count++; if (*l++ >= fSaturationLimit) sat++; if (sum>max) { max = sum; idx = count+1; } p++; } if (fHiLoLast > fWindowSizeHiGain) { while (l < logain + fHiLoLast) { const Int_t ids = fHiGainFirst + count + fWindowSizeHiGain; const Float_t signal = (Float_t)*l - PedMean[(ids+abflag) & 0x1]; sum += signal - fHiGainSignal[count]; fHiGainSignal[count+fWindowSizeHiGain] = signal; count++; if (*(l+fWindowSizeHiGain) >= fSaturationLimit) sat++; if (sum>max) { max = sum; idx = count+1; } l++; } /* while (l < logain + fHiLoLast) */ } /* if (fHiLoLast > fWindowSizeHiGain) */ } /* if (fHiLoLast != 0) */ // // now calculate the time for the maximum window // Float_t timesignalsum = 0.; Int_t timesquaredsum = 0; for (Int_t i=idx; i= fSaturationLimit) sat++; count++; } // // Check for saturation in all other slices // while (p= fSaturationLimit) sat++; if (IsNoiseCalculation()) return; // // Calculate the i-th sum as // sum_i+1 = sum_i + slice[i+8] - slice[i] // This is fast and accurate (because we are using int's) // count = 0; max = sum; Int_t idx = 0; // idx of the first slice of the maximum window for (p=first; p+fWindowSizeLoGainmax) { max = sum; idx = count+1; } count++; } // // now calculate the time for the maximum window // Float_t timesignalsum = 0; Int_t timesquaredsum = 0; for (Int_t i=idx; i